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ABSTRACT
The thin interface separating the inner turbulent region

from the outer irrotational fluid is analyzed in a direct nu-
merical simulation of a spatially developing turbulent mix-
ing layer. A vorticity threshold is defined to detect the inter-
face separating the turbulent from the non-turbulent regions
of the flow and to calculate statistics conditioned on the dis-
tance from this interface. The statistics of the position of
the two interfaces in the mixing layer, i.e., on the low- and
high-speed sides, are characterized by a Gaussian distribu-
tion and evolve in the streamwise direction coherently with
the self-similar behavior of the flow. A strong vorticity jump
is observed at the interfaces, in agreement with the results
for other free shear flows, such as turbulent jets and wakes.
Far from the interfaces, the conditional vorticity recovers
the value observed for the classical turbulent statistics in
the middle of the layer. The thickness of the interfaces are
found to be of the order of the Taylor’s microscale, simi-
larly to other shear flows. Finally, the local velocity of the
interfaces with respect to the flow is of the order of the Kol-
mogorov velocity, confirming that entrainment is governed
by the dynamics of the smallest scales.

INTRODUCTION
In shear flows, such as jets, wakes, and mixing layers,

the turbulent and irrotational regions are separated by sharp
interfaces (Corrsin & Kistler, 1955). The study of these
interfaces has recently gained new attention (Huntet al.,
2011). These layers play a crucial role in the development
of the turbulent field and are important in turbulent com-
bustion and cloud physics as they affect entrainment and
mixing. Recent results include new insight on the entrain-

ment process, which is dominated by the spreading of small
scale vortices (Mathew & Basu, 2002; Westerweelet al.,
2005; Holzner & L̈uthi, 2011), and on the characteristic
thickness of the interface. The thickness is of the order of
the Kolmogorov’s scale in shear-free turbulence (Holzner
& L üthi, 2011) and Taylor’s microscale in flows with mean
shear (da Silva & Pereira, 2008; da Silva & Taveira, 2010).

Both numerical and experimental studies have ad-
dressed shear-free turbulence (Holzneret al., 2008; Holzner
& L üthi, 2011), jets (Mathew & Basu, 2002; da Silva &
Pereira, 2008; da Silva & Taveira, 2010; Westerweelet al.,
2005, 2009; Wolfet al., 2012; Taveira & da Silva, 2013),
and wakes (Bissetet al., 2002), but no statistics conditioned
on the distance from the interface have been reported for the
mixing layer.

PRELIMINARIES
The direct numerical simulation (DNS) presented in

this work is performed by solving the unsteady, incom-
pressible Navier-Stokes equations. The parallel flow solver
“NGA” (Desjardins et al., 2008), developed at Stanford
University, is used to solve the transport equations. The
solver implements a finite difference method on a spa-
tially and temporally staggered grid with the semi-implicit
fractional-step method of Kim & Moin (1985). Velocity and
scalar spatial derivatives are discretized with a second-order
finite differences centered scheme.

A complete description of the flow parameters and
methods used for the computation is provided in Attili
& Bisetti (2012), together with a detailed analysis of the
spatial evolution of the flow and velocity statistics in the
transitional and fully developed turbulent regions. There-

1



August 28 - 30, 2013 Poitiers, France

MLA

Figure 1. Isosurface of the vorticity magnitude. The whole domain is shown.

fore only a brief summary is presented here. The flow
is imposed at the inlet plane (x = 0) and free convective
outflow (Ol’Shanskii & Staroverov, 2000) is specified at
x = Lx. The boundary conditions are periodic in the span-
wise directionz and free-slip in the crosswise directiony.
The flow at the inlet (x = 0) is a hyperbolic tangent pro-
file for the streamwise velocityU with prescribed vorticity
thicknessδω ,0: U(x= 0,y,z)=Uc+1/2∆U tanh

(
2y/δω ,0

)
,

where Uc = (U1 +U2)/2 is the convective velocity,U1
andU2 are the high- and low-speed stream velocities and
∆U = U1 −U2 is the velocity difference across the layer.
The Reynolds number based on the vorticity (momentum)
thickness at the inlet is Reω = 600 (resp. Reθ = 150), in-
creasing up to Reω = 25,000 (resp. Reθ = 4250) as the
mixing layer develops. The ratio of the two velocities is
U1/U2 = 3. Low amplitude white noise is superimposed
on the hyperbolic tangent profile, resulting in the onset of
the Kelvin-Helmholtz instability at a short distance down-
stream of the inlet (x ≈ 50δω ,0). The crosswise and span-
wise velocity components are perturbed with the same type
of disturbance.

The computational domain extends overLx = 473δω ,0,
Ly = 290δω ,0, Lz = 157.5δω ,0 in the streamwise (x), cross-
wise (y) and spanwise (z) directions, respectively. The do-
main is discretized with 3072×940×1024≈ 3×109 grid
points (Nx×Ny×Nz). In the region centered aroundy= 0
(|y| ≤ 45δω ,0), the grid is homogeneous in the three di-
rections: ∆x = ∆y = ∆z= 0.15δω ,0. Outside the core re-
gion for |y| > 45δω ,0, the grid is stretched linearly until
∆y= 0.6δω ,0 at |y| = 55δω ,0 and then is constant again up
to the boundary. Overall, the spatial resolution is such that
∆x = ∆y = ∆z≤ 2.5η everywhere, whereη = ν3/4ε−1/4

is the Kolmogorov scale andε the average turbulent kinetic
energy dissipation. The time step size is calculated in order
to have a unity Courant-Friedrichs-Lewy (CFL) number.

The simulation was performed on the IBM Blue
Gene/P system “Shaheen” available at King Abdullah Uni-
versity of Science and Technology, using up to 65,536
processing cores (16 racks of the Blue Gene/P architec-
ture). Statistics were accumulated over time for 3500τ
(τ = ∆U/δω ,0) and 1400 flow field samples were used to
evaluate statistics. Several time signals were sampled at
various spatial locations to complement the spatial statis-
tics with their temporal surrogates by Taylor’s hypothesis.
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Figure 2. Streamwise evolution of normalized total tur-
bulent kinetic energyK/∆U2 (solid squares). Contribu-
tions from the three components of velocity are also shown:
2Kx/∆U2 (open circles), 2Ky/∆U2 (open squares), and
2Kz/∆U2 (open diamonds). Lines indicate least-square fit
over 200< x/δω ,0 < 400 (Kx) and 300< x/δω ,0 < 400 (K,
Ky andKz).

The simulation required around 10 million CPU hours and
produced approximately 100 TB of data.

Figure 1 shows an isosurface of the vorticity magnitude
for the entire domain, highlighting the large scale vortices
due to the Kelvin-Helmholtz instability and the small scale
structures in the far field.

It is well known that at a certain distance from the inlet,
the mixing layer evolves self-similarly. Appropriate scal-
ing velocity and length scales are the constant velocity dif-
ference∆U across the mixing layer and a measure of the
local layer thickness, e.g. momentum or vorticity thick-
ness (Pope, 2000). Self-similarity implies a linear growth
for the total turbulent kinetic energy (Clark & Zhou, 2003):
K(x) =

∫
kdy= 1/2

∫
(〈uu〉+ 〈vv〉+ 〈ww〉)dy, where〈〉 is

a statistical mean obtained by averaging in the spanwise di-
rection z and timet and u = U − 〈U〉, v = V − 〈V〉, and
w = W−〈W〉 are the velocity fluctuations in the three di-
rections. Figure 2 shows that the self-similar behavior (lin-
ear growth of turbulent kinetic energy and of its compo-
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Table 1. Flow parameters in the far field of the mixing
layer. The values of the Kolmogorov scale, production and
dissipation are calculated at the crosswise position of maxi-
mum turbulent kinetic energy (y≈−5δω ,0). Ls =

√
ε/S 3

is the shear length scale,S being the local mean shear and
ε the dissipation.

Kolmogorov scale η 0.07δω,0

Production/dissipation ratio P/ε 1.4

Resolution ∆x/η 2

Shear length scale Ls ≈ 40η

Vorticity thickness δω ≈ 500η

Taylor microscale λ ≈ 43η

Reynolds number Reλ ≈ 250
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Figure 3. Spectra of streamwise velocity in the stream-
wise direction (L11) at several downstream locations.

nents) is recovered forx> 300δω ,0, after a transition region
dominated by the Kelvin-Helmholtz instability. The con-
tribution of the streamwise component to the total kinetic
energy (Kx) achieves self-similarity before the two other
components (Ky andKz). In the region where strong vor-
tex pairing occurs, the crosswise component (Ky) of the tur-
bulent kinetic energy undergoes rapid growth (Rogers &
Moser, 1994; Attili & Bisetti, 2012) resulting inKy ≥ Kx

for 50δω ,0 < x< 100δω ,0.
Figure 3 shows the streamwise evolution of theL11

spectra in the center of the layer, at several streamwise lo-
cations. Downstream of the onset of the Kelvin-Helmholtz
instability the flow becomes fully turbulent with spectra
characterized by Kolmogorov’s scaling over more than one
decade in wavenumber space. Table 1 summarizes some
important flow parameters in the far field of the mixing
layer.

RESULTS
The interface between the turbulent and non-turbulent

region is defined using a threshold on the value of the vor-
ticity magnitude. The threshold value is around 30% of the
mean vorticity in the core of the layer. Figure 4 shows the
vorticity magnitude field in the streamwise/crosswise plane
and the two interfaces between the core of the layer and the
low- and high-speed irrotational regions (bottom and top,
respectively). Both interfaces are highly convoluted and are

Figure 4. Vorticity magnitude in the self similar region.
The threshold used to define the interface is also shown
(white lines). The flow is from left to right and the low-
(resp. high-) speed stream is on the bottom (resp. top).

characterized by a wide range of length scales. It is worth
noting that the two interfaces appear different from a mor-
phological perspective.

Following Mathew & Basu (2002), da Silva & Pereira
(2008), and Westerweelet al.(2009), the interfaceenvelope
has been defined using the outermost points of the inter-
face along lines at a given streamwise location. A statistical
analysis of the position of the interface in the crosswise di-
rection is shown in Figure 5. As expected, the position of
the bottom (top) interface shifts downward (upward) mov-
ing downstream. From the histogram of the interface po-
sition, it is evident that both interfaces penetrate deep into
the layer, reaching its center. However, the probability of
this happening is rather low. The probability density func-
tions (PDF) of the position of both the interfaces are very
close to Gaussian distributions. This is in agreement with
the measurements by Westerweelet al. (2009) for a turbu-
lent round jet. The mean position of the interfaces is char-
acterized by a linear evolution in the streamwise direction,
consistently with the self-similarity assumption for the mix-
ing layer. Also the variance of the position of the interfaces
increases linearly in the streamwise direction.

Turbulence statistics are computed conditioned on the
distance from the envelope and compared with classical
statistics obtained averaging in time and statistical homo-
geneous directions (the spanwise direction in the present
case). As suggested by da Silva & Pereira (2008), patches of
engulfed irrotational fluid are removed from the conditional
statistics. Figure 6 shows the statistics of the spanwise com-
ponent of vorticity, both in the form of classical turbulence
statistics and conditioned on the distance from the two in-
terfaces. If rescaled with the local thickness of the layer
and the velocity difference between the two streams, the
profiles show self-similarity, with the exception of the first
streamwise position located in the transitional region. For
the conditional profiles, the distance from the interface is
rescaled with the local Taylor’s microscale, as suggested by
da Silva & Pereira (2008). Moving from the non-turbulent
region towards the core of the layer, the conditional mean
profiles show a jump at both interfaces, reach a peak at a
very short distance from the interface and then converge to
a constant value close to the peak of the classical mean pro-
files in the middle of the layer. While the non-dimensional
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Figure 5. Statistics of the crosswise position of the two interfaces. (a): Histograms of the position at different streamwise
locations: x/δω ,0 = 205 (open squares),x/δω ,0 = 251 (filled squares),x/δω ,0 = 298 (open circles),x/δω ,0 = 344 (filled
circles),x/δω ,0 = 390 (open triangles),x/δω ,0 = 436 (filled triangles). (b): Probability density functions of the interfaces
position, normalized with the first two moments. The solid line is a normal distribution (Gaussian) with zero mean and unity
variance. (c): Streamwise evolution of the mean position of the interface for the high- (open circles) and low-speed side (filled
squares). The filled circles indicate the center of the layer, moving towards the low-speed stream. (d): Streamwise evolution of
the variance of the interface position for the high- (open circles) and low-speed side (filled squares).
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Figure 6. Vorticity statistics. (a): Crosswise profiles of the mean of the spanwise component of vorticity. The local momentum
thickness of the layerδθ and the velocity difference between the two streams∆U are used for non-dimensionalization. (b-c):
Mean spanwise vorticity conditioned on the distance from the interface for the low- and high-speed sides of the layer. The
distance from the interfaceδI is scaled with the Taylor’s microscale in the center of the layer. Different symbols for different
streamwise positions:x/δω ,0 = 205 (open squares),x/δω ,0 = 251 (filled squares),x/δω ,0 = 298 (open circles),x/δω ,0 = 344
(filled circles),x/δω ,0 = 390 (open triangles),x/δω ,0 = 436 (filled triangles). The solid horizontal line in (a) indicates the
maximum of the mean and is shown also in (b) and (c) for comparison.

value of mean vorticity far from the interface reaches a self-
similar behavior, the peak continues to increase moving in
the streamwise direction. From the present calculation it is
unclear whether this is a residual of the transition or a gen-
uine characteristic of the turbulence in the fully developed
region. It is apparent that rescaling the distance from the
interface with the Taylor’s microscaleλ generates a good
collapse of all the profiles, confirming the observation made
in other shear flows that the thickness of the interface scale
with λ (da Silva & Pereira, 2008; da Silva & Taveira, 2010).

Statistics of vorticity conditioned on the distance from

the interfaces have been reported for a number of differ-
ent shear flows (Mathew & Basu, 2002; da Silva & Pereira,
2008; da Silva & Taveira, 2010; Westerweelet al., 2005,
2009; Wolf et al., 2012; Taveira & da Silva, 2013; Bis-
setet al., 2002), so it is of interest to compare the results
for the mixing layer with those obtained in other configu-
rations. Figure 7 shows the conditional profiles of the en-
strophy (i.e., the vorticity magnitude) for the mixing layer
and other shear flows. The similar behavior for the differ-
ent flows suggests a degree of universality in the vorticity
dynamics near the turbulent non-turbulent interface.
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Figure 7. Conditional average of the vorticity magnitude
for the low- (solid line) and high-speed stream (dashed line)
compared with the results by da Silva & Taveira (2010) for
a round jet (filled symbols) and by Bissetet al. (2002) for
a wake (open symbols). The profiles are scaled with the
Taylor’s microscale and the value of the vorticity magnitude
far from the interface.
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Figure 8. Probability density function of the interface ve-
locity (eq. 1) in the mixing layer (line) compared with the
results by Holzner & L̈uthi (2011) for sheer-free turbulence
(symbols).

Holzner & Lüthi (2011) analyzed the velocity, relative
to the fluid, of the interfaces separating the turbulent and
non-turbulent regions in flows without mean shear. The rel-
ative velocity is defined as (Holzner & Lüthi, 2011):

vn =−2ωiω jsi j∣∣∇ω2
∣∣ − 2ν∇2ωi∣∣∇ω2

∣∣ , (1)

whereωi is the vorticity vector,si j the rate of strain ten-
sor, andν the kinematic viscosity. Figure 8 shows the
probability density function (PDF) ofvn for the top inter-
face. The interface velocityvn is normalized with the mean
Kolmogorov velocityuη , calculated at the interface. The
mean and standard deviation are close touη and the over-
all PDF is in good agreement with the result by Holzner
& L üthi (2011) notwithstanding the differences in the two
configurations, i.e. mixing layer versus shear-free turbu-
lence. These observations confirm that that the appropriate
scales describing the spreading of the interface are the Kol-
mogorov’s length and velocity, suggesting that, even if the

interface thickness scales with the Taylor’s scales, entrain-
ment is governed by the dynamics of the smallest scales.
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