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ABSTRACT 
Direct numerical simulations (DNSs) of a flat-plate 

turbulent boundary layer with separation and reattachment 
have been carried out over a range of Reynolds numbers. 
The strong blowing and suction are imposed at the upper 
boundary for producing a large turbulent separation 
bubble, thus dealing with massive separation. The inlet 
data prescribed are those from DNSs of a zero-pressure-
gradient turbulent boundary layer. Three values of the 
Reynolds number based on the freestream velocity and 
inlet momentum thickness (viz., 300, 600 and 983) are 
used. Particular attention is given to Reynolds number 
dependence in the bubble, streamline curvature effects and 
similarity to a mixing layer. Also made is an evaluation of 
the Reynolds-averaged Navier-Stokes (RANS) turbulence 
models such as k-ε , k-ω and SST models using the 
resulting DNS data. 
 

 

INTRODUCTION 
Separation of a turbulent boundary layer is 

encountered in engineering applications such as airfoils, 
diffusers and turbomachinery, where adverse pressure 
gradient retards a turbulent boundary layer and eventually 
leads to separation. This phenomenon degrades the 
efficiency of such devices due to the increased drag. The 
understanding and prediction are however still not 
satisfactory. The reasons may include a shortage of 
reliable data from numerical simulations, which account 
for Reynolds number dependence systematically. 

DNS yields accurate and detailed turbulence quantities, 
thus allowing us to analyze underlying physics in a 
realistic manner and also to calibrate turbulence models 
for RANS and large eddy simulation (LES) more 
completely than experiments. A large amount of DNS 
databases have been established in canonical flows (i.e., 
homogeneous, channel, pipe and boundary layer) so far, 
where significant attention is given to Re effects. For 
separated flows, there is however still limited information 
available from DNS due perhaps to difficulties associated 
with inflow, boundary conditions and domain size. In 

particular, unlike for separation forced by the 
configuration (e.g., a backward facing step), there are 
only a few DNS attempts made for pressure-induced 
separation in a flat-plate turbulent boundary layer. 

For the latter DNS, seminal studies were carried out 
by Spalart and Coleman (1997) and Na and Moin 
(1998) with inflow of a zero-pressure-gradient turbulent 
boundary layer at Reynolds number Reθ ≡  0U /θ ν∞ = 300 
( U∞  and 0θ  denote the freestream velocity and inlet 
momentum thickness, respectively, and ν is the kinematic 
viscosity) where the former and latter DNSs dealt with 
incipient and massive separation, respectively. Later, 
Skote and Henningson (2002) achieved the DNS at 
Reθ =300 but with a large recirculation region. Manhart 
and Friedrich (2002) performed the DNS at a higher 
Reynolds number Reθ =870. However, the Re dependence 
of the mean and turbulence quantities together with 
turbulence structure has yet to be examined. 

In the present study, we perform the DNSs with a 
large separation bubble. The inlet Reynolds number Reθ  is 
equal to 300, 600 and 983, the latter value being about 
three times larger than that in the seminal DNS works, but 
still only about half of that in the Simpson (1989) 
experiment. The objectives of the present study are to 
quantify Reynolds number dependence in a turbulent 
separation bubble. Effects of streamline curvature and 
similarity to a mixing layer are also examined. Note that 
the present Re range still does not overlap with that in the 
Song and Eaton (2004) experiment (Reθ =1100  20100), 
which also focused on the Reynolds number effects in a 
smoothly contoured ramp; low Reynolds number effects 
(Purtell et al. 1981) cannot be dismissed when interpreting 
the current DNS results, but the range is quite wide. 

In addition, attention is given to the evaluation of two-
equation turbulence models (i.g., k-ε  (Abe et al. 1994), k-
ω (Wilcox 1988) and SST (Menter 1994)) using the DNS 
data. It is hoped that, although in separated flows different 
performance is obtained for different geometries (see the 
recent review by Leschziner 2006), the present testing 
may provide further insight into such model performance 
and hence be useful for developing turbulence models for 
separated flows. 
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NUMERICAL METHOGOLOGY 
The computational domain is given in Fig. 1 where x, 

y and z are the streamwise, wall-normal and spanwise 
directions, respectively. Note that throughout the paper, 
all variables are normalized by U∞  and 0θ  unless 
otherwise stated. The inflow data prescribed are DNS 
data of a zero-pressure gradient turbulent boundary layer 
generated by the rescaling-recycling method (Lund et al. 
1998). Three values of Reθ (=300, 600 and 983) are used. 
The corresponding Reτ ( )99U /τδ ν≡  is equal to 139, 255 
and 360 (Uτ  and 99δ  denote the friction velocity and 99% 
boundary layer thickness). The transpiration profile is 
given in Fig. 2 where the magnitude of blowing and 
suction Vtop is about three times larger (but imposed on a 
higher line, which compensates) than that of Spalart and 
Coleman (1997) to have massive separation. 

Numerical methodology is briefly as follows. The 
current DNS code has been developed based on the 
channel DNS code (Abe et al. 2004). A fractional step 

method is used with semi-implicit time advancement. The 
Crank-Nicolson method is used for the viscous terms in 
the y direction, and the 3rd-order Runge-Kutta method is 
used for the other terms. A finite difference method is 
used as a spatial discretization. A 4th-order central scheme 
(Morinishi et al. 1998) is used in the x and z directions, 
whilst a 2nd-order central scheme is used in the y 
direction. The computational domain size (Lx × Ly × Lz), 
number of grid points (Nx × Ny × Nz) and spatial resolution 
at the inlet (Δx0, Δy0, Δz0) are given in Table 1 where the 
superscript + denotes normalization by wall units. The 
present study uses a relatively large spanwise domain to 
prevent artificial constraint to large-scale structures 
existing in the separated shear layer and recovery region. 
Note also that the domain size for Reθ =983 is about 8 
percent smaller than that for Reθ =300 and 600 so that in 
the subsequent plots, the x location for Reθ =983 is 
adjusted to have the same Vtop=0 location as for Reθ =300 
and 600. 

Table 1. Domain size, grid points and spatial resolution. 
 

Reθ 300 600 983 
Lx × Ly × Lz 400θ0 × 120θ0 × 160θ0 400θ0 × 120θ0 × 160θ0 366θ0 × 110θ0 × 146θ0 
Nx × Ny × Nz 512 × 320 × 512 1024 × 640 × 1024 2048 × 960 × 1536 

Δx0
+, Δy0

+, Δz0
+ 12.4, 0.13 – 16.7, 4.95 11.5, 0.12 – 15.5, 4.59 7.97, 0.11 – 14.4, 4.25 
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Figure 1. Computational domain.   Figure 2. Transpiration velocity profile.  

  
Figure 3. Distributions of mean and turbulence statistics at Reθ =300: (a)U ; (b) k ; (c) ε ; (d) Pk ; (e) 1 2u u ; (f) ab . Solid 
and dashed lines denote positive and negative streamlines. 
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RESULTS AND DISCUSSION 
First, representative statistics for Reθ = 300, such as 

the mean streamwise velocity U  and turbulent kinetic 
energy k ( 2i iu u /≡ ), its production Pk ( i j iju u S≡ − ) and 
energy dissipation rate ε  ( ( )i , j i , j j ,iu u u≡ + ), are shown in 
Fig. 3. Note that ( ) 2ij i , j j ,iS U U /≡ + ; the suffixes 1,2,3 
denote the streamwise, wall-normal and spanwise 
components, respectively; u1,u2,u3 are sometimes used 
interchangeably with u,v,w, respectively; upper and lower 
cases are instantaneous and fluctuating quantities; an 
overbar indicates the averaging in the z direction and time.  

In the separation bubble, we see clear backflow in the 
distribution of U  (Fig. 3a), indicating massive separation. 
As for turbulence quantities, large magnitudes appear in 
the separated shear layer and reattached regions (Figs. 3b-
3d). Their magnitudes are however attenuated at the top of 
the bubble. In particular, Pk displays a negative value, 
which is of course unusual, where the streamline curvature 
is at its most convex (Fig. 3d). An indicator of streamwise 
curvature 2 1,U , which comes from a rapid pressure-driven 
change of the mean strain rate, is associated with negative 
Pk. That is, the budget term arising from 2 1,U  (not shown 
here) yields negative Reynolds shear stress ( 1 2u u− <0) 
(Fig. 3e), and then the product of 1 2u u−  and 2 1,U  
contributes to negative Pk. We note that these quantities 
are defined in the wall and wall-normal axes, which is 
non-unique for turbulence that is relatively far from the 
wall. There is also correspondence between regions with 

negative Pk and negative Reynolds shear stress if this 
stress is defined in the streamline orthogonal coordinate 
system, i.e., 

( ) ( ) ( )2 2 2 2
2 2 1 1 1 2 1 2 1 2 1 2/ab u u u u U U u u U U U U = − + − +    (1) 

(Figs. 3d and f). Note a significant difference in the 
region 100<x<200 between 1 2u u  and ab , where the 
streamlines are inclined at a large angle to the wall. This 
coordinate system is not unique either, because it is not 
Galilean-invariant. 

Now, we focus on the Re dependence. Distributions of 
friction and pressure coefficients, Cf ( )2

02 ,/ U +
∞≡  and 

Cp ( )( )02 w w,P P≡ − , are given in Fig. 4 for Reθ =300, 600 
and 983 (Pw denotes the wall pressure). In the bubble, we 
see a decreasing magnitude of Cp with increasing Reθ . 
This is interpreted as an enhanced viscid-inviscid 
interaction. One may also notice a plateau in the 
distribution of Cp for higher Re cases, indicating the 
presence of a dead water region. We note that there is a 
large difference between the inviscid pressure and Cp (Fig. 
5); the latter magnitude is reduced noticeably due to the 
blockage by abruptly increased boundary layer thickness. 
By this measure, the Reynolds-number effect is small. 
Also, the rate of decrease of Cf with increasing Reθ is 
twice as large in the recovery region as in the inlet region 
(see x ≈ 340 in Fig. 4), which may be associated with 
weak development of near-wall turbulence in the recovery 
region. It can be expected that this will strongly challenge 
RANS models. 
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Figure 4. Distributions of Cf and Cp .  Figure 5. Distributions of Cp  and the inviscid pressure.  
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Figure 6. Distributions of mean and turbulence statistics in the separated shear layer (x=175): (a)U ; (b) i ju u ;  
(c) i jω ω ; (d) ε . 
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Another Re effect on statistics may be seen in the 
separated shear layer where the similarity to a mixing 
layer is sometimes discussed. The Reynolds stresses i ju u , 
vorticity components i jω ω  and energy dissipation rate ε 
are shown in Fig. 6 together with U . At this station, the 
maximum values of i ju u , i jω ω  and ε  appear at 
y=25  30 where U  has its maximum gradient and hence 
inflection point (one exception is 1 2u u−  due to the effects 
of streamline curvature); the Re dependence is very weak; 
the vorticity component is scaled reasonably after their 
magnitudes were normalized by the Reynolds number (i.e., 
a factor of 2 from Reθ=300 to 600). This is the classical 
scaling for free shear flows (Bell and Mehta 1990; Rogers 
and Moser 1994). The maximum values normalized by the 
velocity difference ( UΔ ) also agree reasonably with 
those in the mixing layer, viz. uu / 2UΔ = 0.036 (0.025), 
vv / 2UΔ = 0.011 (0.015), ww / 2UΔ = 0.019 (0.020) for 
Reθ =983 (numbers in parentheses are values reported by 
Rogers and Moser 1994), where a little larger magnitude 
of uu / 2UΔ  may be associated with large-scale organized 
structures discussed below. 

It should however be noted that the classical mixing 
layer-like structure with large quasi-two-dimensional 
rollers is not observed in the instantaneous field (see Fig. 
7 which shows isosurfaces of instantaneous u and 
Q ( )2i , j j ,iu u /≡ −  for Reθ =983). Instead, there are large-
scale positive and negative u structures appearing 
alternatively in the z direction (Fig. 7a) at high Re (see 
also a dense clustering of vortical structures in Fig. 7b). 
Also, the structures are more significant in the reattached 
region than in the shear layer (Fig. 7) probably due to 

effects of inflectional instabilities coming from the shear 
layer. There are also footprints of large-scale structures 
onto the wall, i.e., large-scale meandering of the 
separation lines, large-scale fluctuations in the separated 
region and dense clustering of streaky structures in the 
reattached region (see Fig. 8b). The apparent streak 
spacing is, naturally, smaller at the higher Reynolds 
number after the normalization by 0θ  (Fig. 8). 

Finally, we turn our attention to turbulence model 
testing. Three models, namely k-ε  (Abe et al. 1994), k-ω 
(Wilcox 1988) and SST (Menter 1994) are examined. The 
inlet data are provided by the DNS data. We emphasize 
that we match the inflow eddy viscosity νt, rather than the 
specific dissipation rate (or turbulence frequency) ω for 
the k-ω and SST models. Note that in the k-ε model, 
prescription of ε from k and νt(

20 09. f k /μ ε≡ ) is not 
straightforward due to the presence of near-wall damping 
function fμ so that k and ε are used. Indeed, the use of k 
and νt as the inflow conditions is effective for having a 
smooth Cf distribution near the inlet region (see Fig. 9a). 
The same grid is used as for DNS, in the (x,y) plane, 
which allows us to make direct comparisons between 
DNS and RANS results readily. 

The representative results are shown in Figs. 9-11. 
Overall, the k-ε model gives the best prediction among 
the three models. The present result may not be surprising 
given that this model predicts the backward facing step 
reasonably. The k-ω and SST models tend to show a 
larger separation bubble than the k-ε model (Fig. 10). 
Note that the prediction is improved for a high Re case 
(the results are not shown here). One may notice that in 

   
Figure 7. Isosurfaces of u and Q for Reθ =983: (a) Red, u>0.15; blue, u<-0.15; (b) white, Q>0.01.The fluid flows from 
bottom-left to top-right. The visualization domain size shown here is the whole computational domain.  

  
Figure 8. Contours of instantaneous τ1 ( )wu / y |μ≡ ∂ ∂  (color) and Cf (line): (a) Reθ =300; (b) Reθ =983. Lines denote Cf=0. 
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the k-ω model a noticeable surge of the turbulent eddy 
viscosity νt appears close to the upper boundary (Fig. 11). 
This is due to the presence of large velocity gradient close 
to the upper boundary, which leads to significant 
disturbances in the k-ω model. The limiter min(Pk, 10ε) 
for both k and ω equations in the SST model avoids this 
disturbance successfully. In Fig. 11a, an effective eddy 
viscosity, 2t i j ij kl klu u S / S Sν ≡ − , is proposed from the DNS, 
which can be described as a least-squares fit to the 
Reynolds-stress tensor, or as the scalar eddy viscosity 
which provides the correct production. As a result, it takes 
negative values in the region of negative Pk (see Fig. 3d); 
RANS models are certainly not expected to follow such 
behavior (Figs. 11b-d). 

Also, in the negative νt region, we see rapid re-
orientation of the strain eigenvector, while the direction of 
the stress eigenvector changes slowly (see misalignment 
between the two eigenvectors in Fig. 11a), which is 
another interpretation for negative Pk (note that Pk is 
described as the product of strain and stress tensors, so 
that Pk becomes negative when their directions are more 
than 45 °  different). 

This approach to exploiting DNS fields is not wide-
spread, but appears to have potential. For instance, the 
eddy viscosity of the models is much smaller than that of 
the DNS over large areas, but this short separation bubble 

may be dominated by the inviscid transport of vorticity, so 
that the velocity does not respond rapidly to inaccuracies 
in the modeling. 
 
CONCLUSIONS 

In the present study, we have performed DNSs of a 
turbulent boundary layer with separation and reattachment 
for inflow Reθ =300, 600 and 983. Also reported are 
results regarding two-equation model testing made using 
the resulting DNS data. The main conclusions are: 

(1) The effects of streamline curvature are strong in 
the bubble. In particular, the magnitudes of turbulence 
quantities are attenuated at the top of the bubble, which 
can be attributed to the convex curvature, or to the rapid 
re-orientation of the principal axes of the strain tensor. 

(2) The Re effects on statistics are a mild decrease of 
Cp in the bubble with increasing Reθ . In the shear layer, 
free-shear-flow scaling appears to be applicable to a good 
degree statistically, both for the Reynolds stresses and the 
dissipation. The same is however not true of the small 
eddies in the instantaneous field. In addition, the recovery 
after reattachment has a strong Reynolds-number 
dependence. 

(3) At high Re, there are large-scale organized u 
structures in the separated and reattached regions. There 
are also their footprints onto the wall, viz., large-scale 
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Figure 9. Model performance for Cf and Cp  at Reθ =300: (a) Cf ; (b) Cp .  

  
Figure 10. Model performance for streamlines at Reθ =300: (a) DNS; (b) k-ε ; (c) k-ω ; (d) SST. Solid and dashed lines 
denote positive and negative streamlines. 
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meandering of the separation lines, large-scale 
fluctuations in the separated region and dense clustering 
of streaky structures in the reattached region. 

(4) The k-ε  (Abe et al. 1994) model gives the best 
prediction among the three models, which is a little 
unusual; the k-ω (Wilcox 1988) and SST (Menter 1994) 
models show a larger separation bubble than the k-ε model. 

(5) A troublesome freestream sensitivity appears in the 
k-ω model due to the presence of large velocity gradients 
close to the upper boundary. The limiter min(Pk, 10ε) in 
the SST model avoids this shortcoming successfully. 
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Figure 11. Model performance for νt at Reθ =300: (a) DNS; (b) k-ε ; (c) k-ω ; (d) SST. In (a), solid and dashed lines denote 
eigenvectors (associated with the positive eigenvalue) of ijS  and i ju u− , respectively. Note the definition in DNS, 

2t i j ij kl klu u S / S Sν ≡ − , which is a coordinate-invariant form. 
 


