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ABSTRACT
The interaction between the large and small scales in

the self-similar region of a nominally two-dimensional pla-
nar mixing layer is examined at two different Reynolds
numbers, Reλ ≈ 260 and Reλ ≈ 470 (where Reλ is the
Reynolds number based on Taylor microscale). Particle im-
age velocimetry experiments were performed at two differ-
ent resolutions, one that captures the range from integral
scale (L) to Taylor microscale (λ ) and the other that cap-
tures the range from Taylor microscale to the Kolmogorov
length scale (η), simultaneously. It is found that the am-
plitude of the small-scale fluctuations (scales < λ ) is mod-
ulated by the large-scale velocity fluctuations (scale > λ ).
Negative large-scale fluctuations (i.e. large-scale fluctua-
tions that are less than the local mean) are found to coin-
cide with regions where an increase in the amplitude of the
small-scale fluctuations is found. This magnitude amplify-
ing effect, of the small scales by the large scales, is found
to increase with the magnitude of the large-scale fluctua-
tions. It is also observed that there is a phase lag in the
amplification of the small scale fluctuations by the larger
scales. This phase lag can be interpreted to be the effect of
large-scale spanwise roller-type structures that leave a wake
of the finest scales behind them. The amplitude modula-
tion, which is representative of the interaction between the
large and the small scales, is shown to be Reynolds number
dependent with the interaction marginally increasing in the
Reynolds number range examined.

INTRODUCTION
Turbulence is known to be a multi-scale problem, in

which energy is transferred from the mean flow into turbu-
lent kinetic energy at large scales and dissipated into heat
at the small scales via a mean cascade of energy from the
large to the small scales (Richardson, 1926; Batchelor &
Townsend, 1949; Kolmogorov, 1962). It has long been sug-
gested that the small scales of turbulent flows are universal,
but there is a distinct interaction between the large and small
scales. Some recent results, primarily in wall-bounded tur-
bulent shear flows, point to the significance of these interac-
tions (Priyadarshana et al., 2007; Kholmyansky & Tsinober,

2008; Mathis et al., 2009a,b). However, very little informa-
tion is available on these interactions in other forms of shear
flows. In this study, we aim to examine the nature of this
interaction between large- and small-scale velocity fluctu-
ations in a turbulent free shear flow. Winant & Browand
(1974) stated that “the region between two parallel streams
moving at different speeds is the simplest free shear flow
which can be considered” and thus a planar mixing layer is
investigated in this study.

A variety of researchers have examined the small
scales in different types of turbulent flows (for example,
Siggia 1981; Jiménez et al. 1993; Vincent & Meneguzzi
1994; Mullin & Dahm 2006. Results indicate that the small-
scale structures are in the form of “worms” (for enstrophy)
surrounded by “sheets” of dissipation. These small-scale
structures are approximately 6-10η (where η is the Kol-
mogorov scale) in diameter (or thickness) and extend up to
Taylor microscale (λ ) in length (or size). Therefore, the size
of these structures is substantially smaller than the integral
scale (L) of the flow. Researchers have also noted that these
tubes and sheets appear to be concentrated around larger
scale structures (that are larger than Taylor microscale).
However, the exact nature of this relationship between dis-
sipative scale structures and larger scale flow structures re-
mains unknown.

The study of Bandyopadhyay & Hussain (1984) was
the first study (and perhaps the only) that presented an ex-
amination of the interaction between large and small scales
in several different shear flows, including wall-bounded
shear flows such as boundary layers and free shear flows
such as mixing layers, wakes and jets. The authors ex-
amined short time correlations between the low and high
frequency components of hot wire time series data. Corre-
lations were made between the low pass filtered (low fre-
quency) time series data with the envelope of the high fre-
quency component and found a significant degree of cou-
pling between the scales across all shear flows. This cou-
pling between the scales was observed to be maximised
when the high frequency and low frequency signals were
concurrent. Of the shear flows studies it was found that
there is a 180◦ phase shift in this coupling for mixing lay-
ers and boundary layers only. Subsequently, a significant
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amount of work has been done examining the interaction
between scales in wall-bounded shear flows.

Hutchins & Marusic (2007) observed that the large-
scale structures in turbulent boundary layers tended to mod-
ulate the amplitude of the small-scale near wall fluctuations.
This observation was expanded upon by Mathis, Hutchins
& Marusic (2009a). The authors split the streamwise ve-
locity fluctuations’ signal into large and small-scale com-
ponents (low and high wavenumber components) with a
spectral filter and then applied the Hilbert transform to de-
termine the envelope for the small-scale fluctuations. By
correlating the large-scale fluctuations with the low pass
filtered envelope of the small-scale fluctuations they dis-
covered that near the wall large-scale high speed regions,
i.e. positive large-scale fluctuations, carry intense superim-
posed small-scale fluctuations. They thus determined that
regions of positive large-scale fluctuations are responsible
for amplifying the magnitude of the small-scale fluctuations
near the wall. Mathis et al. (2009b) found that a similar am-
plitude modulation effect of the small-scale fluctuations by
the large-scale fluctuations could be observed in a series of
other wall bounded shear flows, such as pipe and channel
flows. Recently, this amplitude modulation effect has also
been captured in conditional analyses performed based on
wall shear-stress (Hutchins et al. 2011).

In this study, we examine the interactions between
large- and small-scale velocity fluctuations in the self-
similar region of a turbulent mixing layer. Particle image
velocimetry (PIV) experiments were performed at two dif-
ferent resolutions, one that captures the range from integral
scale (L) to Taylor microscale (λ ) and the other that cap-
tures the range from Taylor microscale to the Kolmogorov
length scale (η), simultaneously. This data is then utilised
to explore the interactions between the large and small
scales.

EXPERIMENTAL METHODS
The experimental data for this study was acquired by

Buxton (2011), in which full details of all the experimental
methods and a full uncertainty analysis are presented. Parti-
cle image velocimetry (PIV) measurements were performed
in the self-similar region of a nominally two-dimensional
planar mixing layer in a water channel, 100 plate thick-
nesses downstream of the splitter plate trailing edge used to
separate the high speed (U∞

HS) and low speed (U∞
LS) streams.

The splitter plate had a 4◦ triangular trailing edge appended
to it in order to generate the mixing layer. The measure-
ment location was chosen as it was within the self similar
region of the mixing layer (Buxton, 2011), meaning that
the turbulence is fully developed, and the mixing layer is
not constrained by the sidewall boundary layers, which is
the case further downstream in the facility. The Reynolds
number of the mixing layer based on convection veloc-
ity (Uc = [UHS

∞ +ULS
∞ ]/2, where UHS

∞ and ULS
∞ are the

freestream velocities on the high- and low-speed sides of
the mixing layer, respectively) and the splitter plate thick-
ness is, Reh = 5020, and the Reynolds number based on the
Taylor microscale is, Reλ ≈ 260 at the measurement loca-
tion.

One camera was placed above the water channel and
fitted with a 50 mm lens, providing a large-scale field of
view (FOV) by imaging through a semi-submerged per-
spex sheet, and three cameras fitted with 105 mm lenses
were placed beneath the water channel, providing small-

Figure 1. Example PIV vector fields. The contours are of
U1, the streamwise velocity, and the vectors have compo-
nents of (U1 −Uc) and U2 (with only alternate vectors dis-
played for ease of presentation), the cross-stream velocity.
The insets show a close up of the U1 contours of the centre
high resolution field of view from the low resolution vector
field (left) and high resolution vector field (right).

scale FOVs that are spatially embedded within the large-
scale FOV, and captured simultaneously. In order to main-
tain the synchronisation between all four cameras and the
laser, data was acquired at a rate of 0.3 Hz, and immedi-
ately written to disk. A suitable separation between the two
laser pulses responsible for illuminating the PIV plane, ∆t,
for both the top camera (low resolution vector field) and the
bottom cameras (high resolution vector fields) was found to
be 800 µs, giving mean streamwise pixel displacement of
approximately 25 pixels for the bottom cameras and about
4 pixels for the top camera.

The spatial resolution of the large-scale FOV is approx-
imately 12η , where η = (ν3/〈ε〉)1/4 is the Kolmogorov
length scale, whereas that for the small-scale FOV is ap-
proximately 1.4η (with a vector spacing of 0.7η due to the
50% interrogation window overlap in the PIV processing
algorithm). The mean rate of dissipation within the flow,
〈ε〉, was computed from the two-dimensional velocity gra-
dient tensor of the small-scale FOVs using the assumption
of local axisymmetry (George & Hussein, 1991). Figure 1
shows the location of the three high resolution FOVs within
the low resolution FOV. The contours are of U1 and the vec-
tors have components of (U1 −Uc) and U2 from the low
resolution FOV. The left inset shows contours of U1 from
the low resolution FOV in the region encompassed by the
central high resolution FOV and the right inset shows the
contours of U1 from the high resolution FOV itself. It can
be seen that there is an excellent agreement between the
two.

DISCUSSION AND RESULTS
The Taylor length scale can be considered to “anchor”

the dissipation spectrum, as this is typically the length scale
at which the dissipation spectrum is observed to peak, hence
λ is a suitable cut-off length scale with which to exam-
ine the interaction between the large-scale and small-scale
fluctuations. The large-scale low-resolution FOV is thus
filtered to remove all contributions to the fluctuations at
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Figure 2. (a) pd f s of uLλ
1 fluctuations. (b) The dashed line

is a pd f of the uSλ
1 fluctuations and the solid line is the pd f

of uLλ
1 from figure 2(a).

length scales smaller than λ (Note that this λ is calculated
from the small-scale high-resolution FOV). Conversely the
small-scale high-resolution FOVs are filtered to remove the
contribution of all fluctuations at length scales greater than
λ .

The separation of the scales is achieved by means of a
running mean filter. For the large-scale low-resolution FOV
the filter is used in low pass form with all the scales smaller
than the Taylor microscale filtered out. For the small-scale
high-resolution FOV the data is high-pass filtered with all
scales greater than the Taylor micro-scale filtered out. The
low frequency part and the “Λ < λ” part sum to give the
original signal, i.e. uS0

1 (x1)+ uSλ
1 (x1) = uS

1(x1). The same
filter was also applied to the u2 fluctuations in both the
small-scale and large-scale FOVs.

Figure 2(a) shows probability density functions (pd f s)
of the large-scale streamwise velocity fluctuations produced
from the large-scale FOV in regions encompassing the
small-scale FOVs (uLλ

1 ). Although the fluctuations, by defi-
nition, have zero means the pd f is negatively skewed mean-
ing that the modal fluctuations at large scales are positive,
but that the negative fluctuations have a greater variance, i.e.
there exist higher magnitude negative fluctuations than pos-
itive ones. The position of the small-scale FOVs is slightly
towards the high speed side of the location of peak mean
Reynolds stresses. A pd f generated from all the data in
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1
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u
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1
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Figure 3. Joint pd f between variance of uSλ
1 and the rep-

resentative larger scale fluctuation, uLλ
1 . The colour bar in-

dicates the contour levels for the joint pd f .

the high-speed side of the large-scale FOV (this is chosen
based on the location of the peak in the Reynolds shear
stress profile) shows this same negative skewness, whereas
a pd f generated from all the data in the low-speed side of
the large-scale FOV shows a positive skewness. Finally, a
pd f constructed from all the data in the large-scale FOV
shows that the u1 fluctuations have a modal value of zero,
and although not Gaussian, has zero skewness. This sug-
gests that a small proportion of high magnitude fluctuations,
rather than the smaller modal fluctuations, are at least par-
tially responsible for retarding the flow on the high speed
side of the mixing layer and accelerating it on the low speed
side. These three pd f s are not shown for brevity.

Figure 2(b) shows the pd f of the small-scale fluctua-
tions (uSλ

1 ) as the dashed line and the uLλ
1 pd f of figure 2(a)

as the solid line, for reference. In contrast to the large scales,
the small-scale fluctuations have a skewness of zero and
closely resemble the large-scale fluctuations from across the
entire span of the mixing layer. The range of these fluctua-
tions is also significantly less, reflecting their lower energy
content. Figures 2(a)&(b) suggest that the retardation of
the flow on the high speed side and acceleration on the low
speed side is further a large-scale phenomenon that exists
only at length scales greater than the Taylor microscale.

The relationship between the large- and small-scale
fluctuations can now be be explored using the filtered forms
of the large- and small-scale fluctuations. Statistics of the
small scales conditioned on the strength/sign of the large
scales and vice-versa can be computed. We first examine
the interaction by computing the joint probability density
function (pd f ) between uLλ

1 and the magnitude of the small-
scale fluctuations. For a box of size λ ×λ , the large-scale
fluctuation value at the centre of this box is chosen to repre-
sent the strength of the large-scale fluctuations. The magni-
tude of the small-scales is computed as the variance of the
small-scales within this box (σu1

Sλ ).
Figure 3 shows the above-mentioned joint pd f . It can

be seen in this figure that particularly within regions of
highest probability, there is a clear slope towards higher
small-scale variance and negative uLλ

1 . There is a tendency
for larger-scale negative fluctuations to increase the ampli-
tude of the finer-scale fluctuations. This suggests that both
the magnitude and the sign of the large-scale fluctuation,
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Figure 4. pd f s of variance of uSλ
1 conditioned on the sign

of uLλ
1 computed over a streamwise trace. The pd f s with

higher peaks are produced from a mixing layer with Reλ ≈
260 and the pd f s with lower peaks are produced from a
mixing layer with Reλ ≈ 470.

uLλ
1 , are important in determining the intensity of the finer

scale fluctuations. This feature has also been observed in the
amplitude modulation effects of wall-bounded flows. How-
ever, this observed feature is confined to the outer region
of the boundary layer. The study of Mathis et al. (2009a)
showed that there is an increase in the amplitude of the
small-scale fluctuations in regions for which the large-scale
fluctuation is positive in the near-wall region of boundary
layers. Mathis et al. (2009b) presented similar findings
in channel and pipe flows. In this study, presenting data
from a free shear layer, it can be seen that the opposite is
true and that the amplitude of the small-scale fluctuations
is increased in regions in which the large-scale fluctuation
is negative (i.e. a large low-momentum structure) and re-
duced in regions in which the large-scale fluctuation is pos-
itive (i.e. a large high-momentum structure). This feature
is further explored by computing the conditional pd f of the
variance of uSλ

1 .
Figure 4 shows pd f s of the variance of uSλ

1 condi-
tioned on uLλ

1 , i.e. shows the relative magnitude of the
small-scale fluctuations conditioned upon the large scale
fluctuations. The dashed lines are pd f s conditioned on
uLλ

1 < 0, i.e. negative instantaneous larger scale fluctua-
tions and the solid lines are conditioned on uLλ

1 > 0. Data
from two different Reynolds numbers are shown; the pd f s
with the higher modal peaks are from the mixing layer for
which Reλ ≈ 260 and the pd f s with the lower modal peaks
are the mixing layer at Reλ ≈ 470, and a correspondingly
higher Uc. For both Reynolds numbers, the peak location of
the pd f is at a higher value for negative larger scale fluctu-
ations than for positive fluctuations. This suggests that the
larger scale negative fluctuations have an amplitude ampli-
fying effect on the finer scales. The higher Reynolds num-
ber pd f s have broader tails, that stretch to a much greater
extent, and correspondingly lower modal peaks. The vari-
ance of the uSλ

1 signal is also analogous to the turbulent ki-
netic energy contained within these finer scales, hence it is
unsurprising that the higher Reynolds number data contains
a higher proportion of high variance signals.

The modal value for the pd f s conditioned on uLλ
1 > 0

in figure 4 is similar for both Reynolds numbers, although
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Figure 5. pd f of uSλ
1 fluctuations conditioned on high

magnitude uLλ
1 fluctuations at Reλ ≈ 260.

there is a broader peak for the higher Reynolds number case.
This is not the case for the pd f s conditioned on uLλ

1 < 0.
There is a distinct shift towards higher variance for the
higher Reynolds number case. There is thus also a Reynolds
number effect in the interaction between the larger and finer
scale fluctuations, with higher Reynolds number encourag-
ing a greater increase in the amplitude of the small scales
by large-scale negative streamwise velocity fluctuations.

Thus far, we have established the variance in small
scale fluctuations is amplified by the large scale fluctua-
tions. However, the distribution of the small scale fluctu-
ation that contributes to the variance is not known. In order
to explore this feature, we present the conditional pd f of the
small scale fluctuation conditioned on the value of the large
scale fluctuation. We are specifically interested in regions
in which the large scale fluctuations are strong. Figure 5
shows the pd f of uSλ

1 conditioned on uLλ
1 . The dashed line

pd f s are produced from high magnitude negative fluctua-
tions and the solid line pd f s are produced from high mag-
nitude positive fluctuations. It can be seen that conditional
pd f s for strong positive fluctuations exhibit a different be-
haviour to that of the conditional pd f s for strong negative
fluctuations. The tails of the uSλ

1 pd f s conditioned on neg-
ative uLλ

1 in figure 5 are significantly broader than those
conditioned on positive fluctuations. This leads to a corre-
spondingly lower modal peak, although the mode remains
(along with the mean) at zero. It can thus be concluded that
high magnitude, large-scale negative fluctuations have an
effect of increasing the activity in fluctuations smaller than
the Taylor microscale.

Another way to examine the influence of the large
scales on the small scale fluctuations (and vice-versa) is
to calculate the dissipation in the small scale field of view
and condition the large scale fluctuation on the value of the
dissipation. Figure 6 shows pd f s of the large-scale fluc-
tuations of uLλ

1 conditioned on the mean dissipation rate,
〈εSλ 〉, from the small-scale FOV. The solid line pd f is pro-
duced from regions encompassing small-scale FOVs that in-
stantaneously have a mean rate of dissipation that is higher
than the global mean. It can be seen that these large-scale
fluctuations have a modal value of close to zero and nega-
tive skewness that is significantly smaller than that for the
overall pd f of figure 2. On the other hand the dashed
line pd f , constructed from regions encompassing the small-
scale FOVs with a mean rate of dissipation that is lower than
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Figure 6. pd f s of uLλ
1 fluctuations conditioned on the rate

of dissipation of turbulent kinetic energy, ε , in the small-
scale FOVs.

the global mean, shows a positive modal value and a signif-
icant degree of negative skewness.

This means that regions of high dissipation are more
likely to be found in high magnitude negative large-scale
velocity fluctuations and regions of low dissipation are more
likely to be found in large magnitude positive large-scale
fluctuations. Roshko (1976) states that in the development
region of the mixing layer the large scales are unaffected
by the small scales and the dissipation. Figure 6 shows that
this is not the case in the self similar region of a mixing
layer, with the dissipation (a small-scale quantity) clearly
correlated with the distribution of the large-scale fluctua-
tions. The cause-and-effect relationship of the impact of
large- on small-scale and vice-versa is not clear as this re-
quires us to examine the spatio-temporal evolution of these
conditional statistics. However, there is evidence that the
small scales have a significant impact on the large scales
and a confirmation of the finding of figure 5 that high ac-
tivity amongst the small scales is more likely to be found in
regions of large-scale negative velocity fluctuations.

Figure 1 shows the locations of the three small-scale
FOVs in relation to the large-scale FOV. It can be seen
that there is a considerable area in the large-scale FOV
downstream of two small-scale FOVs (upstream and cen-
tre small-scale FOVs). This area in the large-scale FOV,
which does not encompass the small-scale FOVs, can be
used to examine the history effects or the phase lag be-
tween the fine scales within the small-scale FOV and the
larger scales in the large-scale FOV. Therefore, we calcu-
late conditional pd f s of σuSλ

1
conditioned on the presence

of positive or negative large scale streamwise velocity fluc-
tuations downstream of the fine scale fluctuations. Compu-
tation of these pd f s is straightforward and follows the same
procedure outlined above. However, the condition points
(or areas) are now located downstream of the small-scale
FOV. Thus these conditional pd f s show the behaviour of
the finer scale fluctuations that persist in the “wake” of the
large scales. The region downstream of the most upstream
small-scale FOV is split into streamwise sections of length
2λ (which is the streamwise extent of the small-scale FOV)
and pd f s of σuSλ

1
are computed conditioned on the sign of

uLλ
1 downstream of the small-scale FOV.

Figure 7 shows contours of the percentage difference
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Figure 7. (a) Contour plot showing the percentage differ-
ence between the pd f conditioned on uLλ

1 > 0 and the pd f
conditioned on uLλ

1 < 0 produced using the uLλ
1 data in the

streamwise domain of each band downstream of the uSλ
1

data in the upstream high resolution FOV.

(based on the pd f conditioned on positive fluctuations (c.f.
the solid lines of figure 4)) between pd f s calculated for
uLλ

1 > 0 and uLλ
1 < 0 as a function of both the relative down-

stream locations and σuSλ
1

, given by:

pd f % difference = 100×
pd f |uLλ

1 >0 − pd f |uLλ
1 <0

pd f |uLλ
1 >0

(1)

Each band in the figure is offset by a distance of λ , up to
a maximum downstream distance of ≈ 16λ , which corre-
sponds to the streamwise extent of the large-scale FOV. A
positive value of the difference indicates that the bin that
corresponds to a given relative streamwise position and σuSλ

1

is dominated by events for which uLλ
1 > 0 at that relative

streamwise position. Conversely, a negative value indi-
cates that σuSλ

1
is dominated by events for which uLλ

1 < 0 at
that relative streamwise position. The data extracted along
xLλ

1 − xSλ
1 = 0 in the figure corresponds to the difference

between the pd f conditioned on uLλ
1 > 0 and the pd f con-

ditioned on uLλ
1 < 0 of figure 4.

At the measurement location, in the high Reynolds
number case, the Kolmogorov time scale is approximately
33 ms compared to a time of approximately 38 ms required
to convect a distance of 2λ at the mean velocity at the mea-
surement location. This suggests that the small scales re-
spond quickly to the passage of a region of sustained nega-
tive streamwise velocity fluctuations in the large scales. It
can be postulated that the mechanism by which the ampli-
tude of the finest scales is increased by a region of nega-
tive uLλ

1 downstream is to do with a local increase in the
Reynolds number as the velocity is increased. However, it
is not clear whether the amplitude modulation is causal due
to the Eulerian nature of our data, but a local increase in
Reynolds number would also account for the reduction in
influence of the smallest scales.

Figure 7 shows that the effect of the larger scales on the
finest scales can be seen to be at its greatest when the large
scale negative fluctuations are concurrent with the finest
scales, illustrated by the large negative value contours for
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Figure 8. Illustrative representation highlighting the zones
of interaction between larger and finer scales in the mixing
layer. The integral length scale is marked in the figure and
in the current study the ratio between the integral scale and
the Taylor microscale, L/λ = 21 (for Reλ ≈ 260).

higher values of σuSλ
1

at the streamwise origin. This effect
steadily decreases with increasing downstream distance of
the conditional point up to xLλ

1 −x+

1 ≈ 8λ where it increases
again reaching a secondary peak/valley at the farthest down-
stream location at xLλ

1 − x+

1 = 15λ .
As mentioned previously, figure 7 shows an increase

in this amplitude modulation at a distance of ≈ 15λ down-
stream of the small-scale FOV, although it can still be seen
that negative large-scale fluctuations are responsible for in-
creasing the finest scale activity as there is no sign change
present. At this location downstream, the amplitude of the
finest scales is correlated to a negative velocity fluctuation.

The above-mentioned observations on amplitude mod-
ulation and the phase lag can be reconciled through a phys-
ical mechanism that involve the passage of integral scale
sized structures that leave a “wake” of fine scales behind
them. Figure 8 shows a schematic representation of this
physical mechanism. The top of the figure shows two adja-
cent typical spanwise rollers that are the larger scales in the
mixing layers (Winant & Browand 1974; Brown & Roshko
1974). These structures are of the size of integral scale (L)
which is approximately equal to 20λ in the current study.
The bottom plot in figure 8 shows a trace of the streamwise
velocity fluctuation of the larger scales taken along the line
shown in the top plot; similar to those presented in Loucks
& Wallace (2012). This line plot shows that larger scale
streamwise velocity fluctuations are positive upstream of a
roller and steadily decreases through the roller reaching a
minimum at the centre of a roller and increases beyond this
point until the beginning of the adjacent roller. This veloc-
ity signature is derived from the entrainment of high-speed
fluid (from the high-speed side) upstream of the roller and
entrainment of low-speed fluid (from the low-speed side)
downstream of the roller. The bottom of the figure also
shows the fluctuations of the finest scales through the same
line shown in the top plot. This signature shows that the
finest scales are amplified within the roller and are attenu-
ated in the shear layers that connect the adjacent rollers.
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