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ABSTRACT
In the present study, direct numerical simulation (DNS)

results of fully developed turbulent channel flows of a vis-
coelastic fluid modeled as a polymer dilution in a Newto-
nian solvent are analyzed. The analysis is focused on the
spectral properties of the turbulent stress and vorticity fields
in order to contrast the properties of turbulence of viscoelas-
tic and Newtonian fluids, and to quantify the effects of in-
creased elasticity on the spectral behavior. The simulation
results coupled with the spectral analysis just mentioned can
be useful in further assessing the two classes of explanations
that have been proposed by Lumley (1969) and De Gennes
(1986) for the occurrence of polymer drag reduction.

FORMULATION
The incompressible flow field under considera-

tion is a fully developed turbulent channel flow of a
FENE-P viscoelastic fluid. The channel streamwise direc-
tion is x1 = x, the wall-normal direction isx2 = y, and the
spanwise directionx3 = z. The instantaneous velocity field
is (u,v,w) = (u1,u2,u3), and the variables are scaled with
the bulk velocityUb and the channel half-heighth. The
channel is also assumed of infinite extent in the spanwise
direction.

The equations governing the motion of a dilute poly-
mer solution are the mass and momentum conservation
equations closed with the constitutive equation for the vis-
coelastic fluid.

Mass and Momentum Conservation
With the length and time respectively scaled byν0/uτ0

andν0/u2
τ0, whereν0 is the total (solvent+polymer) viscos-

ity anduτ0 the zero-shear friction velocity, the dimension-
less conservation equations are:

∂u+j
∂x+j

= 0 (1a)

∂u+i
∂ t+

+u+j
∂u+i
∂x+j

=−∂P+

∂x+i
+

∂Ξ+
i j

∂x+j
(1b)

The pressure isP+ and the stress tensorΞ+
i j is composed of

(Newtonian) solvent and (polymeric) viscoelastic contribu-
tions,

Ξ+
i j = 2β0 s+i j +Ξp+

i j (2)

with the strain rate tensors+i j = (∂u+i /∂x+j +∂u+j /∂x+i )/2,
β0 the ratio of the Newtonian viscosityνN to the total zero-
shear viscosityν0 = νN+νp0, andReτ0= uτ0h/ν0 the zero-
shear friction Reynolds number. A uniform polymer con-
centration is assumed characterized by the viscosity ratio
β0 (the limit β0 = 1 is a Newtonian fluid). This quantity
was here fixed toβ0 = 0.9.

Constitutive Equation
The polymeric extra-stress,

Ξp+
i j =

1−β0

Weτ0

[
f ({c})ci j −δi j

]
(3)

associated with the dilute polymer solution is proportional
to the polymer dilution parameter 1−β0, inversely propor-
tional to the friction Weissenberg numberWeτ0 (ratio of
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Figure 1. (a) Mean velocity profiles and (b) Turbulent shear stress channel across half-width for Newtonian and viscoelastic
flows at frictional Reynolds numberReτ0 = 1000

elasticity to turbulent time scale), and is related to the con-
formation tensor componentsci j , which represent the en-
semble average squared norm of the end-to-end vector of
the polymer molecules. The function

f ({c}) = L2−3
L2−{c} (4)

follows the Peterlin approximation, withL the fully-
stretched polymer chain length and{c} the trace of the con-
formation tensorc. The evolution equation for the confor-
mation tensor in wall units is

∂ci j

∂ t+
+u+k

∂ci j

∂x+k
=

(
ciks+k j +s+ikck j

)
−
(

cikw+
k j −w+

ikck j

)

+
f ({ccc})ci j −δi j

Weτ0
(5)

wherew+
i j = (∂u+i /∂x+j −∂u+j /∂x+i )/2 is the rotation rate

tensor.

Numerical Method and Relevant Simulation
Parameters

Solving the conservation and constitutive equations in-
volves a hybrid spatial scheme with Fourier-Galerkin spec-
tral accuracy in the two homogeneous directions and 6th-
order compact finite differences for first and second-order
wall-normal derivatives. In the wall-normal direction, we
make usage of Hermitian (or Padé) techniques which are
locally supported, and possess spectral-like approximation
properties (Lele, 1992; Carpenter, 1993). A detailed de-
scription of the numerical procedure can be found in Thais
et al.(2011). The resulting parallel algorithm is highly scal-
able, which allows DNS at (relatively) high Reynolds num-
bers in large computational boxes for both Newtonian and
viscoelastic flows. Various degrees of drag reduction can be
obtained at a given Reynolds numberReτ0 through different
choices of the maximum chain extensibilityL, and friction
Weissenberg numberWeτ0. In a recent study (Thaiset al.,
2012), the Reynolds number similarity of the flow statis-
tics at a high drag reduction regime of the order of 60%
have been probed. For the present study, the parameter set
β0 = 0.9 at a fixed Reynolds numberReτ0 = 1000 with two
drag reduction cases are considered:L = 30, Weτ0 = 50,

corresponding to a medium percentage drag reduction (DR)
of 30%, andL = 100,Weτ0 = 115, corresponding to a high
percentage DR of 58%. The statistics and the spectral prop-
erties of these 2 flow cases are explored in contrast with the
reference Newtonian flow at the same Reynolds number.

RESULTS
Flow statistics

In Fig. 1(a) is shown the effect of increased viscoelas-
ticity on the mean velocity where the well-known thick-
ening of the viscous sublayer is evident. Also shown in
Fig. 1(a) is the asymptotic limit of maximum drag reduction
(MDR) theoretically predicted by Benzi (2010), in agree-
ment with experimental evidence by Virk (1975). One no-
tices a steepening of the viscoelastic velocity profiles in the
near-wall layer, the high drag reduction flow case getting
close to the MDR asymptote in this region. Such behavior
suggests a significant extension of the sublayer/buffer layer
regions into the channel as viscoelasticity increases. In the
outer layer, a broad log-law region appears for the interme-
diate viscoelastic flow, which had not been observed in pre-
vious DNS at lower Reynolds numbers, see e.g. Housiadas
& Beris (2003). Correspondingly, the peak turbulent shear
stress is shifted outward, and its magnitude reduced down
to a third of the Newtonian value in the high drag reduction
case.

The mean turbulent kinetic energy (TKE) distribution
displayed in Fig. 2(a) is also shifted outward, with an in-
crease in peak magnitude in viscoelastic flows. The simula-
tions have shown that this increase in TKE is due solely to
an increase in the streamwise normal turbulent stress com-
ponent since the wall-normal and spanwise components all
show a decrease relative to the Newtonian values. The non-
linear spring force of a finitely extendable nonlinear elastic
(FENE) polymer model is governed by Warner’s law (see
for example Deville & Gatski, 2012). This force results in
a mean elastic potential energy

E+
p =

1
2

α0

(
L2−3

)
ln [ f ({ccc})] (6)

whereα0 = (1− β0)/Weτ0. As shown in Fig. 2(b),E+
p

remains at a relatively modest fraction of the peak turbulent
kinetic energy in the medium drag reduction flow, whereas
it reaches about half the peak TKE value in the high drag
reduction flow.
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Figure 2. Distributions of (a) turbulent kinetic energy and (b) mean elastic potential energy across channel half-width at
frictional Reynolds number Reτ0 = 1000

Spectral Properties in the Inner Layer
In view of probing the velocity field power spectra, it is

advantageous to exploit the Fourier-Galerkin spatial scheme
used in the two homogeneous directionsx andz. The dis-
crete pre-multiplied two-dimensional (2D) power spectral
density of theui velocity component can be straightfor-
wardly evaluated in Fourier space through

Φii (kx,kz,y) = kxkz〈ûi û
∗
i 〉 (7)

with kx, kz the discrete wavenumbers in each respective
direction. The quantity〈ûi û∗i 〉 is the time-averaged two-
dimensional power spectral density1 of theui velocity com-
ponent, which is here taken in wall-parallel slabs over 500
flow snapshots spanning approximately 5 eddy turnover
times. From the 2D-power spectral density, it is also
straightforward to evaluate the discrete 1D-power spectral
densities in each directionx andz by integration in the re-
spective orthogonal direction. Here, we shall restrict our-
selves to the 1D-x power spectral density in the streamwise
direction, which can be evaluated through integration in the
cross-channel direction

Eii (kx,y) =

(
2π
Lz

)
(

2π
Lz

)
.Ngz

∑
kz=−

(
2π
Lz

)
.Ngz

〈ûi û
∗
i 〉(kx,kz,y) , (8)

where Lz is the channel width, andNgz the number of
Fourier Galerkin modes in the same direction.

Figure 3 shows velocity and vorticity power spectral
densities at the fixed position from the wally+ = 99. A
marked alteration of the spectral properties in the presence
of the polymer appears over the entire wavenumber range.
For the ‘large’ scales, thek−1 energy spectrum hypothe-
sis in the one-dimensional power spectrum of the stream-
wise velocity, first evidenced by Laufer (1955), is here con-
firmed for the Newtonian flow over a significant wavenum-
ber range 5.10−4 . kxη . 10−2 (η is the Kolmogorov vis-
cous scale). This wavenumber range is almost unaltered in

1〈ûi û∗i 〉 is time-averaged power per unit spectral ray, or time-
averaged power spectral density, the overhat standing for the un-
scaled 2D-discrete Fourier transform coefficients. The star is com-
plex conjugation, and the angle brackets are for time-averaging.

the medium drag reduction flow, whereas a clear enhance-
ment of the low wavenumber energy is observed in the high
drag reduction flow. In the mean time, thek−1 wavenumber
range in the high drag reduction flow, if any, is considerably
narrower.
However, the most striking property in Fig. 3 is the pro-
nounced drop of energy in all three components in the high
wavenumber range as viscoelasticity increases. In the high
drag reduction case, there is a clear tendency towards a
k−5

x power law over a full decade in the wavenumber range
10−2 . kxη . 10−1 for the streamwise and spanwise ve-
locity spectral densities. This observation is in line, at
least qualitatively, with the experimental data of Warholic
et al. (1999). In particular, their figure 15 shows a sim-
ilar dramatic drop in the energy density function of the
streamwise velocity component. Although their plot is a
frequency spectrum, one can extrapolate, using the Taylor
frozen-turbulence hypothesis, a power law region approxi-
mately followingk−4

x to k−5
x for their 3 high drag reduction

flow cases (55%, 64% and 69% percent drag reduction).
One should also notice that the wall-normal velocity spec-
trum exhibits a singular behavior. The wall-normal low
wavenumber range shows no energy enhancement for the
two viscoelastic flows. In contrast, the high wavenumber
decay rate is slower than in the other two directions, fol-
lowing aO(k−4

x ) decay rate.

The 1D-power spectral densities of the 3 components
of vorticity at the same wall-normal positiony+ = 99 are
plotted in Fig. 4. For the spectra of the streamwise compo-
nent of vorticity, one finds a similar behavior to the spec-
tra of the wall-normal velocity component (Fig. 3(c)). The
large scales are little affected by viscoelasticity; whereas,
viscoelasticity induces a drop in the energy content follow-
ing a k−3

x power law from the middle of the inertial sub-
range,kxη & 10−2, down to the smallest resolved scales.
The spectra of the other two components of vorticity have
a distinct behavior. The spectra of the spanwise and wall-
normal vorticity components in the viscoelastic cases cross
the Newtonian spectra aroundkxη ≈ 10−2; the crossing
wavenumber being slightly smaller at high drag reduction,
which is similar to the results obtained for the velocity spec-
tra. One will also notice the existence of a steeper drop fol-
lowing a power lawk−4

x in the inertial subrange. Viscoelas-
ticity effects are most noticeable in the cross-stream compo-
nent of vorticity (Fig. 4(b)). For this component, the large
scale energy content is increased by more than an order of
magnitude in the high drag reduction flow with respect to
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Figure 3. 1D-power spectral density of (a) the streamwise velocity, (b) the spanwise velocity and (c) the wall-normal velocity
component at the wall-normal positiony+ = 99 for Newtonian and viscoelastic flows atReτ0 = 1000. η is the Kolmogorov
viscous scale based on the zero-shear total viscosity.
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Figure 4. 1D-power spectral density of the 3 components of vorticity φ+
ii = φii .(ν0/u3

τ0) at the wall-normal positiony+ = 99
for Newtonian and viscoelastic flows atReτ0 = 1000.

the Newtonian flow. Also, there is a tendency towards a
k−1

x behavior for the high drag reduction flow in the low
wavenumber range 2.10−3 . kxη . 8.10−3. This result is
in line with the findings of Morris & Foss (2005) who re-
ported large values of the spectral density of the cross-flow
vorticity at the low and inertial ranges of wavenumbers in
inhomogeneous high Reynolds number Newtonian turbu-
lent flow. This suggests that such a decay law in the vis-
coelastic case is a result of the increased anisotropy level.
Another feature of the heightened anisotropy of these flows
is the existence of power laws in the vorticity spectra at
high wavenumbers. In homogeneous, isotropic turbulence
no such power law appears in the inertial subrange (Pope,
2000).

Spectral Properties at the Channel Mid-Plane
Many properties of our data plead in favor of Lumley’s

“effective” viscosity theory: the extension of the sublayer
into the channel, the relaxation of the TKE profiles towards
the Newtonian values in the outer layer, the fact that the
MDR asymptote can be predicted with an extensional vis-
cosity hypothesis (Benzi, 2010), etc. However, Lumley’s
theory essentially follows (modified) boundary layer argu-
ments, i. e. the presence of a mean shear flow is an essential
ingredient to the polymer alteration of momentum.

Figures 5 and 6 repeat the velocity and vorticity spec-
tra shown above but right at the channel mid-plane. Here,
the Newtonian and medium drag reduction spectra are vir-
tually the same, indicating that the polymer has little, if any,
influence on the turbulent structures outside the log-layerin
the medium drag reduction flow. This would again plead in
favor of Lumley’s viscous theory. However, the high drag

reduction spectra again exhibit a high wavenumber energy
drop, and a low wavenumber energy increase; although both
effects are less pronounced than observed in the inner layer,
showing that the spectra can be altered by the polymer in the
absence of any mean shear. There is no tendency towards
a power law drop of the energy for the spanwise and wall-
normal velocity components. However, for Newtonian flow
and for medium drag reduction flow, there is a discernible
inertial wavenumber range where thek−5/3 decay law ap-
plies to the streamwise spectra. In contrast, no suchk−5/3

law applies to the high drag reduction flow over a signifi-
cant wavenumber range.
At the channel mid-plane, the polymer effect on turbulent
structures is isotropic, in contrast with the observation in the
inner layer, which is particularly conspicuous when examin-
ing the vorticity spectra in Fig. 6. In these vorticity spectra,
one will also notice a small, yet non-negligible, dampening
at high wavenumbers for the medium drag reduction flow
case.

SPECTRAL ANALYSIS FOR HOMOGENEOUS
ISOTROPIC TURBULENCE

The spectra at the channel mid-plane suggest to inves-
tigate the Fourier transformed evolution equations in the
framework of homogeneous isotropic turbulence. The var-
ious 3D-Fourier transformed variables2 are now formally
written as

g̃(k,t) =
1

(2π)3

∫
g(x,t) eιk·x d3x (9a)

2The ’+’ sign for inner scaling is omitted from now on for con-
ciseness4
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τ0) at the mid-channel center plane for
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g(x,t) =
∫

g̃(k,t) e−ιk·x d3k (9b)

with ι =
√
−1 and k the circular 3D-wavenumber vec-

tor. The respective instantaneous fluctuating Fourier trans-
formed continuity and momentum equations are then

k j ũ j = 0 (10a)

∂ ũi

∂ t
− ιk j ũ j ⋆ ũi = ιki p̃−β0κ2ũi − ιk j Ξ̃p

i j (10b)

where

Ξ̃p
i j = α0

[
f̃ ⋆ c̃i j − δ̃i j

]
(11)

has been used for the Fourier transformed extra-stress, with
κ = |k|, δ̃i j = δ (k)δi j , and the⋆ standing for the Fourier
convolution product. Multiplying the momentum equation
by ki , and using Eq. (10a), gives

p̃=−kik j

κ2

[
ũ j ⋆ ũi − Ξ̃p

i j

]
(12)

Substituting back in the momentum equation yields

∂ ũi

∂ t
+β0κ2ũi = ιk j

[
δil −

kikl

κ2

][
ũ j ⋆ ũl − Ξ̃p

jl

]
(13)

A first-order time integration of Eq. (13) yields

ũi = ũi |t=0 + ιk j t ×

[
δil −

kikl

κ2

][
ũ j ⋆ ũl −α0

(
f̃ ⋆ c̃ jl − δ̃ jl

)]

+ O
(

κ2
)

(14)

The second term with theO(κ) contribution consists
of the usual Newtonian contribution, with an additional
FENE-P contribution that has the potential to significantly
contribute to the smallk behavior of the velocity Fourier
coefficient. Wheñui |t=0 is smaller thanO(κ), this entire
second term dominates but with features distinct from the
Newtonian behavior. Any inter-modal component transfer
represented by the convolution between the Peterlin func-
tion and the conformation tensor does not involve the veloc-
ity field in this equation so that the imposed stress due to the
polymer acts independent of the velocity field here. This is a
fundamental effect and would carry over to flows with mean
shear. As such the enhanced spectral values observed at low
wavenumbers (large scales) would be due to the influence of
this term. From Eq. (14), it is shown that at low wavenum-
ber the functional behavior with respect to wavenumber is
the same as the Newtonian case; just at a different magni-
tude level. The polymer force is proportional to the Peterlin
function. As the polymer is stretched the denominator of the
Peterlin function gets closer to zero (although it can never
reach maximum extensibility). The polymeric term in Eqs.
(13) and (14) are clearly dependent on the Peterlin function
and in a nonlinear way since this is a convolution.

Thinking in a linear fashion, this term would suggest
that an increase in stretching, i. e. an increase in the Pe-
terlin function, should strengthen the polymeric effect. Fig-
ure 7 shows profiles of the Peterlin function across the chan-
nel half-width. In this figure, a linear y-scale was used to
magnify the behavior towards the channel center. Not sur-
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prisingly, the mean contributionf ({c}) (2 top curves) relax
to unity towards the channel center, while the fluctuating
contribution f ′({c}) (2 bottom curves) relax to zero. How-
ever, both contributors to the Peterlin function are largerin
the medium drag reduction flow. Furthermore, the Fourier-
transformed polymer stress̃Ξp

i j is proportional to the co-
efficient α0, which is larger in the medium drag reduc-
tion (α0 = 2× 10−3) than in the high drag reduction flow
(α0 = 0.9× 10−3). These observations come in contra-
diction with the above mentioned linear way of thinking.
We conclude that polymer stretching cannot be responsible
for the alteration of the energy cascade at the channel mid-
plane, in particular the high-wavenumber attenuation can-
not be explained with this argument.
This is further confirmed upon using Eq. (13) to form
the evolution equation for the energy densityΦii (k) =∫

ũi(k)ũ∗i (k
′)d3k′. After some algebra, the final result is

dΦii

dt
+2β0κ2Φii +Pp(k) = T(k) (15)

In Eq. (15),T(k) is the usual (Newtonian) triadic conser-
vative interchange of energy between wavenumber compo-
nents (e.g. Durbin & Pettersson-Reif, 2010), whereasPp(k)
is an additional polymeric contribution

Pp(k) = ια0kl

∫
{pili (k,p)− p∗ili (k,p)} d3p (16)

where

pili (k,p) = ũ∗i (k)
[

f̃ (k−p)⋆ c̃il (p)
]

(17)

In Eq. (15), the spectral transfer termT(k) is the same as
in the Newtonian case. This means it neither adds or sub-
tracts energy to the system and simply transfers energy, pre-
sumably from low to high wavenumbers. Once again, how-
ever, the Peterlin function is present in the polymeric term
pili (k,p), and it acts non-linearly through the presence of a
convolution product.

Since the turbulent kinetic energy is given asK =
1/2

∫
Φii (k)d3k, Eq. (15) translates in physical space as

dK
dt

=−ε − 1
2

∫
Pp (k) d3k (18)

whereε = β0
∫

kl kl Φii (k) d3k is the solenoidal dissipation
rate of TKE. It appears that even if the turbulence field is
isotropic the decay of TKE is affected by the polymeric
contribution. This suggests that the Kolmogorov cascade
can be altered across a broad spectral range.

The right side of Eq. (18) shows the complicated in-
teraction between the viscous dissipation rate and the poly-
meric term. Future work should focus on a scale-by-scale
evaluation of each contributor to Eq. (15). Hopefully, this
would allow to definitely assess the theory of drag reduc-
tion by Tabor & De Gennes (1986), which were the first to
suggest an alteration of the energy cascade due to elasticity.
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