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ABSTRACT

A review is given on studies of statistics at small scales
in turbulent flows from a view point of universality. It is
assumed in the view that the statistics at sufficiently small
scales in the absence of mean flow are at a certain kind of
local equilibrium state, and the influence of the mean flow
may be regarded as a perturbation added to the equilibrium
state. This idea has been examined by comparison of spec-
tral characteristics derived by the idea with those in turbu-
lent boundary layers, mixing layers and direct numerical
simulations (DNS) of homogeneous turbulent shear flow.
The applicability of this idea to turbulent channel flows is
discussed in the light of the data of the log-law region in
DNS of turbulent channel flows with the friction Reynolds
numberRe up to 5120.

INTRODUCTION

Turbulence is a phenomenon involving a huge num-
ber of degrees of dynamical freedom. A paradigm of study
dealing with systems consisting of such a huge number of
degrees of freedom is the statistical mechanics of systems
at or near thermal equilibrium state.

In the statistical mechanics, it is known that although
it is difficult to trace the trajectory of each of the molecules
or atoms in the physical or phase space, there are certain
kinds of simple relations between a few variables, the so-
called macroscopic variables, such as the pressure, density
and temperature characterizing the equilibrium state. The
relations are universal in the sense that they are indepen-
dent of the detail of the difference in the trajectories of the
molecules or atoms. It is also known that there are another
kind of universal relations characterizing the response of the
thermal equilibrium system to the disturbance added to the
system.

It is attractive to assume that the similar idea is appli-
cable to turbulence. In fact, underlying the celebrated Kol-
mogorov theory (Kolmogorov,1941), referred here as K41,
is the idea of existence of universal local equilibriums state,
the statistics of which can be characterized by a few vari-
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ables. In this paper, a review is given on studies along this
idea with an emphasis on the spectral characteristics. Dis-
cussions are also made on the applicability of this idea to
turbulent channel flows in the light of the log-law region
in recent DNS of turbulent channel flows with the friction
Reynolds numbeRe; up to 5120.

UNIVERSALITY AT LOCAL EQUILIBRIUM
STATE

We consider here the motion of incompressible fluid
obeying the Navier-Stokes (NS) equation. Although it has
not been rigorously proved, nor neither is it trivial that
there is universality in the statistics of small scales in high
Reynolds number turbulence, evidences supporting the ex-
istence have been accumulated.

Among them is the so-called 4/5 law. The NS equation
is compatible with the statistical homogeneity and isotropy
of turbulent flows. Under the assumption of the homogene-
ity and isotropy of the turbulence statistics, the NS equation
with the incompressibility condition yields a rigorous rela-
tion called Karman-Howarth (KH) equation (&rman and
Howarth, 1938). If (i) the external force is confined to only
large scales- L+, (ii) the statistics is almost stationary at
scales much smaller than the characteristic length $gale
of the energy containing eddies, and (iii) the viscosity works
only at small scales n, then itis shown from the KH equa-
tion that

B5(r) = —4/5(e)r, 1)

for Lt,Lg > r > n, whereBj(r) is the third order longi-
tudinal velocity structure function(e) the average of the
rate of energy dissipatioa per unit mass, ang the Kol-
mogorov micro length scale defined by= (v3/(g))/4
with v being the kinematic viscosity. This 4/5 law has been
confirmed by experiments and numerical simulations. Note
that the law asserts that (1) holds irrespectively of the de-
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tails of differences in the forcing at large scales and in the
eddy structures at small scales, as far as (i)-(iii) hold.

Another evidence supporting the existence of the uni-
versality at small scales is concerned with the energy spec-
tra of the fluctuating velocity fields. The longitudinal en-
ergy spectrés1(ky) of various turbulent fields under dif-
ferent flow conditions are known to overlap well at large
longitudinal wave numbeks, if the spectra are plotted
against the normalized wavenumben. In particular, in
the wavenumber range/llg < k; < 1/n, the spectra at
high Reynolds number fit well to the5/3 power law spec-
trum

(&) (kan) 53,

E11(ki) =Ko @)
wherekK, is a non-dimensional universal constant. Equation
(2) is consistent with K41. Although the overlap is in gen-
eral not perfect, it strongly suggests that there is a certain
kind of universality or common features in the statistics of
small scales in high Reynolds number turbulence.

For some more details supporting the existence of uni-
versality at small scale statistics, readers may refer to, e.g.,
Kaneda and Morishita (2012).

TURBULENT SHEAR FLOW

In considering turbulent shear flows, it is a common
practice to decompose the velocity fielthto the mean and
fluctuating parts such as= U +u, whereU = (v) with (v)
being the mean of. Then the NS equation yields

Oy Oyu+ (u-O)U]+vO?u+..., (3)

p (u-Oju—[U
where the fluid density is assumed to be unity, and we have
omitted writing terms representing the effects of the pres-
sure, external force an@u - O)u). The first, second and the
third terms on the right-hand-side of (3) represent (a) the
non-linear coupling between the fluctuating veloaity(b)

the coupling between the mean and fluctuating fiélagsd

u, and (c) the viscous term, respectively.

In the following, we consider the statistics at the small
scales, that are much smaller than the characteristic length
scale of the mean flow. This implies that at the scales,
0U;j/0x; = Sj may be approximated to be constant. Lt
be the characteristic velocity of small eddies of sdale
such a scale range, ang(¢) andts(¢) be the characteris-
tic time scales associated with the nonlinear coupling in (a)
between the small scale eddies and the coupling in (b) be-
tween the mean and fluctuating fields, respectively. Then a
simple estimate gives

IN(0) ~ £/ug, TS(f) ~1/S (4)

whereS= mayx;j|Sj|, and the so-called random sweeping
effect has been removed in the estimate of (b). According

to K41,u, ~ ((€)£)Y/3, so thatry ~ (£2/ (€))Y/3. Then (4)
gives

5(0) = (0) /15(0) ~ P23/ ()P < 1 (5)
for ¢ < Lg= (€)Y/?/$%/2. This suggests that at small

enough scales, the effect of the coupling between the mean
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flow and the small eddies are small as compared with the
nonlinear coupling between the small eddies, so that in con-
sidering the small scale statistics the effect of the former
may be treated as a disturbance added to the dynamics gov-
erned by the latter. (see, e.g., Ishihatal, 2002; Kaneda

and Ishihara, 2009; Kaneda and Morishita, 2012)

Linear Response Theory

Let us briefly review here the idea of the linear re-
sponse theory in the statistical mechanics for systems near
thermal equilibrium. Suppose that an external force or dis-
turbance, sa¥, is added to an equilibrium state, whose dis-
tribution function or the density matrig in the absence of
the forceX, is given bype. In response to the disturbance,
p changes to

pP=petbp+.., (6)

whereAp is the change op due toX and first order inx.
The changes ip results in the changes of observable, say
A, as

(B) = (B)o+D0(RB)+ (7)

where(%), is the average over the equilibrium distribution
Pe, and

A(B) = EX, 8)

in which% is a constant, determined by the equilibrium sate
and independent of. Here we omit the time factors. (see,
e.g., Kubo, 1966; Kaneda and Morishita, 2012)

Although, in contrast to the thermal equilibrium state,
we do not know how to accurately specify the “equilibrium”
state of turbulence, or something corresponding the density
matrix pe, it is attractive to assume that there is a certain
kind of universal local equilibrium state at small scales, and
consider the response of the state to disturbance added to
the system.

Velocity Correlations and Spectra

Consider a small space domaih whose scale is much
smaller tharl_ ¢, Lg and the characteristic length scale of the
mean shear, so that the mean shear$atmay be regarded
to be constant ir. Let p be the probability distribution of
the velocity differenc®u(r) = u(x+r) — u(x) where both
x andx+r are in%. In this case, the above consideration
yields p as (6), whergoe stands for the distribution in the
absence of the mean shear, &represents the change of
pinresponse to the shear and is lineagjn Corresponding
to (7) and (8), we have

(8ui(r)duj(r)) = (3ui(r)duj(r)),
+ A(Sui(r)duj(r)) +--,
= Ci/jmn( )Smrh

9)

A{Su;(r)duj(r)) (10)

where(..), is the average over the equilibrium distribution
pe, andCjjn, is a fourth order tensor satisfying,, =
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in which (- --),. denotes the integral over the spherical sur-

indices, unless otherwise stated, and consider only one-time face|g| = k. As regards one-dimensional spectra, we have

correlations so that we omit writing the time argumeat
will.

In the following we assume that the statistics repre-
sented by the equilibrium densipe are homogenous and
isotropic. Then the tensdCjjmn must be a fourth order
isotropic tensor independent &f It must be compatible
with the incompressibility condition of.

In order to take into account of the incompressibility
condition, it is convenient to work in the wave vector space.
It is then shown that (9) and (10) give

Qij (k) = Qfj (k) +2Qij (k) + -+, (11)

where Q;j (k),Qf (k) and AQ;j(k) + --- are the Fourier
transforms with respect tor of (Uj(x+r)ju;j(x)),
(Ui(x+r)uj(r)), and A(ui(x+r)uj(r)), respectively.
ﬁ(k) and AQjj (k) represent the equilibrium spectrum
in the absence of the mean flow and the response of the
equilibrium state to the mean shear, respectively. The latter

is linear inSy, and may be written as

AQ;j (K) = Cijmn(K)Smn, (12)

whereCijmn is a fourth-order isotropic tensor depending on
k, and satisfie&;Cijmn = KjCijmn = 0 andCijmn = Cjimn.
A simple symmetry consideration then gives

Cijmn(K) = 50%(K) [Pm(K)Pin (K) + Py(k) B ()]
+ o 00R; (0T 1 )R (K)o, (19
whereRj = & — (kikj)/k?, andq(® (k)(a = 1,2,3) de-

pends onk only throughk = |k|. The q®-term may be
neglected without loss of generality, beca@gsg, = 0.

If we assume that the equilibrium state is characterized
in accordance with K41 then a dimensional analysis yields

Q% (k) = (Ko/4m) ()P 13Rj(k),  (14)
q(l)(k) _ A<E>l/3k—13/37 (15)
q@ (k) = B(e)3k 133, (16)

in the wavenumber range/lls < k < 1/n. For simple
mean shear flow given b = §19;2S, we have

()]
(18)

(411/15)(7A—B) (g)Y/3k7/3g
(87/15)(—A+B) (g)/3k /33,

Qu2(k) =
(k) =

whereKy, A andB are non-dimensional universal constants,
and

@00= (@ (@), BW=("2Q@) .

Ero(ki) = a(e)3k; 3, (19)
E2(ky) = b(e) 3k, s (20)

18 216
a=—1oog(~33A+7B), b= T-o(~2A+B), (21)

where the one-dimensional spectréip(k;) is defined as

Eqo(ky) = / / Q12(k)dkodks (22)

andE}?(kq) is defined similarly bykikoQi (k).

Equation (11) with (12) - (21) is consistent with (2).
The scalingO qu %in (19) is consistent with theoreti-
cal predictions including those by Lumley (1967), Leslie
(1973), Yoshizawa (1998) and Cambon and Rubinstein
(2006).

The spectra are also consistent with those of DNS
of homogeneous turbulent shear with the Taylor scale
Reynolds numbeRe, ~ 284 by Ishihareet al. (2002), ac-
cording to whichA = —0.164+0.03, B = —0.40+ 0.06.
This yields & ~ —0.16, which is close to the estimate
2a ~ —0.15 by measurements of turbulent boundary layer
by Saddoughi & Veeravalli (1994).

Recently, by measurements of a mixing layer generated
by a jet with the Taylor scale Reynolds number ufRjo~
700, Tsuji and Kaneda (2012) obtaindd~ —0.16, B ~
—0.45, which yields 2~ —0.14, in fairly good agreements
with the DNS estimate®~ —0.16 by Ishiharat al (2002).

A spectral closure analysis by (Yoshiga al, 2003)
suggests that for accurate estimation by DNS or experi-
ments of the universal constamsB, the Reynolds number
must be much higher than that required for the estimation
of Ko in (2) or (14), because the slope lof1%/3 in (15)
and (16) is steeper than thatlof'%/3 in (14), i.e. k=133 is
much larger thatk—1%/3 at lowk.

The idea described above can be applied not only to
the second order correlation of the velocity field but also
to higher order correlations, for example, to the correla-
tion Byjic(r) = (ui(x)uj(X)uk(x+r)). Its Fourier transform
Qijk (k) with respect ta may be written as

Qij (k) = Qff (k) +AQijk (k) + -+,
A(Qijk(K)) = Cijmn(K)Smn

(23)
(24)

If the equilibriums state is giveamla K41, thenQ”k( )
andCijxmn(k) must be isotropic third order and fifth order
tensors depending only dnand (g), and compatible with
kxQijk (k) = 0. SinceCijkmn(K) is afifth order tensor, it con-
sists of too many terms to be written down here. However,
as regards the contracti@y (k), it can be written in a sim-
ple form as seen below. First, it is shown tIQﬁ((k) =0,
becauseQ;, (k) must be third order isotropic tensor. By
substituting the inverse Fourier transforms of (11) and (23)
into

7] 7] 92
B = —— (B B B
ot (7I’j( iji + |]|)+V70rjarj j

17}
+riSjWBij+SjBij7 (25)
i
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and comparing the terms linear $it is shown after some
algebra that

Kjkmkn
I3

Qij(k)=e Sn () 3K 1473, (26)

in the wavenumber range/lls < k < 1/n, wheree is

a non-dimensional universal constaBf;, = (Ui u’J-),Bijk =
(Uiuju) with U = ui(x,t),uj = ui(x+r), and (25) is ver-
ified by the NS equation. The relation (26) remains to be
examined by experiments and/or DNS.

Spectra Involving Pressure

The idea discussed above can be applied also to corre-

lations involving pressure (Tsuji and Kaneda, 2012). It is
shown that

Qpp(k) = Qpp(K) +AQpp(k) + -+,
Qpi(k) = Qpi(k) +AQpi(k) +---,

@7)
(28)

where Qpp(k) and Qpj(k) are the the Fourier transforms
with respect tor of the one-time two-point pressure cor-
relation (p(x+r)p(x)), and pressure-velocity correlation
(p(x+r)ui(x)), respectively. Her€f (k) andQf;(k) are

the spectra at the equilibrium state, aki@pp(k) +--- and
AQpi(k) + --- represents the response to the perturbation,
i.e., the mean shear added to the equilibrium state. Corre-
sponding to (8), we have

AQpp(k) = Cmn(k)smn,
AQpi(k) = Cimn(k)smn,

(29)
(30)

whereCmn(k) andCpni(k) are second and third order ten-
sors, respectively. They are determined by the statistics of
the equilibrium state, independently of the mean shear.

If the equilibriums state is characterized in accordance
with K41, theani(k) = 0 because of the isotropy of the
equilibrium state, and

K
Bok) = 22 (&) Pk, (31)
AQpp(k) = al% (&) k™ >Smn, (32)
d k
AQpi(k) = (blkil(@ +b2?ma"|i + bg%émi)

in the wavenumber range/lls <« k < 1/n, whereKp,
ay,bq,by, bz are non-dimensional universal constants, and
b1 + by + bz = 0 becausd;Cimn(k) = 0 for anyk.
Equation (31) implies that the one-dimensional spec-
tra E5,(k1) and AEpp(ky) defined similarly to (19) from
bp(K), andAQpp(k) are given by

3 -
Efp(k) = 12Kp (6)2kg 7%, (33)

and AEpp(ky) = 0 for Syn = S e, the latter of which
is because of the anti-symmetry with respectkto of
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Table 1. h, the channel width; Ly,L;, fundamental
periodic lengths in the directions of streamwise ={

X1), and spanwise z(= x3) directions, respectively;
Nx, Ny, Nz, the number of grid points in they, z-directions;

AXT, Ayd, Az, grid width in thex, y, z-directions; Ay, is at

the center of the channel.

Re Ly/h Ly/h N x Ny x N, At pyE Az
Casel 320 m /2 128x192x 128 79 79 39
Case2 640 m /2 256x 384x 256 79 79 39
Case3 1280 m /2 512x 768x 512 79 79 39
Case4 2560 m  m/2 1024x1536x1024 7.9 7.9 3.9
Case5 5120 m m/2 2048x 1536x 2048 7.9 159 3.9

AQpp(k). The scaling in (33) is consistent with studies so
far reported (readers may refer to, e.g., T&djal. (2007)
Tsuji and Kaneda (2012) and references cited therein).

Recently, the spectra (27) - (33) were confirmed to be
consistent with experiments of the pressure and velocity in
a turbulent mixing layer generated by a jet, where the pres-
sure was measured by newly developed pressure probe with
resolution sufficiently high to resolve the inertial subrange
Tsuji and Kaneda (2012). According to the measurements,
ay ~ —5.2, by ~ —0.066 by ~ —0.128 bz~ 0.194

TURBULENT CHANNEL FLOW

In the above discussions, we have assumed that the
flow boundary, if it exists, is sufficiently far from the lo-
cal domainZ under consideration, so that its direct influ-
ence on the statistics i7 is negligible. One may then ask
whether the idea discussed above is applicable to turbulent
channel flows. In order to get some idea on this question,
we have examined consequences of the theory by compar-
ison with the data of DNS of turbulent channel flow up
to Rg = 5120. In the DNS we used the Fourier spectral
method in the streamE& x1)- and sparg = x3)-wise direc-
tions, and the Tchebycheff expansion method in the wall
normal {f = xo) direction. Some parameter values charac-
terizing the DNS are listed in Table 1. (Readers may refer to
Morishitaet al.(2011) for some details of the DNS methods
and statistics up t&e = 2560.)

Figure 1 shows the mean streamwise velocity profile
U as a function of/". Here the superscript denotes the
normalization by the wall units. It is seen thaffits well to
the log-law

Uty = % logy* +C, (34)
in a certain range depending &g, for example, in the
range 50< y* < 1000 atRer = 5120, wherex = 0.4,C ~ 5.
Figure 2 shows the mean rate of energy dissipation as
a function ofy*. It is seen thate)™ fits well to the well-
known relation (see, e.g., Tennekes and Lumley, 1972)

1

(&)" = pva (35)

in the log-law region.

According to (34), the mean shear r&g= 0U;" /9x;"
is given byd18j2/(ky™), so that the ratio defined by (5) is
given by

8(0) = (€713 (ky" [(e) '1M3) = (¢/ky)?%, (36)
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0 Case 5 (HE., =5120) ——
0.1 1 10 100 1000
y*
Figure 1. Mean velocity profile. Solid line shows the log-
law U™ (y") = (1/k)logy" +C, with k = 0.4,C = 5.0.
10°
B '
_3 | Casel (Re, = 320) g
107 & Case 2 (Re, = 640) e : 1
Case 3 (Re, = 1280) e
Case 4 (Re, = 2560)
104 Case 5 (Re, = 5120) ——
0.1 1 10 100 1000
U+
Figure 2. Mean dissipation ratg)™ vs. y*. The solid

line shows(g)™ = 1/(ky*) with k = 0.4.

where we have used (35). For n = (v3/(g))Y/4, (36)
gives

(ky) V2.

~ (V3/(e)Y8/(ky)?? O 37)

o(n)

In the DNS, the rati@(n) is small, typically less than 0.1,
at the upper region of the log-law region at high;.
Equations (11) - (13) imply that the diagonal compo-
nents ofQ;j (k)'s (i.e., the components with= ) are dom-
inated by the equilibrium spectru@ﬁ- (k), and therefore

Exa(ke) ~ Esa(ks) ~ Cx (6)%3k; */°,
Epa(ka) ~ Eaa(ki) ~ (4/3)Cx (£)23k %,

(38)
(39)

in the subrange Ls < k; < 1/n, whereCx = (9/55)K,.
The scaling is consistent with observations including those
by McKeon and Morrison (2007), Smitt al. (2011) and
Morishita et al. (2011). The DNS data fit fairy well with
these relations witle; ~ 0.5 atkyn ~ 0.02, and the fitting
range increases witRe;.

Equations (11) - (13) also imply th&,(k;) andE}?
are dominated by the second term of (11), i&Q;j (k),
and they are given by (19) and (20). The DNS data are in
fairy good agreement with (19) and (20) with the DNS value
A= -0.16,B = —0.40 by noted above, as seen in Fig. 3.
(Figures forE}? are omitted.)

INV?2
0.20 : ,
Case 1 (Re, = 320,y = 100
Case 2 (Re, = 640,y = 200
015 Case 3 (Re, = 1280,y = 400) e
w0 Case 4 (Re, = 2560,y = 600)
2 Case 5 (Re, = 5120,y = 1200) ——

1

—Eya(ky)/[{e)k

ki

Figure 3. SpectrumElg(kl)/[<e>l/3 kil/3$ vs. kin at
y' in the upper region of the log-law region at edRb.
The valueKgn is indicated by an arrow for each run, where
Ks=1/Ls. The straight line shows the prediction (19) with
(21) withA= —0.16 andB = —0.40.

So far we have considered the influence of the bound-
ary wall to be only through the mean shear, and have ig-
nored the inhomogeneity of the statistics. However, the
statistics is in general not homogeneous in a strict sense be-
cause of the existence of the boundary wall. We assume
here that the influences of the mean shear and the inhomo-
geneity onp or Qjj (k) are additive, so thakQj (k) may be
written as

AQjj (k) = ASQjj (k) +4' Qij (k), (40)
WhereAsQij is the change due to the mean shear given by
(12), anda! Qij the change due to the inhomogeneity.

In order to get an estimate AfQij , itis worthwhile to
note that (34) and (35) givelS/dy) /S~ (d{(¢g) /dy)/ () O
1/y, whereS= dU/dy, i.e., the degree of inhomogeneity
in Sand(¢g) decreases with the distangérom the wall in
proportion to ¥y, and the change in the inhomogeneity is in
the direction normal to the wall. This suggests us to assume
thatA! Q;j is linear in(1/y)n, i.e.,

A'Qij(K) =Cijm(K)Im, Im=nm/(nx),  (41)
wheren is the unit vector normal to the wall, andis the
position vector withnx, = 0 on the wall.

Equation (41) can be derived also by generalizing the
idea of K41, In order to take into account of the inhomo-
geneity, we assume thatmay depend ofll (¢) in addition
to (¢) andr. Then retaining only terms up to the first order
term in the expansion gb for small O(¢) / (¢), we have
(41).

If the equilibrium state is characterized in accordance
with K41, then a simple dimensional analysis gives for

Nm = &mz2

NQy = X (1/%) (€73 2Ry ok 93, (@2)
so that (11) with (40) and (42) yields
(k) = x(1/%2) ()23 %%, (43)
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wherex’ andy are non-dimensional constarfé,zg (k1) (no
summation oven) is defined as the Fourier transform with
respect tor of (9/9x2) (Ug (X1 +T,X2,X3)Uqg (X1,X2,X3)).
Equation (43) could be also derived by assuming @atk)

is given by (11)-(16) and the influence of the inhomogene-
ity is only through thex,-dependence ofe). This as-
sumption givesy = —(2/3)K,. Figure 4 shows the ratio
—[Eézg,(kl)xz}/Eaa(kl) vs. kin for a = 1. According to
(43) and (11)-(16), this ratio must bg2in the inertial sub-
range. It is seen that the ratio is not far from32in the
range. The similar is also true for = 2 and 3 (figures are
omitted).

Case 1 (Re, = 320,y" = 100)
Case 2 (Re, = 640,y" = 2
3 Case 3 (Re, = 1280,y" = ¢
[ Case 4 (Re, = 2560,y =
Case 5 (Re, = 5120,y* = 1200

RoACATAA

‘[Eﬁ)(kl)lfz]/En(kl)

\/“VVW

Kgn

0.001

0.1 1
ki

Figure 4. Theratioi; = —[Eﬁ)(kl)xz]/Ell(kl) vs. kin,
wherexp =y. The straight line shows 1 = 2/3.

CONCLUSION

A simple analysis suggests that in the absence of mean
shear the statistics of sufficiently small eddies in turbulent
flows at high Reynolds numbeRé§ is at a locally equilib-

rium state, and the influence of mean shear on the statistics

may be regarded as a perturbation added to the equilibrium
state. Although it is still not known how to accurately spec-
ify the statistics at the equilibrium state, one may apply an
idea similar to the linear response theory familiar in the sta-
tistical mechanics for systems at or near thermal equilib-
rium state.

By the application, one can derive expressions for var-
ious multi-point correlation functions and spectra charac-
teristics at small scales of turbulent shear flows at litgh
They imply that not only the slopes (scalings) of the spectra,

but also some of the pre-factors are universal constants char-

acterizing the equilibriums state. They have been confirmed
to be consistent with DNS of homogeneous turbulent shear
flow, and experiments/observations of turbulent boundary
layers and a mixing layer. The idea is applicable also to

turbulent channel flows. A comparison of the theoretical

conjectures with the data of DNS of turbulent channel flows

atRe up to 5120 shows good agreements between them.
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