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ABSTRACT
A review is given on studies of statistics at small scales

in turbulent flows from a view point of universality. It is
assumed in the view that the statistics at sufficiently small
scales in the absence of mean flow are at a certain kind of
local equilibrium state, and the influence of the mean flow
may be regarded as a perturbation added to the equilibrium
state. This idea has been examined by comparison of spec-
tral characteristics derived by the idea with those in turbu-
lent boundary layers, mixing layers and direct numerical
simulations (DNS) of homogeneous turbulent shear flow.
The applicability of this idea to turbulent channel flows is
discussed in the light of the data of the log-law region in
DNS of turbulent channel flows with the friction Reynolds
numberReτ up to 5120.

INTRODUCTION
Turbulence is a phenomenon involving a huge num-

ber of degrees of dynamical freedom. A paradigm of study
dealing with systems consisting of such a huge number of
degrees of freedom is the statistical mechanics of systems
at or near thermal equilibrium state.

In the statistical mechanics, it is known that although
it is difficult to trace the trajectory of each of the molecules
or atoms in the physical or phase space, there are certain
kinds of simple relations between a few variables, the so-
called macroscopic variables, such as the pressure, density
and temperature characterizing the equilibrium state. The
relations are universal in the sense that they are indepen-
dent of the detail of the difference in the trajectories of the
molecules or atoms. It is also known that there are another
kind of universal relations characterizing the response of the
thermal equilibrium system to the disturbance added to the
system.

It is attractive to assume that the similar idea is appli-
cable to turbulence. In fact, underlying the celebrated Kol-
mogorov theory (Kolmogorov,1941), referred here as K41,
is the idea of existence of universal local equilibriums state,
the statistics of which can be characterized by a few vari-

ables. In this paper, a review is given on studies along this
idea with an emphasis on the spectral characteristics. Dis-
cussions are also made on the applicability of this idea to
turbulent channel flows in the light of the log-law region
in recent DNS of turbulent channel flows with the friction
Reynolds numberReτ up to 5120.

UNIVERSALITY AT LOCAL EQUILIBRIUM
STATE

We consider here the motion of incompressible fluid
obeying the Navier-Stokes (NS) equation. Although it has
not been rigorously proved, nor neither is it trivial that
there is universality in the statistics of small scales in high
Reynolds number turbulence, evidences supporting the ex-
istence have been accumulated.

Among them is the so-called 4/5 law. The NS equation
is compatible with the statistical homogeneity and isotropy
of turbulent flows. Under the assumption of the homogene-
ity and isotropy of the turbulence statistics, the NS equation
with the incompressibility condition yields a rigorous rela-
tion called Ḱarmán-Howarth (KH) equation (Ḱarmán and
Howarth, 1938). If (i) the external force is confined to only
large scales∼ L f , (ii) the statistics is almost stationary at
scales much smaller than the characteristic length scaleLE
of the energy containing eddies, and (iii) the viscosity works
only at small scales∼ η , then it is shown from the KH equa-
tion that

BL
3(r) = −4/5⟨ε⟩ r, (1)

for L f ,LE ≫ r ≫ η , whereBL
3(r) is the third order longi-

tudinal velocity structure function,⟨ε⟩ the average of the
rate of energy dissipationε per unit mass, andη the Kol-
mogorov micro length scale defined byη ≡ (ν3/⟨ε⟩)1/4

with ν being the kinematic viscosity. This 4/5 law has been
confirmed by experiments and numerical simulations. Note
that the law asserts that (1) holds irrespectively of the de-
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tails of differences in the forcing at large scales and in the
eddy structures at small scales, as far as (i)-(iii) hold.

Another evidence supporting the existence of the uni-
versality at small scales is concerned with the energy spec-
tra of the fluctuating velocity fields. The longitudinal en-
ergy spectraE11(k1) of various turbulent fields under dif-
ferent flow conditions are known to overlap well at large
longitudinal wave numberk1, if the spectra are plotted
against the normalized wavenumberk1η . In particular, in
the wavenumber range 1/LE ≪ k1 ≪ 1/η , the spectra at
high Reynolds number fit well to the−5/3 power law spec-
trum

E11(k1) = Ko ⟨ε⟩2/3 (k1η)−5/3, (2)

whereKo is a non-dimensional universal constant. Equation
(2) is consistent with K41. Although the overlap is in gen-
eral not perfect, it strongly suggests that there is a certain
kind of universality or common features in the statistics of
small scales in high Reynolds number turbulence.

For some more details supporting the existence of uni-
versality at small scale statistics, readers may refer to, e.g.,
Kaneda and Morishita (2012).

TURBULENT SHEAR FLOW
In considering turbulent shear flows, it is a common

practice to decompose the velocity fieldv into the mean and
fluctuating parts such asv = U+u, whereU = ⟨v⟩ with ⟨v⟩
being the mean ofv. Then the NS equation yields

∂
∂ t

u = −(u ·∇)u− [(U ·∇)u+(u ·∇)U]+ν∇2u+ ..., (3)

where the fluid density is assumed to be unity, and we have
omitted writing terms representing the effects of the pres-
sure, external force and⟨(u ·∇)u⟩. The first, second and the
third terms on the right-hand-side of (3) represent (a) the
non-linear coupling between the fluctuating velocityu, (b)
the coupling between the mean and fluctuating fieldsU and
u, and (c) the viscous term, respectively.

In the following, we consider the statistics at the small
scales, that are much smaller than the characteristic length
scale of the mean flowU. This implies that at the scales,
∂Ui/∂x j ≡ Si j may be approximated to be constant. Letuℓ

be the characteristic velocity of small eddies of scaleℓ in
such a scale range, andτN(ℓ) andτS(ℓ) be the characteris-
tic time scales associated with the nonlinear coupling in (a)
between the small scale eddies and the coupling in (b) be-
tween the mean and fluctuating fields, respectively. Then a
simple estimate gives

τN(ℓ) ∼ ℓ/uℓ, τS(ℓ) ∼ 1/S, (4)

whereS≡ maxi j |Si j |, and the so-called random sweeping
effect has been removed in the estimate of (b). According
to K41,uℓ ∼ (⟨ε⟩ℓ)1/3, so thatτN ∼ (ℓ2/⟨ε⟩)1/3. Then (4)
gives

δ (ℓ) ≡ τN(ℓ)/τS(ℓ) ∼ Sℓ2/3/⟨ε⟩1/3 ≪ 1 (5)

for ℓ ≪ LS ≡ ⟨ε⟩1/2/S3/2. This suggests that at small
enough scales, the effect of the coupling between the mean

flow and the small eddies are small as compared with the
nonlinear coupling between the small eddies, so that in con-
sidering the small scale statistics the effect of the former
may be treated as a disturbance added to the dynamics gov-
erned by the latter. (see, e.g., Ishiharaet al., 2002; Kaneda
and Ishihara, 2009; Kaneda and Morishita, 2012)

Linear Response Theory
Let us briefly review here the idea of the linear re-

sponse theory in the statistical mechanics for systems near
thermal equilibrium. Suppose that an external force or dis-
turbance, sayX, is added to an equilibrium state, whose dis-
tribution function or the density matrixρ in the absence of
the forceX, is given byρe. In response to the disturbance,
ρ changes to

ρ = ρe+∆ρ + ..., (6)

where∆ρ is the change ofρ due toX and first order inX.
The changes inρ results in the changes of observable, say
B, as

⟨B⟩ = ⟨B⟩e+∆⟨B⟩+ ..., (7)

where⟨B⟩e is the average over the equilibrium distribution
ρe, and

∆⟨B⟩ = C X, (8)

in whichC is a constant, determined by the equilibrium sate
and independent ofX. Here we omit the time factors. (see,
e.g., Kubo, 1966; Kaneda and Morishita, 2012)

Although, in contrast to the thermal equilibrium state,
we do not know how to accurately specify the “equilibrium”
state of turbulence, or something corresponding the density
matrix ρe, it is attractive to assume that there is a certain
kind of universal local equilibrium state at small scales, and
consider the response of the state to disturbance added to
the system.

Velocity Correlations and Spectra
Consider a small space domainD , whose scale is much

smaller thanL f ,LE and the characteristic length scale of the
mean shear, so that the mean shear rateSi j may be regarded
to be constant inD . Let ρ be the probability distribution of
the velocity differenceδu(r) ≡ u(x+ r)−u(x) where both
x andx + r are inD . In this case, the above consideration
yields ρ as (6), whereρe stands for the distribution in the
absence of the mean shear, and∆ρ represents the change of
ρ in response to the shear and is linear inSi j . Corresponding
to (7) and (8), we have

⟨
δui(r)δu j (r)

⟩
=

⟨
δui(r)δu j (r)

⟩
e

+ ∆
⟨
δui(r)δu j (r)

⟩
+ · · · , (9)

∆
⟨
δui(r)δu j (r)

⟩
= C′

i jmn(r)Smn, (10)

where⟨..⟩e is the average over the equilibrium distribution
ρe, andC′

i jmn is a fourth order tensor satisfyingC′
i jmn =
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C′
jimn. Here we use the summation convention for repeated

indices, unless otherwise stated, and consider only one-time
correlations so that we omit writing the time argumentt at
will.

In the following we assume that the statistics repre-
sented by the equilibrium densityρe are homogenous and
isotropic. Then the tensorCi jmn must be a fourth order
isotropic tensor independent ofx. It must be compatible
with the incompressibility condition ofv.

In order to take into account of the incompressibility
condition, it is convenient to work in the wave vector space.
It is then shown that (9) and (10) give

Qi j (k) = Qe
i j (k)+∆Qi j (k)+ · · · , (11)

where Qi j (k),Qe
i j (k) and ∆Qi j (k) + · · · are the Fourier

transforms with respect tor of
⟨
ui(x+ r) ju j (x)

⟩
,⟨

ui(x+ r)u j (r)
⟩

e and ∆
⟨
ui(x+ r)u j (r)

⟩
, respectively.

Qe
i j (k) and ∆Qi j (k) represent the equilibrium spectrum

in the absence of the mean flow and the response of the
equilibrium state to the mean shear, respectively. The latter
is linear inSmn, and may be written as

∆Qi j (k) = Ci jmn(k)Smn, (12)

whereCi jmn is a fourth-order isotropic tensor depending on
k, and satisfieskiCi jmn = k jCi jmn = 0 andCi jmn = Cjimn.

A simple symmetry consideration then gives

Ci jmn(k) =
1
2

q(1)(k)
[
Pim(k)Pjn(k)+Pjm(k)Pin(k)

]

+ q(2)(k)Pi j (k)
kmkn

k2 +q(3)(k)Pi j (k)δmn, (13)

wherePi j = δi j − (kik j )/k2, and q(α)(k)(α = 1,2,3) de-
pends onk only throughk = |k|. The q(3)-term may be
neglected without loss of generality, becauseSmm= 0.

If we assume that the equilibrium state is characterized
in accordance with K41 then a dimensional analysis yields

Qe
i j (k) = (Ko/4π)⟨ε⟩2/3k−11/3Pi j (k), (14)

q(1)(k) = A⟨ε⟩1/3k−13/3, (15)

q(2)(k) = B⟨ε⟩1/3k−13/3, (16)

in the wavenumber range 1/LS ≪ k ≪ 1/η . For simple
mean shear flow given bySi j = δi1δ j2S, we have

Q12(k) = (4π/15)(7A−B)⟨ε⟩1/3k−7/3S, (17)

Q12
ii (k) = (8π/15)(−A+B)⟨ε⟩1/3k−7/3S, (18)

whereKo,A andB are non-dimensional universal constants,
and

Qi j (k) ≡
⟨
Qi j (q)

⟩
k , Qab

i j (k) ≡
⟨

kakb

k2 Qi j (q)

⟩

k
,

in which ⟨· · ·⟩k denotes the integral over the spherical sur-
face|q| = k. As regards one-dimensional spectra, we have

E12(k1) = a⟨ε⟩1/3k−7/3
1 S, (19)

E12
ii (k1) = b⟨ε⟩1/3k−1/3

1 S, (20)

a = − 18π
1729

(−33A+7B), b =
216π
1729

(−2A+B), (21)

where the one-dimensional spectrumE12(k1) is defined as

E12(k1) =
∫ ∞

−∞

∫ ∞

−∞
Q12(k)dk2dk3 (22)

andE12
ii (k1) is defined similarly byk1k2Qii (k).

Equation (11) with (12) - (21) is consistent with (2).

The scaling∝ k−7/3
1 in (19) is consistent with theoreti-

cal predictions including those by Lumley (1967), Leslie
(1973), Yoshizawa (1998) and Cambon and Rubinstein
(2006).

The spectra are also consistent with those of DNS
of homogeneous turbulent shear with the Taylor scale
Reynolds numberReλ ≈ 284 by Ishiharaet al. (2002), ac-
cording to whichA = −0.16± 0.03, B = −0.40± 0.06.
This yields 2a ≈ −0.16, which is close to the estimate
2a ≈ −0.15 by measurements of turbulent boundary layer
by Saddoughi & Veeravalli (1994).

Recently, by measurements of a mixing layer generated
by a jet with the Taylor scale Reynolds number up toRλ ≈
700, Tsuji and Kaneda (2012) obtainedA ≈ −0.16, B ≈
−0.45, which yields 2a≈ −0.14, in fairly good agreements
with the DNS estimate 2a≈ −0.16 by Ishiharaet al.(2002).

A spectral closure analysis by (Yoshidaet al., 2003)
suggests that for accurate estimation by DNS or experi-
ments of the universal constantsA,B, the Reynolds number
must be much higher than that required for the estimation
of Ko in (2) or (14), because the slope ofk−13/3 in (15)
and (16) is steeper than that ofk−11/3 in (14), i.e.,k−13/3 is
much larger thank−13/3 at lowk.

The idea described above can be applied not only to
the second order correlation of the velocity field but also
to higher order correlations, for example, to the correla-
tion Bi jk(r) ≡

⟨
ui(x)u j (x)uk(x+ r)

⟩
. Its Fourier transform

Qi jk(k) with respect tor may be written as

Qi jk(k) = Qe
i jk(k)+∆Qi jk(k)+ · · · , (23)

∆
⟨
Qi jk(k)

⟩
= Ci jkmn(k)Smn. (24)

If the equilibriums state is givena la K41, thenQe
i jk(k)

andCi jkmn(k) must be isotropic third order and fifth order
tensors depending only onk and⟨ε⟩, and compatible with
kkQi jk(k) = 0. SinceCi jkmn(k) is a fifth order tensor, it con-
sists of too many terms to be written down here. However,
as regards the contractionQiik(k), it can be written in a sim-
ple form as seen below. First, it is shown thatQe

iik(k) = 0,
becauseQe

iik(k) must be third order isotropic tensor. By
substituting the inverse Fourier transforms of (11) and (23)
into

∂
∂ t

Bii = − ∂
∂ r j

(Bi ji +Bi ji )+ν
∂ 2

∂ r j ∂ r j
Bi j

+r iSi j
∂

∂ r j
Bi j +Si j Bi j , (25)
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and comparing the terms linear inS, it is shown after some
algebra that

Qii j (k) = e
k jkmkn

k3 Smn⟨ε⟩2/3k−14/3, (26)

in the wavenumber range 1/LS ≪ k ≪ 1/η , wheree is
a non-dimensional universal constant,Bi j = ⟨uiu′

j ⟩,Bi jk =

⟨uiu ju′
k⟩ with ui = ui(x, t),u′

j = ui(x + r), and (25) is ver-
ified by the NS equation. The relation (26) remains to be
examined by experiments and/or DNS.

Spectra Involving Pressure
The idea discussed above can be applied also to corre-

lations involving pressure (Tsuji and Kaneda, 2012). It is
shown that

Qpp(k) = Qe
pp(k)+∆Qpp(k)+ · · · , (27)

Qpi(k) = Qe
pi(k)+∆Qpi(k)+ · · · , (28)

whereQpp(k) and Qpi(k) are the the Fourier transforms
with respect tor of the one-time two-point pressure cor-
relation ⟨p(x+ r)p(x)⟩, and pressure-velocity correlation
⟨p(x+ r)ui(x)⟩, respectively. HereQe

pp(k) andQe
pi(k) are

the spectra at the equilibrium state, and∆Qpp(k)+ · · · and
∆Qpi(k) + · · · represents the response to the perturbation,
i.e., the mean shear added to the equilibrium state. Corre-
sponding to (8), we have

∆Qpp(k) = Cmn(k)Smn, (29)

∆Qpi(k) = Cimn(k)Smn, (30)

whereCmn(k) andCmni(k) are second and third order ten-
sors, respectively. They are determined by the statistics of
the equilibrium state, independently of the mean shear.

If the equilibriums state is characterized in accordance
with K41, thenQe

pi(k) = 0 because of the isotropy of the
equilibrium state, and

Qe
pp(k) =

Kp

4π
⟨ε⟩4/3k−13/3, (31)

∆Qpp(k) = a1
kmkn

k2 ⟨ε⟩k−5Smn, (32)

∆Qpi(k) =

(
b1

kikmkn

k3 +b2
km

k
δni +b3

kn

k
δmi

)

× ⟨ε⟩2/3k−14/3Smn,

in the wavenumber range 1/LS ≪ k ≪ 1/η , where Kp,
a1,b1,b2,b3 are non-dimensional universal constants, and
b1 +b2 +b3 = 0 becausekiCimn(k) = 0 for anyk.

Equation (31) implies that the one-dimensional spec-
tra Ee

pp(k1) and ∆Epp(k1) defined similarly to (19) from
Qe

pp(k), and∆Qpp(k) are given by

Ee
pp(k1) =

3
14

Kp ⟨ε⟩4/3k−7/3
1 , (33)

and ∆Epp(k1) = 0 for Smn = δm1δm2, the latter of which
is because of the anti-symmetry with respect tok2 of

Table 1. h, the channel width; Lx,Lz, fundamental
periodic lengths in the directions of streamwise (x =

x1), and spanwise (z = x3) directions, respectively;
Nx,Ny,Nz, the number of grid points in thex,y,z-directions;
∆x+,∆y+

c ,∆z+, grid width in thex,y,z-directions;∆yc is at
the center of the channel.

Reτ Lx/h Lz/h Nx ×Ny ×Nz ∆x+ ∆y+
c ∆z+

Case 1 320 π π/2 128×192×128 7.9 7.9 3.9

Case 2 640 π π/2 256×384×256 7.9 7.9 3.9

Case 3 1280 π π/2 512×768×512 7.9 7.9 3.9

Case 4 2560 π π/2 1024×1536×1024 7.9 7.9 3.9

Case 5 5120 π π/2 2048×1536×2048 7.9 15.9 3.9

∆Qpp(k). The scaling in (33) is consistent with studies so
far reported (readers may refer to, e.g., Tsujiet al. (2007)
Tsuji and Kaneda (2012) and references cited therein).

Recently, the spectra (27) - (33) were confirmed to be
consistent with experiments of the pressure and velocity in
a turbulent mixing layer generated by a jet, where the pres-
sure was measured by newly developed pressure probe with
resolution sufficiently high to resolve the inertial subrange
Tsuji and Kaneda (2012). According to the measurements,
a1 ≈ −5.2, b1 ≈ −0.066, b2 ≈ −0.128, b3 ≈ 0.194.

TURBULENT CHANNEL FLOW
In the above discussions, we have assumed that the

flow boundary, if it exists, is sufficiently far from the lo-
cal domainD under consideration, so that its direct influ-
ence on the statistics inD is negligible. One may then ask
whether the idea discussed above is applicable to turbulent
channel flows. In order to get some idea on this question,
we have examined consequences of the theory by compar-
ison with the data of DNS of turbulent channel flow up
to Reτ = 5120. In the DNS we used the Fourier spectral
method in the stream(x = x1)- and span(z= x3)-wise direc-
tions, and the Tchebycheff expansion method in the wall
normal (y = x2) direction. Some parameter values charac-
terizing the DNS are listed in Table 1. (Readers may refer to
Morishitaet al.(2011) for some details of the DNS methods
and statistics up toReτ = 2560.)

Figure 1 shows the mean streamwise velocity profile
U as a function ofy+. Here the superscript+ denotes the
normalization by the wall units. It is seen thatU fits well to
the log-law

U+(y+) =
1
κ

logy+ +C, (34)

in a certain range depending onReτ , for example, in the
range 50< y+ < 1000 atReτ = 5120, whereκ ≈ 0.4,C≈ 5.

Figure 2 shows the mean rate of energy dissipation as
a function ofy+. It is seen that⟨ε⟩+ fits well to the well-
known relation (see, e.g., Tennekes and Lumley, 1972)

⟨ε⟩+ =
1

κy+
, (35)

in the log-law region.
According to (34), the mean shear rateS+

i j = ∂U+
i /∂x+

j

is given byδi1δ j2/(κy+), so that the ratio defined by (5) is
given by

δ (ℓ) = [ℓ+]2/3/(κy+[⟨ε⟩+]1/3) = (ℓ/κy)2/3, (36)

4
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Figure 1. Mean velocity profile. Solid line shows the log-
law U+(y+) = (1/κ) logy+ +C, with κ = 0.4,C = 5.0.
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Figure 2. Mean dissipation rate⟨ε⟩+ vs. y+. The solid
line shows⟨ε⟩+ = 1/(κy+) with κ = 0.4.

where we have used (35). Forℓ ∼ η ≡ (ν3/⟨ε⟩)1/4, (36)
gives

δ (η) ∼ (ν3/⟨ε⟩)1/6/(κy)2/3 ∝ (κy)−1/2. (37)

In the DNS, the ratioδ (η) is small, typically less than 0.1,
at the upper region of the log-law region at highReτ .

Equations (11) - (13) imply that the diagonal compo-
nents ofQi j (k)’s (i.e., the components withi = j) are dom-
inated by the equilibrium spectrumQe

i j (k), and therefore

E11(k1) ∼ E33(k3) ∼ CK ⟨ε⟩2/3k−5/3
1 , (38)

E22(k1) ∼ E33(k1) ∼ (4/3)CK ⟨ε⟩2/3k−5/3
1 , (39)

in the subrange 1/LS ≪ k1 ≪ 1/η , whereCK = (9/55)Ko.
The scaling is consistent with observations including those
by McKeon and Morrison (2007), Smitset al. (2011) and
Morishita et al. (2011). The DNS data fit fairy well with
these relations withC1 ≈ 0.5 atk1η ∼ 0.02, and the fitting
range increases withReτ .

Equations (11) - (13) also imply thatE12(k1) andE12
ii

are dominated by the second term of (11), i.e.,∆Qi j (k),
and they are given by (19) and (20). The DNS data are in
fairy good agreement with (19) and (20) with the DNS value
A = −0.16,B = −0.40 by noted above, as seen in Fig. 3.
(Figures forE12

ii are omitted.)
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Case 1 (Reτ = 320, y+ = 100)
Case 2 (Reτ = 640, y+ = 200)
Case 3 (Reτ = 1280, y+ = 400)
Case 4 (Reτ = 2560, y+ = 600)
Case 5 (Reτ = 5120, y+ = 1200)

Figure 3. Spectrum−E12(k1)/[⟨ε⟩1/3k−1/3
1 S] vs. k1η at

y+ in the upper region of the log-law region at eachReτ .
The valueKSη is indicated by an arrow for each run, where
KS≡ 1/LS. The straight line shows the prediction (19) with
(21) withA = −0.16 andB = −0.40.

So far we have considered the influence of the bound-
ary wall to be only through the mean shear, and have ig-
nored the inhomogeneity of the statistics. However, the
statistics is in general not homogeneous in a strict sense be-
cause of the existence of the boundary wall. We assume
here that the influences of the mean shear and the inhomo-
geneity onρ or Qi j (k) are additive, so that∆Qi j (k) may be
written as

∆Qi j (k) = ∆SQi j (k)+∆I Qi j (k), (40)

where∆SQi j is the change due to the mean shear given by
(12), and∆I Qi j the change due to the inhomogeneity.

In order to get an estimate of∆I Qi j , it is worthwhile to
note that (34) and (35) give(dS/dy)/S∼ (d⟨ε⟩/dy)/⟨ε⟩ ∝
1/y, whereS= dU/dy, i.e., the degree of inhomogeneity
in Sand⟨ε⟩ decreases with the distancey from the wall in
proportion to 1/y, and the change in the inhomogeneity is in
the direction normal to the wall. This suggests us to assume
that∆I Qi j is linear in(1/y)n, i.e.,

∆I Qi j (k) = Ci jm(k)Im, Im ≡ nm/(nkxk), (41)

wheren is the unit vector normal to the wall, andx is the
position vector withnkxk = 0 on the wall.

Equation (41) can be derived also by generalizing the
idea of K41, In order to take into account of the inhomo-
geneity, we assume thatρ may depend on∇⟨ε⟩ in addition
to ⟨ε⟩ andr . Then retaining only terms up to the first order
term in the expansion ofρ for small ∇⟨ε⟩/⟨ε⟩, we have
(41).

If the equilibrium state is characterized in accordance
with K41, then a simple dimensional analysis gives for
nm = δm2

∆I Qi j = χ ′(1/x2)⟨ε⟩2/3 k2

k
Pi j (k)k−14/3, (42)

so that (11) with (40) and (42) yields

E(2)
αα (k1) = χ(1/x2)⟨ε⟩2/3k−5/3

1 , (43)

5



August 28 - 30, 2013 Poitiers, France

INV2

whereχ ′ andχ are non-dimensional constants,E(2)
αα (k1) (no

summation overα) is defined as the Fourier transform with
respect tor of (∂/∂x2)⟨uα (x1 + r,x2,x3)uα (x1,x2,x3)⟩.
Equation (43) could be also derived by assuming thatQi j (k)
is given by (11)-(16) and the influence of the inhomogene-
ity is only through thex2-dependence of⟨ε⟩. This as-
sumption givesχ = −(2/3)Ko. Figure 4 shows the ratio

−[E(2)
αα (k1)x2]/Eαα (k1) vs. k1η for α = 1. According to

(43) and (11)-(16), this ratio must be 2/3 in the inertial sub-
range. It is seen that the ratio is not far from 2/3 in the
range. The similar is also true forα = 2 and 3 (figures are
omitted).
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0.001 0.01 0.1 1

−
[E

(2
)

1
1
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1
)x

2
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E

1
1
(k

1
)

k1η

2/3

KSη

Case 1 (Re
τ
= 320, y+ = 100)

Case 2 (Re
τ
= 640, y+ = 200)

Case 3 (Re
τ
= 1280, y+ = 400)

Case 4 (Re
τ
= 2560, y+ = 600)

Case 5 (Re
τ
= 5120, y+ = 1200)

Figure 4. The ratior11 ≡ −[E(2)
11 (k1)x2]/E11(k1) vs. k1η ,

wherex2 = y. The straight line showsr11 = 2/3.

CONCLUSION
A simple analysis suggests that in the absence of mean

shear the statistics of sufficiently small eddies in turbulent
flows at high Reynolds number (Re) is at a locally equilib-
rium state, and the influence of mean shear on the statistics
may be regarded as a perturbation added to the equilibrium
state. Although it is still not known how to accurately spec-
ify the statistics at the equilibrium state, one may apply an
idea similar to the linear response theory familiar in the sta-
tistical mechanics for systems at or near thermal equilib-
rium state.

By the application, one can derive expressions for var-
ious multi-point correlation functions and spectra charac-
teristics at small scales of turbulent shear flows at highRe.
They imply that not only the slopes (scalings) of the spectra,
but also some of the pre-factors are universal constants char-
acterizing the equilibriums state. They have been confirmed
to be consistent with DNS of homogeneous turbulent shear
flow, and experiments/observations of turbulent boundary
layers and a mixing layer. The idea is applicable also to
turbulent channel flows. A comparison of the theoretical
conjectures with the data of DNS of turbulent channel flows
atReτ up to 5120 shows good agreements between them.
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