
August 28 - 30, 2013 Poitiers, France

SEPA

EFFECTS OF ROUGHNESS ELEMENTS ON THE SEPARATION OF
LAMINAR BOUNDARY LAYERS

Beratlis, N.
School for Engineering of Matter, Transport and Energy

Arizona State University
Tempe, AZ

nikos.beratlis@gmail.com

Vizard, A.
Department of Mechanical and Aerospace Engineering

The George Washington University
Washington, DC

avizard@gwu.edu

Squires, K.
School for Engineering of Matter, Transport and Energy

Arizona State University
Tempe, AZ

squires@asu.edu

Balaras, E.
Department of Mechanical and Aerospace Engineering

The George Washington University
Washington, DC

balaras@gwu.edu

ABSTRACT
A series of direct numerical simulations (DNS) of the

flow past a zero pressure gradient flat plate with rows of
dimples is carried out. The Reynolds number based on the
boundary layer thickness is 1000 and the dimples have a cir-
cular profile with a depth to diameter ratio of 0.1. The in-
coming flow is laminar and the ratio of the incoming bound-
ary layer thickness to the dimple depth determines the criti-
cal Reynolds number, where transition to turbulence occurs
downstream. This happens as the shear layer that forms at
the dimple edge separates over the first row of dimples and
becomes unstable creating coherent vortex sheet. The vor-
tex sheet undergoes a complex spanwise instability trans-
forming themselves into a packet of horseshoe vortices. As
a result the boundary layer downstream of the dimples has
the same qualitative features encountered in wall bounded
turbulent boundary layers.

INTRODUCTION
The flow of turbulent boundary layers over rough walls

has been extensively studied both experimentally and nu-
merically due to its significance in a variety of applications
ranging from engineering to geophysics (see Jimenez 2004

for a review). The flow of laminar boundary layers over
rough walls, on the other hand, has not received the same
level of attention, although there is a wide range of poten-
tial applications primarily in separation control. A great ex-
ample is that of golf balls, where dimples are used to re-
duce the drag force by as much as 50% when compared to
a smooth sphere at the same Reynolds number. It is gen-
erally accepted that dimples cause the laminar boundary
layers to transition to turbulence, energizing the near wall
flow and adding momentum, which helps overcome the ad-
verse pressure gradient and delay separation. Recently Choi
et al. (2011) carried out a series of experiments on dimpled
spheres to clarify the mechanism of drag reduction caused
by dimples. Using hot-wire anemometry they measured the
streamwise velocity within individual dimples and showed
that the boundary layer separates locally within the dimples.
They concluded that turbulence is generated by a shear layer
instability which causes momentum transfer of high speed
fluid towards the surface of the sphere. Further support for
this mechanism was provided by recent direct numerical
simulations (DNS) by Smith et al. (2010). In their work,
flow visualization identified the formation of thin shear lay-
ers at the leading edge of the dimples, which become unsta-
ble and are effective in energizing the near-wall flow. The
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detailed mechanics of delaying the separation of the bound-
ary layer and the role of the type and topology of the type
and arrangement of the dimples is still not well understood.

Experimentally there are inherent difficulties of mea-
suring flow quantities near and within the dimples, while
numerically it becomes prohibitively expensive to accu-
rately resolve high Reynolds number flow over dimpled
spheres. In the present study we will report Direct Numer-
ical Simulations (DNS) of the flow past a flat plate with
rows of circular dimples. This way we can isolate some of
the fundamental phenomena present in such flows and at the
same time keep the cost of the computations low in order to
explore a wide parametric range. We will investigate how
dimples cause transition to turbulence and quantify the na-
ture of the boundary layer in the post-dimple area by direct
comparison with equilibrium wall bounded turbulent flows.
In the following sections the problem setup and methodolo-
gies will be presented, followed by the results and conclu-
sions sections.

PROBLEM SETUP
Figure 1a shows an outline of one of the geometries

used in this study. It consists of a flat plate upon which one
row of circular dimples is placed at some distance down-
stream of a laminar boundary layer. The dimple has a max-
imum depth d and a circumscribed diameter D. The ratio
d/D in this particular case is set to 0.1 which is represen-
tative of that found on today’s golf balls. The effect of a
second row of dimples and its alignment with respect to the
first one was also investigated. The corresponding geome-
tries are shown in figure 1b and c. In one case the second
row of dimples is aligned with the first one while in the
another case the second row of dimples forms a staggered
arrangement.

For all cases the domain is centered on the first row of
dimples and extends 0.55D upstream of the leading edge of
the first row of dimples and 5D downstream of the trailing
edge of the last row of dimples. The top boundary is lo-
cated at 1.9D above the flat plate. At the inlet the velocity
profile obtained from the the Blasius solution is specified.
This enables to control the height of the boundary layer
so that that the desired ratio δ/d is achieved at the lead-
ing edge of the first row of dimples. At the top boundary
the wall normal velocity component obtained from the Bla-
sius solution is specified. This type of boundary condition
provides the correct mass flux through the top boundary to
account for the Blasius boundary layer growth. It becomes
less accurate in our case due to the presence of the dim-
ple and the fact that the flow downstream of the dimples
is not laminar. However, it doesn’t result in a significant
free-stream acceleration, and the value of the acceleration
parameter, K = −(ν/U2

∞)(dU∞/dz) (where ν is the kine-
matic viscosity of the fluid, U∞ is the freestream velocity
and z is the coordinate in the streamwise direction) never
exceeded K = 3.5×10−8. This is fairly low value and it is
not expected that the acceleration plays a significant role on
either the transition mechanics at the dimple level or on the
formation of turbulent-like structures in the post-dimple re-
gion. At the outlet a convective boundary condition was
used while a periodic boundary condition is used in the
spanwise direction.

The governing equations for a viscous incompress-
ible flow are discretized on a structured grid in Carte-
sian coordinates. The geometry of the dimpled flat plate,

which is not aligned with the grid lines, is treated us-
ing an immersed-boundary formulation (see Balaras 2004
and Yang & Balaras 2006). An exact, semi-implicit, pro-
jection method is used for the time advancement. All
terms are treated explicitly using the Runge-Kutta 3rd or-
der scheme, except for the viscous and convective terms in
the wall normal direction which are treated implicitly using
the 2nd order Crank-Nicholson scheme. All spatial deriva-
tives are discretized using second-order central-differences
on a staggered grid. The code is parallelized using a domain
decomposition approach, where the computational box is
evenly divided along the stream wise direction and commu-
nication between processors is done using MPI library calls.

The computational grid, which is designed to resolve
both the shear layer dynamics within the dimple, as well
as, the boundary layer that forms downstream of the dim-
ples is stretched in the wall normal and streamwise direc-
tions. In particular in the post-dimple region the grid spac-
ing are ∆x+min = 0.009 for the first cell away from the flat
plate, uniform ∆y+ = 6.5 and ∆z+max = 11, where x, y and
z are the wall normal, spanwise and streamwise directions
respectively. In the dimples there are 90 points across its
maximum depth, 120 points in the streamwise direction be-
tween the trailing and leading edges of the dimples and 220
points across its diameter in the spanwise direction. There-
fore the fine grid employed in this study is adequate to re-
solve the important features of the flow. In total there are
394×452×752 grid points in the wall-normal, spanwise and
streamwise directions respectively for the case of one row
of dimples and 394×452×852 grid points for the case of
two rows of dimples.

The simulations were initialized with the Blasius so-
lution and probes were placed in the flow to monitor the
evolution of the transient state. It was found that after ap-
proximately 200D/U time units the flow reached a periodic
state. After time 400D/U the flow was sampled and time-
averaged statistics were calculated for a period of 500D/U
time units.

RESULTS
Given the circular dimple geometry the important di-

mensionless parameters that control transition from a lami-
nar to turbulence state in the post-dimple region are: i) the
ratio α = δ/d of the boundary layer thickness, δ , at the
leading edge of the dimple to the dimple depth d; ii) the
Reynolds number, Reδ = Uδ/ν , based on the freestream
velocity, U , the kinematic viscosity, ν , and δ . We con-
ducted a series of computations where we systematically
varied α and Re and constructed a stability map for the
case of one and two rows of dimples aligned. For each
simulation the flow downstream of the dimples was mon-
itored and based on the behavior of the skin friction co-
efficient, C f , downstream of the dimple center the flow
was characterized. In particular, if C f in the post-dimple
area dropped to values reminiscent of a laminar boundary
layer then the dimples were not successful in destabiliz-
ing the boundary layer and thus the flow is characterized
as stable. On the contrary if C f deviated from laminar val-
ues and exhibited strong fluctuations then the dimples were
successful in destabilizing the boundary layer and the flow
was characterized as unstable. Figure 2 shows the stability
map for the cases of one row of dimples and two rows of
dimples aligned. The critical Reynolds number Recr is the
threshold at which transition to a non-laminar flow down-
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Figure 1. Geometries of a flat plate with various roughness elements used in this study a) one row of dimples b) two rows of
dimples aligned and c) two rows of dimples staggered.
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Figure 2. Re− δ/d stability map for the flat plate with
dimples. stability boundary for one row of dimples;

stability boundary for two rows of dimples aligned.
Region below the line is stable and above the line is unstable

stream of the dimple is observed. For a fixed δ/d transi-
tion occurs at any Reδ > Recr while below Recr the flow
remains laminar. For a zero pressure gradient smooth flat
plate Recr ∼4000. It is obvious that even a single row of
dimples has a drastic effect in lower the critical Reynolds
number. For δ/d = 1 Recr ∼3500, a little lower than that
for a smooth flat plate. As δ/d decreases (the boundary
layer becomes thinner compared to the dimple depth) Recr
decreases at a non-linear fashion. When a second row of
dimples is added Recr is decreased significantly. The de-
crease in Recr is more pronounced at higher values of δ/d,
where at δ/d = 1 Recr for the case of two rows of dimples
is about 6 times lower than that for one row.

The origin of this instability can be better understood
by looking at the instantaneous flow structures. For all the
cases presented in this paper Reδ = 1000 and δ/d = 0.5.
Figure 3 shows a snapshot of the spanwise vorticity on a
spanwise (x-z) plane passing through the center of one of
the dimples accompanied by isosurfaces of the Q criterion
viewed from above. The time corresponds to an instant
when the shear layer forming over the dimple starts to roll-
up into a vortical structure A4. The roll-up occurs at a point
between the center and the trailing edge of the dimple. Vor-
tical structure A4 which is still coherent doesn’t span across
the entire dimple. As one moves towards the edges of the
dimple in the spanwise direction the dimple becomes more
shallow and a roll-up is suppressed. As a result the spanwise
length of vortical structure A4 is approximately 1/3 that of
the dimple diameter D. It is important to note that vorti-
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Figure 3. a) Contours of spanwise vorticity ωy on a verti-
cal x− z plane passing through the center of the dimple. b)
Isosurface of the Q criterion and contours of C f on the wall.
c) Contours of streamwise vorticity ωz on a vertical x− y
plane located just downstream of vortical structure A4.

cal structure A4 is not uniform in the span and consists of
bends and kinks. Just downstream of vortical structure A4
there are a pair of vortices elongated in the streamwise di-
rection and slanted upwards reminiscent of braid vortices
found in free shear layers. A plot of contours of the stream-
wise vorticity ωz on a vertical x− y plane slicing through
the legs of these vortices is shown in figure 3c. The plot
reveals that the flow inside the dimple is three dimensional
consisting of two pairs of counter rotating vortices. The
braid vortices form the legs of a hairpin like vortex whose
head is clearly identified as structure H3 in figure 3b. The
heads of two more hairpin like vortices H2 and H1 can be
seen further downstream in the post-dimple area separated
by each other by approximately 0.6D.

The evolution of vortical structure A4 plays a key role
in the formation of hairpin like vortices and the transition in
the post-dimple region. The small bends and kinks present
in vortical structure A4 are subjected to local shear result-
ing into the formation of a Λ type vortex consisting of a
head H4 and a pair of legs L4. As this structure propagates
further in the post-dimple region it evolves into a hairpin
like vortex whose head H4 is shown at a later time in fig-
ure 4. The heads H2 and H3 of previously formed hair-
pin like structures can also be seen as far as 1.5D diame-
ters downstream of the trailing edge of the dimple. Their
lifetime is therefore at least 20D/U time units. The above
instantaneous dynamics suggest that the spanwise vortic-
ity ωy present in the shear layer transforms into streamwise
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Figure 4. a) Contours of spanwise vorticity ωy on a ver-
tical plane passing through the center of the dimple and b)
isosurface of the Q criterion and contours of C f on the wall.
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Figure 5. a)Isosurface of the Q criterion and contours of
C f on the wall for the case of two rows of dimples aligned.
b) Contours of spanwise vorticity ωy on a vertical plane cor-
responding to horizontal black line in (a). c) Contours of
spanwise vorticity ωy on a vertical plane corresponding to
horizontal blue line in (a).

vorticity ωz through a Λ type instability. With each vortex
shed from the shear layer a hairpin like vortex forms in the
midplane of the dimple and a packet of streamwise vortical
structures located behind, and to the sides of the hairpin. As
these streamwise vortices travel downstream they generate
new hairpin vortices and the turbulent front appears to grow
in the spanwise direction and generating more streamwise
oriented vortices. The metamorphosis of a hairpin vortex
into a turbulent spot and its organization in wall turbulence
has been previously studied and are well documented by
Adrian (2007) and Singer & Joslin (1994).

For the case of two rows of dimples that are aligned,
the instantaneous flow structures as visualized by the Q cri-
terion and are shown in Figure 5. Over the first dimple the
flow dynamics are very similar to those observed for a sin-
gle row of dimples. Namely the shear layer becomes un-
stable and rolls-up into a coherent structure A

′
containing

mainly azimuthal vorticity. This coherent structure under-
goes three dimensional instabilities transforming itself into
a packet of hairpin-like vortices. One such hairpin-like vor-
tex resulting from the transformation of a previous roll-up
is clearly identified in figure 5 and labeled as H

′
. Other

hairpin-like structures are visible behind and to the sides of
H
′
.
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Figure 6. a)Isosurface of the Q criterion and contours of
C f on the wall for the case of two rows of dimples stag-
gered. b) Contours of spanwise vorticity ωy on a vertical
plane corresponding to horizontal black line in (a).

The flow dynamics over the second row of dimples are
quite different. First, there is no coherent roll-up of the
shear layer at the center of the dimple as is evident in the
first row. A thin shear layer appears in the contours of span-
wise vorticity at the mid-plane of the dimple but it is not
coherent in the spanwise direction and it appears to break
down quickly. The dominant structures over the second
dimple consist of the packet of hairpin-like structures orig-
inating from the first row of dimples. As this packet propa-
gates over the dimple it generates other streamwise oriented
vortices before it eventually breaks down. Contrary to the
case of the single row where hairpin-like vortices originat-
ing from the shear layer could be traced at least two diame-
ters downstream of the trailing edge of the dimple, hairpin-
like vortices appear to breakdown within the second row of
dimples.

Another important difference in the flow dynamics
within the second row of dimples is that closer to the sides
of the dimples the shear layer becomes unstable and rolls-up
into coherent vortical structures. These structures labeled
A
′′
1 and A

′′
2 are located on both sides of the dimple and ap-

pear slightly bent in the spanwise direction. Visualization of
the flow field at different times reveals that structures A

′′
1 and

A
′′
2 undergo three dimensional instabilities that give birth to

new hairpin-like vortices. The effect of the roll-up over the
second dimple on the spanwise extend of the turbulent-like
structures is dramatic. In particular the hairpin-like vortices
forming on the sides of the second row of dimples along
with those evolving from the center of the first row of dim-
ples fill up the entire spanwise domain already by the trail-
ing edge of the dimple.

Figure 6 shows an isosurface of the Q critetion for the
case of two rows of dimples staggered. Contours of span-
wise vorticity are also shown at a spanwise plane passing
through the center of the second row of dimples. Over the
first row of dimples the shear layer instability is the same as
that for a single row of dimples. In particular, the coherent
structure resulting form the roll-up of the shear layer unde-
goes three-dimensional instabilities transforming itself into
a packet of hairpin-like vortices. The dynamics of the shear
layer in the second row are very similar too with a coher-
ent structure seen in the center of the dimple and spanning
about one third of the dimple diameter. The vortical struc-
ture labeled A

′′
undergoes a Λ type instability. When the

hairpin-like structures originating from the first row of dim-
ples pass over the sides of the second row of dimple they
merge with the hairpin-like structures of the second row of

4



August 28 - 30, 2013 Poitiers, France

SEPA

z/D

δ
/d

0 1 2 3 4
0

0.5

1

1.5

2

(a)

z/D

H

0 1 2 3 4

0.5

1

1.5

2

2.5

(b)

Figure 7. a) Boundary layer thickness δ/d and b) shape
factor H versus streamwise coordinate z/D at two spanwise
locations, one passing through the center of the dimples in
the first row (solid lines) and one passing between the dim-
ples in the first row (dashed line). Colors rerpesent: ;
1 row of dimples, ; 2 rows aligned, ; 2 rows stag-
gered, ; Blasius laminar boundary layer.

dimples. As a result a front of turbulent-like structures fills
the entire span of the domain before the trailing edge of the
second row of dimples.

Next we look at the effect that the hairpin-like struc-
tures have on the dynamics of the post-dimple boundary
layer. Figure 7a shows the evolution of the boundary layer
thickness, δ , as a function of z at two spanwise locations;
one passing through the center of the dimples in the first
row and one passing between the dimples in the first row.
When these lines pass through the dimples δ is not plot-
ted since the flow in the dimples separates and the bound-
ary layer thickness is not clearly defined there. For refer-
ence the thickness for the Blasius laminar boundary layer
(i.e. how δ would evolve in the absence of dimples) is also
plotted in the figure. For the case of one row of dimples
δ before the leading edge and between the dimples grows
very similarly to that of the Blasius solution indicating that
the flow is mostly laminar. Only after z/D ∼ 4 does δ de-
viate from the laminar solution and starts to grow a little
faster. A different behavior is evident downstream of the
dimple center, δ immediately after the trailing edge of the
dimple grows very rapidly and reaches an asymptotic value
of 1.85d around z/D ∼ 2.5. For the cases of two rows of
dimples δ also grows very quickly everywhere along the
span and deviates significantly from the Blasius solution.
At z/D = 3 δ becomes uniform across the span and attains
a value of 1.85d. The shape factor H behaves in a similar
way, for the case of one row of dimples and for a line pass-
ing between the dimples H remains at 2.5 during most of the
post-dimple area and slightly decreases after z/D∼ 3.5. For
all other cases H decreases rapidly and already by z/D = 2
it reaches a value of value of 1.45 reminiscent of turbulent
wall bounded flows. This behaviour indicates that for the
case of two rows of dimples transition downstream of the
dimples takes place very quickly at different spanwise loca-
tions. For the case of one row of dimples the transition is
confined to a region downstream of the dimple center while
between the dimples the flow remains laminar.
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Figure 8. L1 norm of the shape factor H as defined by
equation 1. 1 row of dimples; 2 rows aligned;

2 rows staggered.

From the above discussion it is obvious that the flow
can differ dramatically along the span downstream of the
dimple. In the region between the dimples the flow remains
laminar for at least three dimple diameters while the flow
downstream of the dimple center quickly tends towards an
equilibrium state of wall turbulence. It is therefore reason-
able to ask how the flow behaves between these two span-
wise planes and try to quantify the growth of the turbulent
activity in the spanwise direction. In order to quantify the
spanwise mixing the Ln norms of the shape factor H were
calculated as follows:

Ln(H(z)) =
[

1
Ly

∫ Ly

0

|Hlam−H|n
(Hlam−H|min,y)n dy

]1/n
(1)

where Ly is the spanwise length of the domain, Hlam is
the value of the shape factor for a laminar boundary layer
and H|min,y is the minimum value of H across the span at a
given z. When the flow is turbulent across the entire span
Ln(H) attains a value of 1, whereas values less than 1 in-
dicate that turbulent activity extends to only a part of the
spanwise domain. Figure 8 shows L1(H) as a function of
streamwise coordinate z for all three cases. For the case
of only one row of dimples L1(H) at the trailing edge of
the dimples is about 0.5, that is the front of turbulent struc-
tures cover only half of the domain in the span. As one
moves downstream L1(H) grows in an almost linear fash-
ion however even at z/D = 4.5 L1(H) reaches a value of
0.78 which means that the turbulent activity at four dimple
diameter downstream doesn’t fill the entire span. For the
cases of two rows of dimples L1(H) is already 0.8 at the
trailing edge of the second row of dimples. In the case of
the staggered alignment the spanwise growth appears to be
a little faster although in both cases L1(H) reaches values
of approximately 0.95 within half a dimple diameter. The
above results suggests that the addition of a second row of
dimples in either aligned or staggered arrangement has an
important effect in accelerating the spanwise growth of tur-
bulent activity in the post-dimple boundary layer.

Figure 9 shows average velocity profile and rms of the
velocity at z/D = 4.5. For the case of one row of dim-
ples the spanwise location corresponds to the location of
the dimple center while for the cases of two rows of dimple
the profiles have been ensemble avaraged in the span since
the flow is practically homogeneous at that downstream lo-
cation. For comparison the corresponding rms profiles for
a zero pressure gradient turbulent boundary layer by Wu &
Moin (2009) are also plotted. The velocity profiles plot-
ted in wall coordinates for all cases exhibit a log law in the
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Figure 9. a) Profile of average streamwise velocity and b)
rms velocity fluctuations. 1 row of dimples;
2 rows aligned; 2 rows staggered; zero pres-
sure gradient turbulent boundary layer DNS results by Wu
& Moin (2009).

outer region albeit the values are underestimated. This shift
is an artifact of the very low Reynolds numbers which re-
sults in higher values of the skin friction coefficient C f . A
similar behaviour is evident in the rms of the velocity fluc-
tuations. Although the rms profiles exhibit the same quali-
tative behaviour as those for a zero pressure gradient turbu-
lent boundary layer with peaks near the wall the values are
underestimated.

CONCLUSIONS
A series of direct numerical simulations of the flow

over a flat plate with one and two rows of dimples has been
carried out. A stability map as a function of the incom-
ing Reynolds number and ratio of boundary layer thickness,
δ , to the dimple depth, d, was constructed. We found that
the addition of the second row of dimples dramatically de-
creases the critical Reynolds number where transition oc-
curs in the downstream area. The initial disturbances are
generated as the shear layer that forms over the first raw
of dimples becomes unstable and roll-ups into a coherent
vortex sheet containing mainly spanwise vorticity. The
vortex sheet undergoes a spanwise instability generating
horseshoe-like vortices with a strong streamwise vorticity
component. These structures propagate into the post-dimple

boundary layer and are effective in sustaining equilibrium,
low Reynolds number, turbulence. In particular, the shape
factor, H, drops to value of 1.45, which is reminiscent of
turbulent wall bounded flows, just within one dimple diam-
eter downstream of the trailing edge of the dimples. For
the case of one row of dimples this turbulent-like activity is
confined to a narrow strip downstream of the dimple center
and grows slowly in the spanwise direction as the boundary
layer grows. The addition of a second row of dimples am-
plifies the spanwise growth of turbulence and already by the
end of the second row turbulent-like structures fill the entire
span of the domain.
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