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ABSTRACT
The sound generation by pure vortex mode distur-

bances in an two-dimensional (2D) unbounded inviscid
plane Couette flow is investigated. We present results by
Kelvin-mode analysis as well as numerical simulations of
the Euler equations, while focusing on the dynamics in
the spectral plane. Our results show a dominance of the
anisotropic linear sound generation in subsonic shear flows
by vortices inside the boundaries of rapid distortion the-
ory (RDT). The linearly generated, highly directional field
is comparable to the hydrodynamic field, which physi-
cal headstone is the mode coupling, induced by the non-
normality in shear flow systems at moderate shear rates of
the velocity. Comparisons of the classical acoustic anal-
ogy (AA) approach by Lighthill (1952) with the herein
presented results identify the inability of AAs to capture
the shear-induced anisotropy of the generated waves in the
spectral plane.

INTRODUCTION
Aerodynamic sound generation is a major subject of

fluid dynamics, with applications in wide areas of engineer-
ing problems, even extending to the astrophysical context
(helio- and astroseismology). The framework for modern
aero-acoustic research has been accomplished by Lighthill’s
pioneering work (Lighthill, 1952) and the derivation of an
AA. According to Lighthill (1954) the linear sound gen-
eration can be increased by a mean shear flow, due to the
linear terms in the source term, S . This statement mo-
tivates our present research, having the dual purpose of:
(i) rethinking Lighthill’s approach Lighthill (1952, 1954) in
the light of the breakthrough of the hydrodynamic stability
community in the 1990s (e.g. Chagelishvili et al. (1997b);

Schmid & Henningson (2001) and references herein) that
has been followed by the understanding of phenomena in-
troduced by the non-normality of non-uniform flow sys-
tems; (ii) comparing the efficiency of the linear and non-
linear mechanisms of aerodynamic sound generation at dif-
ferent Mach numbers, M , and RDT parameters, D , of
the embedded flow eddies. In shear flows the set of gov-
erning equations, describing the linear dynamics, are non-
normal, hence, likewise the operators in the mathematical
formalism of the modal analysis, while the corresponding
eigenmodes are non-orthogonal (e.g. Schmid & Henning-
son (2001)). This leads to strong interference phenomena
among the eigenmodes, which are not captured by the clas-
sic modal analysis, but can be circumvented by the non-
modal approach. The presented results have been obtained
by means of Kelvin-mode analysis and numerical simula-
tions of the Euler equations. By focusing on the dynamics
in the spectral plane, it is possible to grasp the basic physics
of wave generation by initially pure vortex perturbations
embedded in a 2D, inviscid and unbounded plane Couette
flow. This is characterised by a homogeneous shear of ve-
locity (U0 = (Ay,0), shear parameter A > 0 without the loss
of generality), uniform pressure and density distribution.

By the chosen approach we assure to centre our atten-
tion on phenomena induced by the non-normal nature of the
base flow system, partially appearing in jets, too, thus, shed-
ding some light on the open question for the true sources of
aerodynamic sound, which are not properly defined until
now, (Goldstein, 2005).

KELVIN MODE ANALYSIS
First of all we capture the generation of wave

modes from single vortex Kelvin modes by employ-
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ing a non-normal approach. The basis of the applied
Kelvin mode approach is represented by the transfor-
mation of the 2D linearised Euler equations (LEE)
about the uniform shear flow, with U0 = (Ay,0), in a
co-moving frame. The standard procedure of non-modal
analysis subsequently employs the spatial Fourier ex-
pansion of the perturbations with a constant streamwise,
kx, and a time-dependent cross-stream wavenumber
ky(τ) = ky(0) − kxAτ : Ψ = Ψ̂exp(ikxx+ iky(τ)y),
with Ψ = {ux(x,τ),uy(x,τ),ρ(x,τ)/ρ0} and
Ψ̂ = {vx(k,τ),vy(k,τ),D(k,τ)}, where {ux,uy,ρ/ρ0}
and {vx,vy,D ≡ iρ/ρ0} denote the stream- and cross-
streamwise velocity and normalised density perturbations
in physical (x = (x,y)) space and of the perturbation spatial
Fourier harmonics (SFH), respectively, with k = (kx,ky).
The time dependence appearing in ky(τ) is due to the
shearing background. The set of the LEE for the SFH
thence reduces to the following form:

dvx

dτ
=−Avy − kxc2

s D

dvy

dτ
=−ky(τ)c2

s D,
dD
dτ

= kxvx + ky(τ)vy .

(1)

Eqs. (1) are characterised by the essential time-invariant W

ky(τ)vx − kxvy +AD ≡ W . (2)

This corresponds to the fact that W , the potential vorticity,
is a conserved quantity (dW /dτ = 0) and plays a crucial
role in the rigorous identification/definition of perturbations
modes in this peculiar shear flow. By re-combining Eqs. (1)
including the potential vorticity as a key-variable, one way
to reduce Eqs. (1) to a second order inhomogeneous differ-
ential equation for vx(τ) is given by

[
d2

dτ2 +ω2(τ)
]

vx(τ) = c2
s ky(τ)W , (3)

where ω2 = c2
s (k

2
x + k2

y(τ)). This equation can be inter-
preted as the spectral form of the AA equations in the linear
limit, as it has the form of a wave-equation with a time-
dependent frequency ω and a physical source term on the
right-hand side (RHS). From the physical point of view,
Eq. (3) describes two different modes/types of perturba-
tions: (i) acoustic wave modes (v(w)

x ) that are described
by the general solution of the corresponding homogeneous
equation and (ii) vortex modes (v(v)x ) that are aperiodic,
originated from the equation inhomogeneity, (ky(τ)W ).
The latter are associated with the particular solution of the
inhomogeneous equation (the amplitude of the vortex mode
is proportional to W , hence goes to zero when W = 0).

A linear mechanism of wave generation by
vortices

By imposing a pure vortex mode SFH into the shear
flow, a distinct linear mechanism of acoustic wave genera-
tion is found. This is due to the (vortex and wave) mode
coupling, induced by the non-normality of the shear flow
system and efficient at moderate/high Mach numbers of
the initially embedded perturbation, M = A/(kxcs) & 0.3,
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Figure 1: Evolution of initially pure vortex SFH in terms
of normalised velocity and density perturbations (vx(τ)/cs,
vy(τ)/cs and D ≡ iρ(τ)/ρ0) and its normalised energy
( Ek(τ)/Ek(0) ) at M = 0.05. and ky0/kx = 10.
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Figure 2: The same as for Fig. 2 at M = 0.40 – wave
generation appears at times τ = τ∗ = ky0/(Akx).

(Chagelishvili et al., 1997a). Although kx is constant in
time in the linear limit, nonlinear effects might redistribute
the modes also in streamwise direction. In order to visualise
the aforementioned wave generation phenomenon, numeri-
cal calculations of Eqs. (1) are carried out for initially im-
posed pure vortex SFH (without admixes of acoustic waves)
that satisfy the condition ky0/kx > 0 at τ = 0, with ky0 =
ky(0) and are presented in Fig. 1 and Fig. 2, respectively.
The extraction of pure vortex mode SFH is accomplished
by a numerical procedure, which is based on the WKB (
Wentzel, Kramers, Brillouin) (Nayfeh, 2000) approxima-
tion in the adiabtic limit of the perturbations (|ky/kx| ≫ 1).
We concentrate our attention on M . 1 in order to avoid
any appearances of shock waves.

Whereas for low values of M (see Fig. 1) there is no
indicator for wave emergence and the vortex mode behaves
as in the incompressible limit, it appears that the generation
of acoustic waves by vortices takes place at the moment of
the SFH crossing the line of ky = 0 for higher values of M ,
Fig. 2. The moment of wave emergence corresponds to the
critical time τ∗ = ky0/(Akx).

The effective parameter of acoustic wave generation
with τ∗± = τ∗±0 can be defined as

η ≡ E(w)
k (τ∗+)

E(v)
k (τ∗−)

=
4v2

x(τ∗)
v2

x(τ∗)+ v2
y(τ∗)+ c2

s D2(τ∗)
, (4)

wherein the energetic parts of the regarded mode – vortex
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Figure 3: Efficacy of wave-generation η = η(M ).

(v) and wave (w) part – are

E(v)
k (τ < τ∗)≡ ρ0

2

[
v(v)2x + v(v)2y + c2

s D(v)2
]

E(w)
k (τ > τ∗)≡ ρ0

2

[
v(w)2

x + v(w)2
y + c2

s D(w)2
]
.

(5)

Naturally, E(v) and E(w) do not have any physical meaning
in the energy gaining region, |ky(τ)/kx| . 1, where vortex
and wave SFHs strongly interfere. They, however, get the
described meaning, when M ∗(τ) = A/ω(τ) ≪ 1 and the
mode interference is negligible, which is true in the adia-
batic limit. The RHS of Eq. 4 is recovered by symmetry
properties of the primitive variables. Numerically evaluat-
ing Eq. (4) as a function of M , the result is presented in
Fig. 3, where the inner plot shows a magnified view of the
area of M ∈ [0,0.4].

Obviously, the generation of waves becomes notice-
able around M = 0.2, substantial at M = 0.3, while
asymptotically aspiring towards a value of limM→∞ η = 4.
The cause of the actual absence of the wave generation phe-
nomenon at low shear rates is not the existence of a cer-
tain threshold, but the fact that |vx(τ∗)| is largely reduced at
M < 0.1. The calculations, thence, show that the value of
the Mach number drastically changes the vortex dynamics
and their potential of wave emergence. Consequently, intro-
ducing vortex and wave characteristics at τ → τ∗+ and evalu-
ating their dynamics, we can asymptotically determine val-
ues of the physical quantities of the SFHs (at M ∗(τ)≪ 1).
Our numerical calculations show that E(w)(τ) increases and
E(v)(τ) decreases asymptotically in time. Thus the single
wave SFH, generated at τ = τ∗, amplifies by gaining energy
from the surrounding shear flow at times τ ≥ τ∗. The vortex
SFH, instead, gives its energy back to the background flow
and diminishes in time.

At time τ∗−, we only have vortex SFH, which energy is
defined by the first part of (5). From this equation and from
the symmetry properties of vortex SFHs we derive that

Ek(τ∗−)≡ E(v)
k (τ∗−) and E(v)

k (τ∗−) = E(v)
k (τ∗+), (6)

i.e. the vortex energy at time τ∗+ is equal to the energy of the
vortex SFH at time τ∗−, independent from the value of the
generated wave SFH amplitude. Hence, we can conclude
that the dynamics of the vortex SFH does not depend on the
amplitude of the generated wave SFH. The emerged wave
SFH, thus, does not change the vortex SFH energetics and
is energetically supplied by the shear flow and it is feasible
to state that the vortex SFH acts as a mediator between the
background flow and the wave SFH at τ∗.
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Figure 4: The same as for Fig. 2 for ky0/kx =−10−5.

For the reason that τ∗ cannot be reached for SFHs
initially located in regions of |ky/kx| < 0, vortical pertur-
bations here do not inhere the potential to trigger wave-
emergence. This fact is striking and illustrated in Fig. 4
and of major importance, because it underlines that the
linearly generated acoustic waves are anisotropic in the
(kx,ky)-plane and, consequently, also in the physical one.
Additionally, the fact that the cross-stream wavenumber of
each wave harmonic is zero, ky(τ∗) = 0 (irrespective of the
value of kx), at the moment of wave emission by the related
vortex SFH, leads to a narrow emission-angle of linearly
generated waves and innately distinguishes them from the
wide-angle modes of nonlinearly generated waves.

DIRECT NUMERICAL SIMULATIONS
Fully nonlinear numerical simulations of the Euler

equations are carried out that serve as a tool for the iden-
tification of further appearing more complex nonlinear phe-
nomena and as a supplementary basis for the analytic results
presented above, substantiating the importance of the linear
sound generating mechanism in uniform shear flows.

Numerical setup
We carry out numerical ideal hydrodynamic simula-

tions using the well tested code PLUTO. The code was de-
veloped for the solution of (hypersonic) flows in one, two
and three spatial dimensions and different systems of coor-
dinates (Mignone et al., 2007). It provides a multiphysics,
multialgorithm modular environment. Different hydrody-
namic modules and algorithms may be independently se-
lected to properly describe Newtonian, relativistic, mag-
netohydrodynamics, or relativistic magnetohydrodynamics
fluids. In our case, Newtonian hydrodynamics have been
used, which module implements the equations of classical
inviscid fluid dynamics with an ideal equation of state (Eu-
ler equations). The modular structure exploits a general
framework for integrating a system of conservation laws,
built on modern Godunov-type shock-capturing schemes.
For our simulations a piecewise-parabolic-method is em-
ployed as implemented by Colella & Woodward (1984),
having a fourth-order accurancy on a uniform mesh, to-
gether with the third-order Runge-Kutta method in time.

The domain of our numerical simulations is chosen as a
box extending from −L to L, with L = 10, in each direction,
and a number of Nx ×Ny = 81922 equidistantly distributed
zones in x- and y-direction. This leads to a grid spacing

3



August 28 - 30, 2013 Poitiers, France

AER2C

Figure 5: Initially imposed normalised (absolute) stream-
wise velocity disturbance distribution in the spectral plane.

of ∆x = ∆y = 0.0024 in the physical plane, which is suf-
ficient for the range of wavenumbers we are interested in,
gearing to the suggestion of Tam (2004) that the following
estimation holds: N = Nλ L/πk∗max, where k∗max is the max-
imal wavenumber we are interested in, and Nλ is the num-
ber of points per smallest wavelength, which is conserva-
tively estimated to 20. This approach is due to the assump-
tion that the processes of primary interest in this research
appear around small values of |k| ≤ 150. The properties
in spectral space can be summarised as follows: kmin =
2π/(2L) ≈ 0.314 and kmax = 2π/(2L) · (N − 1) ≈ 2573,
hence k ∈ [−kmax/2,kmax/2] with ∆k = kmin, equally, in
kx- and ky-direction. Further, we employ periodic bound-
ary conditions in x-direction, while outflow boundary con-
ditions are employed in y-direction.

Initial conditions
In order to highlight the effectiveness of the linear and

nonlinear wave generation mechanisms, the initially im-
posed disturbances have a specific spectrum, which is given
for the streamwise velocity disturbance, vx(x,0), by

vx(x,0) =

Be−(
y

2L·d )
4
∫

k

k2
y

∆k2
y

e
−
[(

kx−kx0
∆kx

)2
+
(

ky
∆ky

)2
]

2πiζp(k)
ζa(k)eik·xdk .

(7)
Here, ζa(k), ζp(k) ∈ [0,1] are random numbers and im-
part a stochastic nature to the disturbances. L and d
denote the box-size and localisation scale in y-direction.
The disturbance-spectrum is localised in the (kx,ky)-plane
with half-widths ∆kx and ∆ky along the kx- and ky-axis,
respectively, while centred around the initial streamwise
wavenumber kx0. Herein, it is sufficient to introduce only a
streamwise velocity disturbances spectrum, as the remain-
ing quantities, vy and ρ , can be recovered numerically. This
provides the uniquely associated physical quantities for an
arbitrary chosen spectrum of vx of pure vortex mode SFHs,
which is presented in Fig. 5 in the (kx,ky)-plane with super-
imposed contours in the upper region, normalised on

Ψ̄ =

√
1

NxNy

∫ ∫
dk |Ψ̂(kx,ky,0)|2. (8)

Herein, we have chosen the following set of parameters:
A = 4, kx0 = 5, ∆kx = 2, ∆ky = 50 and d = 2. The val-
ues of kx0, ∆kx and ∆ky are chosen in such a way to en-
sure transient amplification of the disturbance SFHs. Thus,

M = 0.8 and excessive wave emergence can be expected
at the critical time of the main bulk of disturbance modes
(see Fig. 3). Simultaneously, kx0 > ∆kx in order to allow an
easy distinction between linearly and nonlinearly generated
acoustic waves. The former should appear around kx0 due
to the described drift of SFHs along the ky-axis, while the
latter are expected to appear around 2kx0. By the chosen
value of d we can follow the generation of acoustic waves
by vortices for a sufficient time period, which are initially
stochastically distributed, yet, confined in y-direction.

For the aimed efficiency comparison of linear and non-
linear sound generation it is suitable to introduce a distor-
tion parameter (D) (Simone et al., 1997) as D = A/kx0q,
where q2/2 is the turbulent kinetic energy of the largest en-
ergy containing scales, which are located around kx ≈ kx0.
As D is a function of B that determines the initial distur-
bance amplitude (see Eq. (7)), it is convenient to compare
linearly and nonlinearly generated sound by the choice of
D . Of course, the lower the value of D (higher B) the
stronger is the influence of nonlinear effects. We restrict
ourselves to D & 1, in which range RDT is still assumed to
be a good approximation of the active processes (Batchelor
& Proudman, 1952), and linear processes are expected to
play a major role. (Lighthill, 1952).

The two subsequently presented cases are both run at a
moderate Mach number (M = 0.8), whereas B = 1 ·103;6 ·
105 and Case 1: D = 1000; Case 2: D = 1 respectively.

Results
As 2D perturbations are not self-sustaining by defini-

tion, we follow the dynamics of the vortex density distur-
bances and their conversion into wave ones (VD and WD,
respectively), during a confined time interval. Further, we
stop the numerical simulations, as soon as the generated
waves reach the outflow boundaries in y-direction, in order
to avoid any numerical problems of spurious reflections.

Case 1 Regarding Case 1 (D ≃ 1000), which we
suppose to be dominated by linear mechanisms, it is pos-
sible to track the disturbance dynamics in the spectral half
plane, as presented in Fig. 6.

It becomes evident that each disturbance SFH drifts
along the ky-axis, with a drift velocity proportional to kx.
As the disturbance consist initially solely of VD, SFHs lo-
cated in the region of ky/kx < 0 immediately attenuate (see
panels (b)-(c) and compare with Fig. 4), whereas SFHs lo-
cated in regions of 0 < ky/kx < 1, transiently amplify (pan-
els (a)-(c)). Only these SFHs bear the potential to amplify
and, ergo, to generate waves at the moment of crossing the
line of ky = 0. As attenuation of VD SFHs located in the re-
gion ky/kx < 0 starts immediately, it is possible to state that
any (remaining) SFHs in this region are of wave nature at
times τ > 0.6 and linearly generated. This is underlined by
the wave-like pattern, as presented in the framework of the
linear analysis (Fig. 2), which especially becomes evident
for later times, panels (d)-(f), when the waves draw energy
from the base flow. The bulk of VD SFHs exceeds their
critical time in panel (e). Of course, till this stage numer-
ous VD SFHs have crossed the kx-axis, hence, have passed
through the sequence following linear processes, consist-
ing of (i) drift of all kind of perturbations; (ii) transient
growth of vortex mode SFH; (iii) generation of acoustic
wave SFH by vortex ones; (iv) algebraic amplification of
wave SFH, yet, with less time for transient amplification.
Ergo the waves linearly generated by the VD SFH bulk are
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(a) τ = 0 (b) τ = 0.3 (c) τ = 0.6

(d) τ = 1.5 (e) τ = 2.5 (f) τ = 5.3

Figure 6: Evolving density perturbations for initially pure vortex mode perturbations in the (kx,ky)-plane at different times in
terms of absolute density disturbance amplitudes, normalised on the absolute mean-value of initial density perturbations ρ̄ for
D ≃ 1000.

more pronounced. During the drift of the newly generated
waves along the ky-axis, they gain energy from the mean
flow, amplify but stay confined in the spectral plane. Their
amplitudes become large enough to start nonlinear wave–
wave interactions. Thus, the thereby resulting SFHs appear
around kx = 2kx0 = 10 for larger times, panel (f). Still, their
amplitude is so small that they can be labelled as inferior to
the linearly generated waves.

Finally, we can exclude either nonlinear vortex–vortex
and vortex–wave interactions, as all VD SFHs have become
ineffective in comparison to the WD SFHs.

Case 2 The sequence of plots in Fig. 7 represents
the dynamics of the normalised density perturbations for
D ≃ 1. The comparably high initial perturbation amplitude
(at the border of RDT validity) causes immediate nonlin-
ear interactions of VD modes with each other. This leads
to the appearance of additional VD perturbations around
kx ≈ 2kx0 (panel (b)). The amplitude of those nonlinearly
generated VD mode disturbances exceed the linearly as-
signed ones after a comparably short period of time (panel
(c)). Although, partially nonlinearly generated, all VD per-
turbations undergo the described drift in the k-plane and
subsequently amplify, presupposed they are located in re-
gions of ky/kx > 0 (see Fig.2 and 4). The ones situated
in regions of ky/kx < 0 immediately attenuate, without the
potential of wave-generation. These results are identical
to the ones obtained for the Case 1. Yet, the nonlinearly
generated vortex SFHs (located around kx ≈ 2kx0) have a
smaller Mach number, M ≈ 0.4, and generate acoustic
wave SFHs in a weaker manner. So, while weakly generat-
ing waves, they themselves disappear by drifting in regions
of ky/kx < 0 (see (d)). This is a compelling indicator for
the omnipresence of the linear mechanisms, acting even on
nonlinearly generated disturbances. In this particular panel
nonlinear processes clearly dominate the dynamical picture.
Yet, it is visible that the linear ones do not become negli-
gible due to the former described sequence of linear pro-

cesses. This chain of processes is inevitably connected to
the spectral drift of the perturbations (WD and VD type),
whereas the hereby created wave modes mix with vortex
ones as seen in panel (e). On the other hand the pertur-
bations in panel (f) mostly have wave nature, as VD modes
are almost solely generated by interactions with themselves.
Clearly, the generation of waves by vortex-vortex interac-
tions, such as analysed by Lighthill (1952), is inferior, in
favour that the generation by vortices is the dominating part
of these two. Together with the observation that the non-
linear generation of vortex SFHs by wave disturbances is
rather negligible our results perfectly coincides the view of
Chu & Kovásznay (1958), claiming that the solenoidal dis-
turbance components play no part in the generation of wave
modes, yet, are seen as the basis of the energy transfer be-
tween different sized eddies.

Comparison with Lighthill’s source term
As we compare the observed specificity of the linear sound
generation mechanism by vortices with the linearly (l)
and nonlinear (nl) predicted sources of sound by Lighthill
(1952), S = Sl +Snl, linearised about the described base
flow, it becomes evident that linear sources are predicted in
all quadrants of the (kx,ky)-plane as presented in Fig. 8(a),
whereas (b) nonlinear generated sound is predicted around
kx ≈ 2kx0 and kx ≈ 0. The reason for the inherent misleading
result by the AA representation is found in its incapability
to take the described anisotropy into account. Obviously,
vortices only inhere the potential of linear wave excitation.
So, our results clearly show a failure of the AA approach
and thereby support Goldstein (2005), who claims that this
very approach is unsuitable to identify the true sources of
aerodynamically generated sound, rather than as a mod-
elling framework. The fundamental character of the failure
is unambiguously connected to phenomena induced by the
the non-normality of nonuniform flow systems and makes it
(for many applications) unfeasible to remain in the frame-
work of the AA “ideology”.
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(a) τ = 0 (b) τ = 0.1 (c) τ = 0.2

(d) τ = 0.6 (e) τ = 0.9 (f) τ = 2.6

Figure 7: The same as for Fig. 6 for D ≃ 1000.

|S
l(

k)
|

(a) Sl

|S
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(k
)|

(b) Snl

Figure 8: Lighthill’s spectral source term prediction

CONCLUSION
Analysing the complexity of linear/nonlinear processes

involved in (i) the generation and (ii) further propaga-
tion of acoustic waves in the flow by vortices in spectral
space, our resarch reveals a failure of the representation
of the anisotropic linear sound generation mechanism by
Lighthill’s AA formulation and a dominance of the linear
processes inside the boundaries of RDT. Thereby, the om-
nipresence of the spectral drift is eye-catching and shows
the significance of the linear processes in non-normal flow
systems, even acting on nonlinearly generated SFHs and,
thus, must not be underestimated.
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