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ABSTRACT
This paper presents parameterisations of the subgrid

eddy-eddy and eddy-meanfield interactions in a baroclinic
oceanic simulation representative of the Antarctic Circum-
polar Current. High resolution benchmark simulations are
undertaken using a quasi-geostrophic spectral spherical har-
monic code of largest wavenumberT = 504. The eddy-
eddy interactions are represented by both stochastic and de-
terministic parameterisations, with model coefficients de-
termined from the benchmark simulation truncated back
to the large eddy simulation (LES) truncation wavenumber
TR < T . Coefficients of the deterministic eddy-meanfield
model are determined by a least squares regression method.
Truncations are repeated for variousTR, with the depen-
dence of the coefficients on the resolutionTR identified. Ki-
netic energy spectra from the LESs agree with the bench-
mark simulation. Scaling laws governing the subgrid coef-
ficients are presented, which remove the need to generate
the subgrid coefficients from benchmark simulations.

INTRODUCTION
It is not possible to explicitly resolve all of the scales of

motion in the ocean, so one resorts to large eddy simulation
(LES), where the large eddies are resolved by a computa-
tional grid and the unresolved subgrid interactions are pa-
rameterised. In three-dimensional turbulence the empirical
subgrid model of Smagorinsky (1963) is typically adopted,
where the subgrid interactions are represented by an eddy
viscosity. Here the eddy viscosity is given by a specified
constant multiplied by a measure of the local grid size and
the resolved strain rate. In simulations of two-dimensional
and quasi-geostrophic (QG) turbulence, is it more appro-
priate for the eddy viscosity to be steeper in spectral space,
taking the form of the Laplacian raised to a certain specified

power. Regardless of the method, if these interactions are
not properly parameterised, then an increase in resolution
will not necessarily increase the accuracy of the explicitly
resolved scales. The dependence of the resolved scales on
resolution has been an issue in general circulation models
(GCMs) since the earliest studies, and persists today in even
the most sophisticated GCMs (Koshyk & Hamilton, 2001).

There are four types of subgrid interactions: eddy-
eddy; eddy-meanfield; eddy-topographic; and meanfield-
meanfield (Frederiksen, 2012). The meanfield-meanfield
type represent the interactions between the unresolved sub-
grid meanfield (time-averaged) and the resolved meanfield.
The eddy-topographic form represents the interactions be-
tween the subgrid eddies and the resolved topography, and
are more significant in regions of strong topographic fea-
tures. Eddy-eddy interactions represent the impact unre-
solved subgrid eddies have on the evolution of the resolved
eddies. The eddy-meanfield interactions represent the im-
pact unresolved subgrid eddies have on the evolution of the
resolved meanfield. The latter two interactions are the focus
of the present study. In practice subgrid interactions in sim-
ulations of the ocean are represented by Redi (1982) and
Gent & McWilliams (1990) type schemes, which respec-
tively determine the diagonal and off-diagonal elements of
the subgrid dissipation operator in isopycnal coordinates.

In the current paper parameterisations are presented
for a flow representative of the Antarctic Circumpolar Cur-
rent, simulated using a quasi-geostrophic spectral model.
The spectral eddy viscosity coefficients are calculated from
the statistics of high resolution benchmark numerical sim-
ulations truncated back to the desired LES truncation
wavenumber. The coefficients representing the eddy-eddy
and eddy-meanfield interactions are determined from the
benchmark simulation using the processes of Frederiksen
& Kepert (2006) and Kitsioset al. (2013b) respectively.
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ê2

ē1
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Figure 1. Benchmark simulation: (a) level 1 instantaneous non-zonal streamfunction (ψ1), with −1.4×10−6m2s-1 (black) to
1.4×10−6m2s-1 (white); (b) time averaged zonal current (u j); and (c) mean (¯e j) and fluctuating ( ˆe j) kinetic energy spectra.

BENCHMARK SIMULATION
Flow fields are generated using the two-level QG

model of Frederiksen (1998), which captures the essential
dynamics of baroclinic and barotropic instabilities. The vor-
ticity is represented at two vertical levels, withj = 1 repre-
senting a depth of approximately 200m, andj = 2 a depth of
600m. The system is nondimensionalised by using the ra-
dius of the Earth (a= 6371km) as a length scale, and the in-
verse of the Earth’s angular velocity (Ω = 7.292×10−5s-1)
as a time scale. By default all variables are assumed to be
non-dimensional unless units are specified.

The quasi-geostrophic potential vorticity equation
(QGPVE) is spectrally discretised by expanding the field
variables in spherical harmonics with the zonal (longitudi-
nal) wavenumberm, and the total wavenumbern. This re-
sults in the prognostic equations for the spectral coefficients
of the potential vorticity,q j

mn = ζ j
mn+(−1) jFL[ψ1

mn−ψ2
mn],

where the superscriptj on the flow variables denotes the
level, ζ j

mn = −n(n + 1)ψ j
mn are the spectral coefficients

of the vorticity, ψ j
mn the streamfunction coefficients, and

n(n+1) is the discrete form of the Laplacian. HereFL is
a layer coupling parameter, related to the Rossby radius by
rR = 1/

√
2FL. The evolution ofq j

mn is given by

∂q j
mn

∂ t
= i ∑

pq
∑
rs

Kmpr
nqs ψ j

−pqq j
−rs − iωmnζ j

mn −α j(n)ζ j
mn

+ κn(q̃
j
mn −q j

mn)−n(n+1)
2

∑
l=1

ν jl
0 (m,n)ql

mn . (1)

The summations immediately after the equals sign are over
the triangular wavenumber setT = C(T ) where

C(T ) = [ p,q,r,s |−T ≤ p ≤ T , |p| ≤ q ≤ T ,

−T ≤ r ≤ T , |r| ≤ s ≤ T ] , (2)

and T is the benchmark simulation truncation wavenum-
ber. The Rossby wave frequency isωmn = −Bm/[n(n +
1)], whereB = 2 with the chosen nondimensionalisation.
The drag at each level is given by the functionα j(n) =
α j

max[1− erf(0.1(n− 50))]/2, where erf is the error func-
tion, andα1

max = 2.9×10−7s-1 andα2
max = 1.2×10−6s-1.

The interaction coefficientsKmpr
nqs are detailed in Frederik-

sen and Kepert Frederiksen & Kepert (2006). All simula-
tions are driven toward a mean state ˜q j

mn that is purely zonal
(q̃ j

mn are zero unlessm = 0) and corresponds to a large-
scale easterly current in the mid-latitudes of the southern
hemisphere broadly representative of theACC. The sim-

ulations are driven toward this state by a relaxation pa-
rameterκn, which for m = 0 andn ≤ 15 has a value of
κn = 10−6 s-1, and κn = 0 for all remaining wavenum-
ber pairs. The bare eddy viscosity,ν jl

0 (m,n), is neces-
sary as the benchmark simulation does not resolve all of
the scales of motion. We representν jl

0 (m,n) in its gen-
eral anisotropic matrix form (dependent onm and n) but
in our simulations it is isotropic (dependent only onn)

whereν jl
0 (m,n) = ν jl

0 (n) = δl j ν j j
0 (T ) [n/T ]ρ

j
0−2, andδl j

is the Kronecker delta function, ensuring the off-diagonal
elements are zero. Hereν j j

0 (T ) is the value of the diagonal

elements at truncation and the exponentρ j
0 determines the

steepness ofν j j
0 (n). In all simulations we choseννν0 to have

a form that would be consistent with it having been derived
from a higher resolution benchmark simulation. Note there
is no topography or orography in the present simulations.

In the present calculationsT = 504, which is equiva-
lent to 1536 longitudinal and 384 latitudinal grid points, or
a grid point approximately every 0.238 degrees. The time
step size used is∆t = 600s, and the statistics are accumu-
lated over a period of 6 years. The layer coupling parame-
ter FL = 2.5×10−10m-2, corresponding to a Rossby radius
of rR = 1/

√
2FL = 45km. The non-dimensional Rossby

wavenumber iskR = a/rR = 142, which is consistent with
the simulations of Zidikheri & Frederiksen (2010).

A snapshot of the level 1 instantaneous streamfunction
field (ψ1) minus the zonal component is shown in Fig. 1(a),
which illustrates that the dominant structures are locatedin
the mid to high latitudes of the southern hemisphere, consis-
tent with theACC. The corresponding time averaged zonal
current (u j) is shown as function of latitude in Fig. 1(b). The
maximum velocity of the time averaged current at depths of
200m and 600m, are≈ 0.6ms-1 and≈ 0.3ms-1 respectively;
consistent with measurements of theACC in Phillips & Rin-
toul (2002). The kinetic energy spectra (e j) is decomposed
into mean (¯e j) and transient ( ˆe j) energies. Figure 1(c) il-
lustrates that the level 1 energy is greater than level 2 for
all n. The energy containing scale wavenumberkE ≈ 70
is defined as the extent of the flow configuration specific
energy containing scales. This wavenumber is labelled on
the n axis of 1(c) along with the Rossby wavenumberkR.
The phenomenological view of two-dimensional and QG
turbulence is that energy and enstrophy are injected into
the system via baroclinic instability at wavenumbers cen-
tred aroundkR. There is an inverse energy cascade for the
wavenumbers betweenkE and kR, and there is a forward
enstrophy cascade for the wavenumber range pastkR. See
Kitsios et al. (2013a) for further details on the basic flow.
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SUBGRID PARAMETERISATIONS
The resolution of a LES is lower than the associated

benchmark simulation, and confined to the resolved scale
wavenumber setR = C(TR), whereTR is the LES trunca-
tion wavenumber such thatTR < T . The subgrid wavenum-
ber set is defined asS= T −R. To facilitate a discussion
on the flow decomposition, we letq = (q1

mn,q
2
mn)

T for a
given wavenumber pair. In this vector notationqt(t) =
qR

t (t) + qS
t (t), whereqt is the tendency (time derivative)

of q. The tendency of the resolved scales isqR
t , where all

triadic interactions involve wavenumbers less thanTR. The
remaining subgrid tendencyqS

t has at least one wavenumber
greater thanTR which is involved in the triadic interactions.
One can further decomposeqS

t such that

qS
t (t) = q̂S

t (t)+ f̄ , (3)

where q̂S
t is the fluctuating component representing the

eddy-eddy interactions, and̄f ≡ 〈qS
t 〉 is the ensemble aver-

aged subgrid tendency representing the eddy-meanfield in-
teractions. The parameterisation of both of these interaction
types are determined from the benchmark simulation.

Subgrid eddy-eddy interactions
The q̂S

t is represented by the stochastic equation

q̂S
t (t) =−Dd q̂(t)+ f̂(t) , (4)

whereDd is the subgrid drain dissipation matrix,q̂ is the
fluctuating component ofq, andf̂ is a random forcing vec-
tor. As the present simulations have two vertical levels,Dd
is a time independent 2×2 matrix, and̂f is a time depen-
dent 2 element column vector. TheDd matrix is determined
by post-multiplying both sides of (4) bŷq†(t0), integrating
over the decorrelation periodτ, ensemble averaging to re-
move the contribution of̂f, and rearranging to produce

Dd =−
〈∫ t0+τ

t0
q̂S

t (σ)q̂†(t0)dσ
〉 〈∫ t0+τ

t0
q̂(σ)q̂†(t0)dσ

〉−1

,(5)

where † denotes the Hermitian conjugate for vectors and
matrices. The angled brackets denote ensemble averaging,
with each ensemble member determined by shiftingt0 for-
ward by one time step. The turbulence decorrelation timeτ,
is chosen sufficiently large to capture the memory effects.

The model for̂f is determined by calculating the matrix
F bbb = Fb +Fb

†, whereFb = 〈̂f(t) q̂†(t)〉. Post-multiplying
both sides of (4) bŷq†(t0), and adding the conjugate trans-
pose of (4) pre-multiplied bŷq(t0) yields

〈
q̂S

t (t)q̂
†(t)

〉
+
〈

q̂(t)q̂S†
t (t)

〉
=

−Dd

〈
q̂(t)q̂†(t)

〉
−
〈

q̂(t)q̂†(t)
〉

Dd
† + F bbb . (6)

Given thatDd is known,F bbb can now be calculated. At this
point the formulation is general, and̂f is coloured noise.
For the implementation of the stochastic subgrid param-
eterisation, however, it is sufficient to assume thatf̂ can
be represented as the white noise process〈̂f(t) f̂†(t ′)〉 =
F bbb δ (t − t ′).

The subgrid model in (4) represents this process in its
fundamental stochastic form. One can also, however, repre-
sent the subgrid interactions using the simplified determin-
istic form q̂S

t (t)=−Dnet q̂(t), whereDnet is the net dissipa-
tion representing the net effect of the drain and backscatter
(Frederiksen & Kepert, 2006). The backscatter and net lin-
ear operators are defined byDb = −Fb〈q̂(t) q̂†(t)〉−1 and
Dnet = Dd+Db respectively (Frederiksen & Kepert, 2006).
Theoretically the stochastic and deterministic methods are
statistically equivalent.

The subgrid coefficients are presented in eddy viscos-
ity form, where the drain, backscatter and net eddy vis-
cosities are related to their respective dissipations byνννd ≡
Dd/[n(n+1)], νννb ≡Db/[n(n+1)], andνννnet ≡ Dnet/[n(n+
1)], wheren(n+1) is the discrete form of the Laplacian.

Subgrid eddy-meanfield interactions
The parameterisation of the eddy-meanfield term rep-

resents the relationship between the ensemble averaged sub-
grid tendencȳf, and the ensemble averaged field〈q〉. For
each wavenumber pair we assume the functional form

f̄ =−D〈q〉+b , (7)

whereD is a 2× 2 dissipation operator, andb is a 2 ele-
ment vector of constant coefficients. We assume that (7)
also holds for small perturbations of the climate centred at
the ensemble averaged climate, such that

f̄i =−Dqi +b+ εεε i , (8)

whereqi and f̄i are the time averaged meanfield and sub-
grid tendency calculated over thei-th non-overlapping time
window of lengthτM , andεεε i is the associated 2 element er-
ror vector. The ensemble averages of each of the terms are
〈qi〉 ≡ 〈q〉, 〈f̄i〉 ≡ f̄, and〈εεε i〉= 0. The dissipation is solved
for in a least squares sense, by subtracting (7) from (8),
post-multiplying by(qi −〈q〉)†, ensemble averaging both
sides, and rearranging forD to produce

D =−
(
〈f̄iq

†
i 〉− f̄〈q〉†

) (
〈qiq

†
i 〉−〈q〉〈q〉†

)−1
, (9)

where we assume that the error termεεε i is uncorrelated with
(qi −〈q〉)†. OnceD is known we can determine the offset
by rearranging (7) forb. One can also presentD scaled in
eddy viscosity form,ννν ≡ D/[n(n+1)].

Implementation into large eddy simulations
The equations governing the LES are equivalent to

those for the benchmark simulation, solved over the
wavenumber setR instead ofT, and with the addition of
the subgrid tendency

(
qS

t
) j

mn. The most general form of the
subgrid tendency is the stochastic anisotropic representation

(
qS

t

) j

mn
= −

2

∑
l=1

D jl
d (m,n)q̂l

mn + f̂ j
mn + f̄ j

mn . (10)

In the anisotropic deterministic form,D jl
d (m,n) is replaced

with D jl
net(m,n), and f̂ j

mn is removed. In the isotropic param-
eterisations the matricesDd, F bbb andDnet are isotropised,
that is averaged overm.

3



August 28 - 30, 2013 Poitiers, France

ENV1B

Re[ν11
d (m,n)]×106 −Re[ν11

b (m,n)]×106 Re[ν11
net (m,n)]×106

0 50 100 150 200 250m
0

50

100

150

200

250

n

0.0
1.0
2.0
3.0
4.0
5.0
6.0

0 50 100 150 200 250m
0

50

100

150

200

250

n

0.0
0.5
1.0
1.5
2.0
2.5
3.0

0 50 100 150 200 250m
0

50

100

150

200

250

n

0.0
0.5
1.0
1.5
2.0
2.5
3.0

(a) (b) (c)

-2

 0

 2

 50  100  150  200  250

n

TR = 63

TR = 126

TR = 252

ν11 d
(n
)
×

10
6

10-1

100

 1  10

kR = 142; j = 1

kR = 142; j = 2

kR = 284; j = 1

kR = 284; j = 2

TR/kE

ν
jj d
(T

R
)

k2 E

( η
jj I

) −
1 3
√

k R k E
100

101

 1  10

TR/kE

ρ
j d

(d) (e) (f)

Figure 2. Eddy viscosity coefficients representing the eddy-eddy interactions. Anisotropic coefficients forTR = 252: (a)
Re[ν11

d (m,n)]; (b) −Re[ν11
b (m,n)]; and (c)Re[ν11

net(m,n)]. (d) Isotropic coefficientsRe[ν11
d (n)] at various resolutions. Scaling

laws forν11
d (n): (e) maximum valueν11

d (TR); and (f) power exponentρ1
d (TR)

SPECTRAL SUBGRID EDDY VISCOSITIES
In order to determine how the subgrid coefficients

change with resolution, benchmark simulations are trun-
cated back to various values ofTR. We first present the
subgrid coefficients representative of the eddy-eddy inter-
actions and then the eddy-meanfield interactions.

Eddy-eddy coefficients
Firstly we present the anisotropic subgrid scale coeffi-

cients calculated from the benchmark simulation withT =
504 truncated back toTR = 252, withτ = 288∆t = 2 days.
For each wavenumber pair, the dissipation operatorsDd,
Db, andDnet are calculated and scaled into eddy viscosity
form, with the real component of the upper diagonal ele-
mentsν11

d (m,n), −ν11
b (m,n), andν11

net(m,n) illustrated in
Fig. 2(a), Fig. 2(b) and Fig. 2(c) respectively. The real com-
ponents are the dominant terms, and we find that one can
also run a LES with the imaginary components set to zero
and closely replicate the kinetic energy spectra of the bench-
mark simulation. We plot the negative ofν11

b (m,n), as this
quantity is negative. Note the contour scale for each ele-
ment is consistent with the relationshipνννd = −νννb + νννnet.
All of the eddy viscosities increase withn, have only a weak
dependence onm, and hence are approximately isotropic.
Although not illustrated, the lower diagonal element of the
drain eddy viscosityν22

d (m,n) is very similar in both form
and magnitude toν11

d (m,n), and the off-diagonal elements
ν12

d (m,n) and ν21
d (m,n) are small in comparison. At this

resolution the drain eddy viscosity matrix is approximately
isotropic and diagonal. The backscatter and net matrices
also have these properties. These observations are consis-
tent with the subgrid coefficients determined from atmo-
spheric simulations in Kitsioset al. (2012). As we trun-
cate to lower resolutions (lower values ofTR), however, the
subgrid coefficients become increasingly anisotropic and
the off-diagonal elements become more significant (Kitsios
et al., 2013a).

To illustrate how these coefficients change with reso-
lution, the isotropised upper diagonal element of the drain
eddy viscosity (ν11

d (n)) is illustrated in Fig. 2(d) for res-
olutions TR = 252,126 and 63. TheTR = 252 case is the
isotropised version of the coefficients in Fig. 2(a), and re-
sides within the self-similar enstrophy cascading inertial
range withkR < TR. The truncation atTR = 126 is within
the inverse energy cascade askE < TR < kR. The final trun-
cation atTR = 63 is within the non-self-similar energy con-
taining scales asTR < kE . All of the profiles increase steeply
as they approachTR, and the maximum value as decreases
as resolution increases. The most negative value also de-
creases as resolution increases. To further compress the in-
formation, the isotropised drain profiles are idealised by the
function

ν j j
d (n) = ν j j

d (TR)

(
n

TR

)ρ j
d−2

, (11)

with the maximum valueν j j
d (TR) and power exponentρ j

d
determined through a least squares method. There are anal-
ogous expressions for the backscatter and net eddy vis-
cosities. The diamonds symbols represent the simulations
presented within havingkR = 142 andkE = 70, the cir-
cular symbols are for an alternate case withkR = 284 and
kE = 70, cases withkR = 142 andkE ∈ (40,50,60) are rep-
resented by squares, and cases withkR ∈ (201,246) and
kE = 70 are represented by triangles. For all cases, filled
symbols representj = 1 and hollow symbolsj = 2.

As illustrated in Fig. 2(f), when the wavenumbers are
nondimensionalised bykE the power exponents exhibit a
strong relationship across the entire parameter space, with
the steepness increasing as the truncation resolution in-
creases. This is consistent with the discussion in Kraich-
nan (1976) which states that the distance the subgrid in-
teractions can span in wavenumber space is determined by
kE . This wavenumber distance is represented by the width
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Figure 3. Subgrid eddy-meanfield parameterisation coefficients. (a) Mean potential vorticity tendency (f̄ j
0n) for an LES with

TR = 126. ForTR = 90,100,110,120 the: (b) mean baroclinic tendency (f̄ BC); and (c) eddy viscosity component̄ν22
B . (d) For

variousTR the amplitude (̄ν22
B (0,15)) and slope (̄ρ2

B) of ν̄22
B nondimensionalised bykE .

of the eddy viscosity profiles, which is inversely propor-
tional to the power exponents. As expected, only the trun-
cations within the non-self-similar energy containing scales
(TR/kE < 1) do not follow the trend line. The scaling laws
for the maximum values of the eddy viscosities are some-
what more complex and illustrated Fig. 2(e). We again use
kE to nondimensionalise all inverse length scales. In addi-
tion as outlined in Leith (1971), for a givenkE andkR, the
different values ofν j j

d (TR) at each vertical level (j) are col-
lapsed by nondimensionalising the eddy viscosity using the
time scale(η j j

I )−1/3. An additional factor of
√

kR/kE is
required, however, to span cases of differentkR andkE . The
results clearly illustrates that the eddy viscosities decrease
in magnitude as resolution increases. The scaling laws for
the exponents and magnitude of the drain, backscatter and
net eddy viscosities can be found in Kitsioset al. (2013a).

Eddy-meanfield coefficients
Long time integrations are required to calculateD̄ as

per (9), so the statistics are accumulated over a period of
100 years using a reference simulation withT = 252. The
only mechanism for symmetry breaking in the equations
of motion (1) is the forcing termκn(q̃mn − qmn). As κn

is only non-zero form = 0 andn ≤ 15, it is only the val-
ues of f̄ j

mn and q̄ j
mn at these wavenumber components that

should be non-zero under sufficient sampling. The aver-
age subgrid tendency is plotted in Fig. 3(a) for a truncation
levelTR = 126, and we find that̄f 1

0n is approximately a mir-
ror image of f̄ 2

0n, having the effect of modifying the mean
shear. This is true for all truncation levels. It therefore
makes more sense to presentf̄ in baroclinic space where
for each wavenumber pair̄fB ≡ ( f̄ BT

mn , f̄ BC
mn )

T , with f̄ BT
mn the

barotropic component, and̄f BC
mn the baroclinic component

which we find to be dominant for the present data. The
transformation is given bȳfB = Bf̄, where

B =
1
2

[
1 1
1
cn

− 1
cn

]
, (12)

and cn = 1+ 2FL/[n(n+ 1)]. Subgrid truncations are re-
peated for lower values ofTR, with the dominantf̄ BC

0n com-
ponent illustrated in Fig. 3(b). As the system is trun-
cated more heavily (TR decreasing), there are more sub-
grid eddy-meanfield interactions and consequentlyf̄ BC

0n in-
creases. For various truncation levels we then calculate
D̄ using (9), and scale it into eddy viscosity units byν̄νν =
D̄/[n(n+1)]. The eddy viscosity is then transformed into
barotropic/baroclinic space viāνννB = Bν̄ννB−1. We find the
ν̄22

B component to be dominant, which represents the mean
baroclinic tendency as a function of the mean baroclinic
field. This component is plotted for various resolutions in
Fig. 3(c), illustrating that as the truncation level decreases
the required eddy viscosity increases, consistent with the
observations of̄f BC

0n .
The change in magnitude (ν̄22

B (0,15)) and slope (̄ρ2
B)

of the baroclinic eddy viscosity term is quantified by least
squares fitting thēν22

B (0,n) profiles to

ν̄22
B (0,n) = ν̄22

B (0,15) [n/15]ρ̄
2
B−2 , (13)

for n ≤ 15. These quantities are again nondimension-
alised usingkE as an inverse length scale. We present data
for the case withkR = 142 andkE = 70. In Fig. 3(d),
ν̄22

B (0,15)k2
E are plotted as hollow diamonds on the left ver-

tical axis againstTR/kE , and the values of̄ρ2
B are plotted

as filled diamonds on the right vertical axis. The steep-
ness,ρ̄2

B, maintains a relatively constant value of approx-
imately 2 for all TR. The data also illustrates that asTR
increases (more scales resolved), the value of the strength
ν̄22

B (0,15) decreases. The strength of the eddy-meanfield
eddy viscosity also decreases with resolution much faster
than the eddy viscosity representing the eddy-eddy inter-
actions. This means that as the resolution increases, the
eddy-meanfield interactions become proportionally less im-
portant. The eddy-meanfield eddy viscosities are also found
to be insensitive to the choice of window periodτM , as long
asτM is greater than one week.
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Figure 4. Spectrae1 (benchmark simulation - dashed, LES - solid) using parameterisations: (a) anisotropic deterministic (AD),
stochastic (AS); and (b) isotropic deterministic (ID), stochastic (IS); and (c) isotropic scaling law deterministic (LD), stochastic
(LS). Labelled withTR and the associated subgrid parameterisation. The verticalaxis in (a) is applicable to all figures.

LARGE EDDY SIMULATION
We now incorporate the parameterisation for the eddy-

eddy and eddy-meanfield interactions developed above into
various LESs, as outlined in the discussion following (10).
The spectra at level 1 (e1) for each of the LES variants
with TR = 126 and 252 are compared toe1 of the bench-
mark simulation. The anisotropic deterministic and stochas-
tic LES variants are compared to the benchmark simula-
tion in Fig. 4(a), with each spectra offset for clarity. Both
LES variants illustrate excellent agreement with the bench-
mark simulation. The isotropic deterministic and stochastic
LES variants are compared to the benchmark simulation in
Fig. 4(b), and again achieve excellent agreement. The ide-
alised scaling law representation of the isotropic determin-
istic and stochastic LES variants are compared to the bench-
mark simulation in Fig. 4(c), and again achieve very good
results. The drop in energy in theTR = 126 cases is due to
the scaling laws not representing the negative component of
the raw isotropic coefficients.

CONCLUDING REMARKS
Subgrid parameterisations have been developed for the

eddy-eddy and eddy-meanfield interactions for an oceanic
circulation. The eddy-eddy interactions were represented
by deterministic and stochastic subgrid parameterisations
using the approach of Frederiksen & Kepert (2006). The
stochastic variant consists of a drain eddy viscosity and a
backscatter noise term, and the deterministic variant repre-
sents the net effect of the drain and backscatter. The eddy-
meanfield interactions are represented using a deterministic
method, with coefficients determined using the least squares
approach of Kitsioset al. (2013b). In both approaches the
wavenumber dependent eddy viscosity matrices have been
derived from the statistics of higher resolution benchmark
simulations. The kinetic energy spectra resulting from the
LES agree with the spectra from the benchmark simulation.
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