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ABSTRACT

This paper presents parameterisations of the subgrid
eddy-eddy and eddy-meanfield interactions in a baroclinic
oceanic simulation representative of the Antarctic Cireum
polar Current. High resolution benchmark simulations are
undertaken using a quasi-geostrophic spectral sphegacal h
monic code of largest wavenumb@r= 504. The eddy-
eddy interactions are represented by both stochastic and de
terministic parameterisations, with model coefficients de
termined from the benchmark simulation truncated back
to the large eddy simulation (LES) truncation wavenumber
Tr < T. Coefficients of the deterministic eddy-meanfield
model are determined by a least squares regression method
Truncations are repeated for variolig, with the depen-
dence of the coefficients on the resolutiidentified. Ki-
netic energy spectra from the LESs agree with the bench-
mark simulation. Scaling laws governing the subgrid coef-
ficients are presented, which remove the need to generate
the subgrid coefficients from benchmark simulations.

INTRODUCTION

Itis not possible to explicitly resolve all of the scales of
motion in the ocean, so one resorts to large eddy simulation
(LES), where the large eddies are resolved by a computa-
tional grid and the unresolved subgrid interactions are pa-
rameterised. In three-dimensional turbulence the engpiric
subgrid model of Smagorinsky (1963) is typically adopted,
where the subgrid interactions are represented by an eddy
viscosity. Here the eddy viscosity is given by a specified
constant multiplied by a measure of the local grid size and
the resolved strain rate. In simulations of two-dimensiona
and quasi-geostrophic (QG) turbulence, is it more appro-
priate for the eddy viscosity to be steeper in spectral space
taking the form of the Laplacian raised to a certain specified

1

power. Regardless of the method, if these interactions are
not properly parameterised, then an increase in resolution
will not necessarily increase the accuracy of the expjicitl
resolved scales. The dependence of the resolved scales on
resolution has been an issue in general circulation models
(GCMs) since the earliest studies, and persists today im eve
the most sophisticated GCMs (Koshyk & Hamilton, 2001).

There are four types of subgrid interactions: eddy-
eddy; eddy-meanfield; eddy-topographic; and meanfield-
meanfield (Frederiksen, 2012). The meanfield-meanfield
type represent the interactions between the unresolved sub
grid meanfield (time-averaged) and the resolved meanfield.

- The eddy-topographic form represents the interactions be-

tween the subgrid eddies and the resolved topography, and
are more significant in regions of strong topographic fea-
tures. Eddy-eddy interactions represent the impact unre-
solved subgrid eddies have on the evolution of the resolved
eddies. The eddy-meanfield interactions represent the im-
pact unresolved subgrid eddies have on the evolution of the
resolved meanfield. The latter two interactions are thefocu
of the present study. In practice subgrid interactionsrim si
ulations of the ocean are represented by Redi (1982) and
Gent & McWilliams (1990) type schemes, which respec-
tively determine the diagonal and off-diagonal elements of
the subgrid dissipation operator in isopycnal coordinates

In the current paper parameterisations are presented
for a flow representative of the Antarctic Circumpolar Cur-
rent, simulated using a quasi-geostrophic spectral model.
The spectral eddy viscosity coefficients are calculatechfro
the statistics of high resolution benchmark numerical sim-
ulations truncated back to the desired LES truncation
wavenumber. The coefficients representing the eddy-eddy
and eddy-meanfield interactions are determined from the
benchmark simulation using the processes of Frederiksen
& Kepert (2006) and Kitsiost al. (2013) respectively.
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Figure 1. Benchmark simulation: (a) level 1 instantanearszonal streamfunctionj), with —1.4 x 10-5m2s? (black) to

1.4 x 10-5m?s (white); (b) time averaged zonal curremif); and (c) meand;) and fluctuating€;) kinetic energy spectra.

BENCHMARK SIMULATION

Flow fields are generated using the two-level QG
model of Frederiksen (1998), which captures the essential
dynamics of baroclinic and barotropic instabilities. Tloe-v
ticity is represented at two vertical levels, witk= 1 repre-
senting a depth of approximately 200m, gnd 2 a depth of
600m. The system is nondimensionalised by using the ra-
dius of the Earthg = 6371km) as a length scale, and the in-
verse of the Earth’s angular velocit@ (= 7.292x 10-°s1)
as a time scale. By default all variables are assumed to be
non-dimensional unless units are specified.

The quasi-geostrophic potential vorticity equation
(QGpvE) is spectrally discretised by expanding the field
variables in spherical harmonics with the zonal (longktudi
nal) wavenumbem, and the total wavenumbex This re-
sults in the prognostic equation_s for the spectral coefitsie
of the potential vorticitygim = {mn + (— 1) AL [Wk, — W3],
where the superscript on the flow variables denotes the
level, Z,m = —n(n+ 1)LIer are the spectral coefficients
of the vorticity, Yih, the streamfunction coefficients, and
n(n+1) is the discrete form of the Laplacian. Hefe is
a layer coupling parameter, related to the Rossby radius by
rr = 1/1/2F. The evolution ofyhy, is given by

7 qmn

K mer
Kngs

wipqu,rsf iwmn(rjnn - aj (n)ZrJnn

2
+ Kn(Qrm CImn) —n(n+1) ZIVo (m, n)an (1)

The summations immediately after the equals sign are over
the triangular wavenumber s&t= C(T) where

C(T)=[pars|-T<p<T,|p<q<T,
—T<r<T,|r|<s<T],

)

and T is the benchmark simulation truncation wavenum-
ber. The Rossby wave frequency dsm = —Bm/[n(n+

1)], whereB = 2 with the chosen nondimensionalisation.
The drag at each level is given by the functiam(n) =
hex |1 — erf(0.1(n— 50))] /2, where erf is the error func-
tion, anda},, = 2.9x 10 ’st anda?,, = 1.2 x 10 6s?
The interaction coefficienti&nge are detailed in Frederik-
sen and Kepert Frederiksen & Kepert (2006). All simula-
tions are driven toward a mean stalg, that is purely zonal
(6 are zero unlessn = 0) and corresponds to a large-
scale easterly current in the mid-latitudes of the southern
hemisphere broadly representative of thec. The sim-

ulations are driven toward this state by a relaxation pa-
rameterkn, which form= 0 andn < 15 has a value of
Kn = 10°% s and k, = O for all remaining wavenum-
ber pairs. The bare eddy viscosityo'(m n), is neces-
sary as the benchmark simulation does not resolve all of
the scales of motion. We represevgﬂ m,n) in its gen-
eral anisotropic matrix form (dependent (mand n) but

in our simulations it is |sotrop|c (dependent only ah
wherev!' (mn) = vl'(n) = &; v3!(T) [n/T]P2, and g

is the Kronecker delta fqnctlon ensuring the off -diagonal
elements are zero. Her%' (T) is the value of the diagonal
elements at truncation and the exponpj)‘mjetermines the

steepness c1i5J (n). In all simulations we chose to have

a form that would be consistent with it having been derived
from a higher resolution benchmark simulation. Note there
is no topography or orography in the present simulations.

In the present calculatiorB = 504, which is equiva-
lent to 1536 longitudinal and 384 latitudinal grid points, o
a grid point approximately every. 238 degrees. The time
step size used iAt = 600s, and the statistics are accumu-
lated over a period of 6 years. The layer coupling parame-
ter FL = 2.5x 10~ 19m2, corresponding to a Rossby radius
of rr = 1/1/2F = 45km. The non-dimensional Rosshy
wavenumber i&gr = a/rr = 142, which is consistent with
the simulations of Zidikheri & Frederiksen (2010).

A snapshot of the level 1 instantaneous streamfunction
field (1) minus the zonal component is shown in Fig. 1(a),
which illustrates that the dominant structures are located
the mid to high latitudes of the southern hemisphere, censis
tent with theacc. The corresponding time averaged zonal
current (1) is shown as function of latitude in Fig. 1(b). The
maximum velocity of the time averaged current at depths of
200m and 600m, are 0.6ms! and~ 0.3ms? respectively;
consistent with measurements of thec in Phillips & Rin-
toul (2002). The kinetic energy spectig )is decomposed
into mean €j) and transientd]) energies. Figure 1(c) il-
lustrates that the level 1 energy is greater than level 2 for
all n. The energy containing scale wavenumkgra: 70
is defined as the extent of the flow configuration specific
energy containing scales. This wavenumber is labelled on
the n axis of 1(c) along with the Rossby wavenumikgr
The phenomenological view of two-dimensional and QG
turbulence is that energy and enstrophy are injected into
the system via baroclinic instability at wavenumbers cen-
tred aroundkg. There is an inverse energy cascade for the
wavenumbers betweeke and kg, and there is a forward
enstrophy cascade for the wavenumber range lpasSee
Kitsios et al. (2013) for further details on the basic flow.
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SUBGRID PARAMETERISATIONS

The resolution of a LES is lower than the associated
benchmark simulation, and confined to the resolved scale
wavenumber seR = C(Tr), whereTg is the LES trunca-
tion wavenumber such thag < T. The subgrid wavenum-
ber set is defined &8=T — R. To facilitate a discussion
on the flow decomposition, we lef = (g, 05,)" for a
given wavenumber pair. In this vector notatigg(t) =
aR(t) +g(t), whereq is the tendency (time derivative)
of . The tendency of the resolved scales|is where all
triadic interactions involve wavenumbers less tiian The
remaining subgrid tendengy has at least one wavenumber
greater thaffg which is involved in the triadic interactions.
One can further decomposg such that

2013 Poitiers, France

qe(t) =Go(t) + 3)

where ats is the fluctuating component representing the
eddy-eddy interactions, arid= (g) is the ensemble aver-
aged subgrid tendency representing the eddy-meanfield in-
teractions. The parameterisation of both of these intenact
types are determined from the benchmark simulation.

Subgrid eddy-eddy interactions
TheatS is represented by the stochastic equation

Go(t) = —Dg G(t) +f(t) (4)

whereDy is the subgrid drain dissipation matrig, is the
fluctuating component af, andf is a random forcing vec-
tor. As the present simulations have two vertical levBlg,
is a time independent 2 2 matrix, andf is a time depen-
dent 2 element column vector. TBg matrix is determined
by post-multiplying both sides of (4) b§'(to), integrating
over the decorrelation period ensemble averaging to re-
move the contribution of, and rearranging to produce

Dy

= enttae) (] tOHa(U)aT(to)da>_l(5)

0 to

where T denotes the Hermitian conjugate for vectors and

matrices. The angled brackets denote ensemble averaging,

with each ensemble member determined by shiftinfpr-

ward by one time step. The turbulence decorrelation time

is chosen sufficiently large to capture the memory effects.
The model foff is determined by calculating the matrix

Fp=Fp+Fpl, whereFp, = (f(t) ' (t)). Post-multiplying

both sides of (4) byj'(tg), and adding the conjugate trans-

pose of (4) pre-multiplied b#i(to) yields

(@va'm)+(ana o)
D¢ (G)a"1) — (aWa" 1)) D" + Fu.  (©)

Given thatDy is known,.%, can now Qe calculated. At this
point the formulation is general, arfdis coloured noise.
For the implementation of the stochastic subgrid param-
eterisation, however, it is sufficient to assume thatin

be represented as the white noise procgés fT(t')) =
Fpo(t—t).

ENV1B

The subgrid model in (4) represents this process in its
fundamental stochastic form. One can also, however, repre-
sent the subgrid interactions using the simplified determin
istic form @S (t) = —Dnet G(t), whereDpet is the net dissipa-
tion representing the net effect of the drain and backscatte
(Frederiksen & Kepert, 2006). The backscatter and net lin-
ear operators are defined By = —F,(g(t) g7(t))~ and
Dnet = Dq + Dy, respectively (Frederiksen & Kepert, 2006).
Theoretically the stochastic and deterministic methoés ar
statistically equivalent.

The subgrid coefficients are presented in eddy viscos-
ity form, where the drain, backscatter and net eddy vis-
cosities are related to their respective dissipations by
Dqg/[n(n+1)], Vp = Dp/[n(n+1)], andVnet = Dpet/[N(N+
1)], wheren(n+ 1) is the discrete form of the Laplacian.

Subgrid eddy-meanfield interactions

The parameterisation of the eddy-meanfield term rep-
resents the relationship between the ensemble averaged sub
grid tendencyf, and the ensemble averaged fiétg. For
each wavenumber pair we assume the functional form

f=-D(g)+b, @)
whereD is a 2x 2 dissipation operator, andlis a 2 ele-
ment vector of constant coefficients. We assume that (7)
also holds for small perturbations of the climate centred at
the ensemble averaged climate, such that

fi=-Dgi+b+¢&, (8)
whereq; andf; are the time averaged meanfield and sub-
grid tendency calculated over th¢h non-overlapping time
window of lengthty, andg; is the associated 2 element er-
ror vector. The ensemble averages of each of the terms are
@) = (q), (fj) =f, and(g;) = 0. The dissipation is solved

for in a least squares sense, by subtracting (7) from (8),
post-multiplying by(q; — (q))T, ensemble averaging both

sides, and rearranging forto produce

D= (fiah-f@") (@a) - (@@’)
where we assume that the error tegms uncorrelated with
(@ — (q))T. OnceD is known we can determine the offset
by rearranging (7) fob. One can also presebt scaled in
eddy viscosity formy = D/[n(n+1)].

Implementation into large eddy simulations

The equations governing the LES are equivalent to
those for the benchmark simulation, solved over the
wavenumber seR instead ofT, and with the addition of
the subgrid tendencg,qts)rjm. The most general form of the
subgrid tendency is the stochastic anisotropic representa

@),

In the anisotropic deterministic forrm(j,I (m,n) is replaced

with D#a(m, n), and fin is removed. Inthe isotropic param-
eterisations the matricd3y, .#, andDnet are isotropised,
that is averaged oven.

2 N )
— 3 D} (M.M)Ghy + T+ T -
=1

(10)
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Figure 2.

Eddy viscosity coefficients representing the eeldlyy interactions. Anisotropic coefficients fog = 252: (a)

Re[vil(m,n)]; (b) —Re[vil(m,n)]; and (c)Re[vid(m,n)]. (d) Isotropic coefficientRe[vil(n)] at various resolutions. Scaling
laws forvil(n): (e) maximum values}i(Tr); and (f) power exponer}(Tr)

SPECTRAL SUBGRID EDDY VISCOSITIES

In order to determine how the subgrid coefficients
change with resolution, benchmark simulations are trun-
cated back to various values @k. We first present the
subgrid coefficients representative of the eddy-eddy -inter
actions and then the eddy-meanfield interactions.

Eddy-eddy coefficients

Firstly we present the anisotropic subgrid scale coeffi-
cients calculated from the benchmark simulation Witk
504 truncated back tdr = 252, witht = 288\t = 2 days.
For each wavenumber pair, the dissipation operaiys
Dy, andDpet are calculated and scaled into eddy viscosity
form, with the real component of the upper diagonal ele-
mentsvit(mn), —vi(mn), and viz(m n) illustrated in
Fig. 2(a), Fig. 2(b) and Fig. 2(c) respectively. The real eom
ponents are the dominant terms, and we find that one can
also run a LES with the imaginary components set to zero
and closely replicate the kinetic energy spectra of thelbenc
mark simulation. We plot the negative g}'(m,n), as this
quantity is negative. Note the contour scale for each ele-
ment is consistent with the relationshig = —Vp + Vnet.
All of the eddy viscosities increase with have only a weak
dependence om, and hence are approximately isotropic.
Although not illustrated, the lower diagonal element of the
drain eddy viscositw32(m,n) is very similar in both form
and magnitude tm'(}l(m, n), and the off-diagonal elements
v32(mn) and v3}(m,n) are small in comparison. At this
resolution the drain eddy viscosity matrix is approximgatel
isotropic and diagonal. The backscatter and net matrices
also have these properties. These observations are consis-
tent with the subgrid coefficients determined from atmo-
spheric simulations in Kitsiost al. (2012). As we trun-
cate to lower resolutions (lower valuesTy), however, the
subgrid coefficients become increasingly anisotropic and
the off-diagonal elements become more significant (Kitsios
etal., 2013).

To illustrate how these coefficients change with reso-
lution, the isotropised upper diagonal element of the drain
eddy viscosity ¢31(n)) is illustrated in Fig. 2(d) for res-
olutions TR = 252 126 and 63. Thdgr = 252 case is the
isotropised version of the coefficients in Fig. 2(a), and re-
sides within the self-similar enstrophy cascading inértia
range withkgr < Tr. The truncation afir = 126 is within
the inverse energy cascadekas< Tr < kr. The final trun-
cation atTg = 63 is within the non-self-similar energy con-
taining scales a&s < kg. All of the profiles increase steeply
as they approacfir, and the maximum value as decreases
as resolution increases. The most negative value also de-
creases as resolution increases. To further compress-the in
formation, the isotropised drain profiles are idealisedhay t

function
)932

with the maximum values}! (Tr) and power exponen}
determined through a least squares method. There are anal-
ogous expressions for the backscatter and net eddy vis-
cosities. The diamonds symbols represent the simulations
presented within havingr = 142 andkg = 70, the cir-
cular symbols are for an alternate case with= 284 and

ke = 70, cases withg = 142 andkg € (40,50,60) are rep-
resented by squares, and cases Wjhe (201 246) and

ke = 70 are represented by triangles. For all cases, filled
symbols represerjt= 1 and hollow symbolg = 2.

As illustrated in Fig. 2(f), when the wavenumbers are
nondimensionalised bl the power exponents exhibit a
strong relationship across the entire parameter spack, wit
the steepness increasing as the truncation resolution in-
creases. This is consistent with the discussion in Kraich-
nan (1976) which states that the distance the subgrid in-
teractions can span in wavenumber space is determined by
ke. This wavenumber distance is represented by the width

n

o (11)

vl () = vl (Tw) (
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Figure 3. Subgrid eddy-meanfield parameterisation coefftsi (a) Mean potential vorticity tendenc@,{) for an LES with
Tr = 126. ForTg = 90,100 110,120 the: (b) mean baroclinic tendendyPt); and (c) eddy viscosity componeng?. (d) For

variousTg the amplitude ¢3%(0, 15)) and slope §3) of

of the eddy viscosity profiles, which is inversely propor-
tional to the power exponents. As expected, only the trun-
cations within the non-self-similar energy containinglesa
(Tr/ke < 1) do not follow the trend line. The scaling laws
for the maximum values of the eddy viscosities are some-
what more complex and illustrated Fig. 2(e). We again use
ke to nondimensionalise all inverse length scales. In addi-
tion as outlined in Leith (1971), for a giveé@ andkg, the
different values oi/éJ (Tr) at each vertical leveljj are col-
lapsed by nondimensionalising the eddy viscosity using the
time scale(n{’)~Y/3. An additional factor of,/kr/ke is
required, however, to span cases of diffelepandke. The
results clearly illustrates that the eddy viscosities €ase

in magnitude as resolution increases. The scaling laws for
the exponents and magnitude of the drain, backscatter and
net eddy viscosities can be found in Kitsigisal. (20133).

Eddy-meanfield coefficients B

Long time integrations are required to calcul&teas
per (9), so the statistics are accumulated over a period of
100 years using a reference simulation with= 252. The
only mechanism for symmetry breaking in the equations
of motion (1) is the forcing ternkn(Gm — dm). AS Kn
is only non-zero fom= 0 andn < 15, it is only the val-
ues off—nj1n and quLnn at these wavenumber components that
should be non-zero under sufficient sampling. The aver-
age subgrid tendency is plotted in Fig. 3(a) for a truncation
level Tr = 126, and we find thatOn is approximately a mir-
ror image off0n, having the effect of modifying the mean
shear. This is true for all truncation levels. It therefore
makes more sense to presénh baroclinic space where
for each wavenumber paig = (fB1, f8$)T, with fBT the
barotropic component, antf$ the baroclinic component
which we find to be dominant for the present data. The
transformation is given bfg = Bf, where

e-3l1 1] 12)

Ch  GCn

522 ; ; ;
vg© nondimensionalised bhg.

andcy = 14+ 2F /[n(n+1)]. Subgrid truncations are re-
peated for lower values Gig, with the dominanlf(‘?nC com-
ponent illustrated in Fig. 3(b). As the system is trun-
cated more heavilyTg decreasing), there are more sub-
grid eddy-meanfield interactions and consequef% in-
creases. For various truncation levels we then calculate
D using (9), and scale it into eddy viscosity units by=
D/[n(n+ 1)]. The eddy viscosity is then transformed into
barotropic/baroclinic space viagg = BvB~1. We find the
\732 component to be dominant, which represents the mean
baroclinic tendency as a function of the mean baroclinic
field. This component is plotted for various resolutions in
Fig. 3(c), illustrating that as the truncation level dese=a
the required eddy viscosity increases, consistent with the
observations of §C.

The change in magnitude/g?(0,15)) and slope 3)
of the baroclinic eddy viscosity term is quantified by least
squares fitting th@32(0,n) profiles to

V82(0,) = V8%(0,15) [n/15P% 2 (13)

for n < 15. These quantities are again nondimension-
alised usingke as an inverse length scale. We present data
for the case withkg = 142 andkg = 70. In Fig. 3(d),
Vg?(0,15)k2 are plotted as hollow diamonds on the left ver-
tical axis againsfir/kg, and the values oﬁé are plotted

as filled diamonds on the right vertical axis. The steep-
ness,ﬁé, maintains a relatively constant value of approx-
imately 2 for all Tr. The data also illustrates that ag
increases (more scales resolved), the value of the strength
v32(0,15) decreases. The strength of the eddy-meanfield
eddy viscosity also decreases with resolution much faster
than the eddy viscosity representing the eddy-eddy inter-
actions. This means that as the resolution increases, the
eddy-meanfield interactions become proportionally less im
portant. The eddy-meanfield eddy viscosities are also found
to be insensitive to the choice of window pering, as long
asTy is greater than one week.



< International Symposium

——\\ ﬁ\¥ On Turbulence and Shear Flow

A Phenomena (TSFP-8)

August 28 - 30, 20183 Poitiers, Franc

ENV1B

102 | i I
N(/) .. 126aD -._ 1261 T~ 12610
é 108 M 25240 | % 2520 | /\[/\/://\/\ 25200 |
s 126as -, 1261 -._ 126Ls
Cﬁ' 10—8 L 252As | L Tho, 25218 L Th., 25218 |

kr kr kr

10 | IR | I ‘ NI
1 10 100 1000 1 10 100 1000 1 10 100 1000

n n n

(a) (b) (©)

Figure 4. Spectra; (benchmark simulation - dashed, LES - solid) using pararsettons: (a) anisotropic deterministier),
stochastic £s); and (b) isotropic deterministictf), stochastici€); and (c) isotropic scaling law deterministic), stochastic
(Ls). Labelled withTg and the associated subgrid parameterisation. The veaticaln (a) is applicable to all figures.

LARGE EDDY SIMULATION

We now incorporate the parameterisation for the eddy-
eddy and eddy-meanfield interactions developed above into
various LESs, as outlined in the discussion following (10).
The spectra at level 1ef) for each of the LES variants
with Tr = 126 and 252 are compared ¢ of the bench-
mark simulation. The anisotropic deterministic and steeha
tic LES variants are compared to the benchmark simula-
tion in Fig. 4(a), with each spectra offset for clarity. Both
LES variants illustrate excellent agreement with the bench
mark simulation. The isotropic deterministic and stocicast
LES variants are compared to the benchmark simulation in
Fig. 4(b), and again achieve excellent agreement. The ide-
alised scaling law representation of the isotropic determi
istic and stochastic LES variants are compared to the bench-
mark simulation in Fig. 4(c), and again achieve very good
results. The drop in energy in tfig = 126 cases is due to
the scaling laws not representing the negative component of
the raw isotropic coefficients.

CONCLUDING REMARKS

Subgrid parameterisations have been developed for the
eddy-eddy and eddy-meanfield interactions for an oceanic
circulation. The eddy-eddy interactions were represented
by deterministic and stochastic subgrid parameterisation
using the approach of Frederiksen & Kepert (2006). The
stochastic variant consists of a drain eddy viscosity and a
backscatter noise term, and the deterministic varianerepr
sents the net effect of the drain and backscatter. The eddy-
meanfield interactions are represented using a deteriinist
method, with coefficients determined using the least sguare
approach of Kitsiogt al. (2013). In both approaches the
wavenumber dependent eddy viscosity matrices have been
derived from the statistics of higher resolution benchmark
simulations. The kinetic energy spectra resulting from the
LES agree with the spectra from the benchmark simulation.
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