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ABSTRACT
Symmetry-preserving discretization and symmetry-

preserving regularization are promising simulation strate-
gies for incompressible flow. In this paper, it is shown that
the symmetry-preserving discretization and regularization
can be generalized to compressible flow straightforwardly,
if the compressible Navier-Stokes equations are rewritten
to a new form. The proposed symmetry-preserving meth-
ods for compressible flow are validated in a simulation of
channel flow. The symmetry-preserving discretization for
compressible flow is stable without artificial dissipation and
produces accurate results on sufficiently fine grids, which
makes the discretization very suitable for direct numerical
simulation of compressible flow.

INTRODUCTION
The starting point of this research is the symmetry-

preserving discretization for incompressible flow (Verstap-
pen and Veldman, 2003). This discretization of the incom-
pressible Navier-Stokes equations preserves important con-
servation properties on the discrete level; the discrete lin-
ear momentum is conserved and the discrete kinetic energy
is bounded from above. Discrete kinetic energy is a norm
of the numerical solution, and therefore the symmetry-
preserving discretization attains numerical stability by pre-
serving conservation laws. A convenient supplementary
property of the symmetry-preserving discretization is that it
captures channel flow accurately on very coarse grids with-
out an explicit subgrid-scale model.

A subgrid-scale model that fits in naturally with
the symmetry-preserving discretization is the symmetry-
preserving regularization for incompressible flow (Verstap-
pen, 2008; Trias et al., 2013). Symmetry-preserving reg-
ularization applies explicit filtering to the Navier-Stokes
equations, but retains the important conservation properties
of the unfiltered equations. The aim of the filtering is to sup-
press the creation of subgrid scales, and therefore regular-
ization can be used as a subgrid-scale model for large-eddy
simulation.

In this paper, the symmetry-preserving discretization
and regularization for incompressible flow are generalized
to compressible flow. As it turns out, this is straightforward
if the compressible Navier-Stokes equations are rewritten
to a form that expresses conservation properties in the lan-
guage of functional analysis.

THE COMPRESSIBLE NAVIER-STOKES
EQUATIONS AND FUNCTIONAL ANALYSIS

The Navier-Stokes equations for compressible flow can
be expressed in different forms. Although the forms are
mathematically equivalent, each form emphasizes different
properties of compressible flow, and each form yields a dif-
ferent numerical discretization. In this section, a new form
of the compressible Navier-Stokes equations is derived.
This form straightforwardly expresses the skew-symmetric
nature of convection, and reveals an energy bound for com-
pressible flow. In the sequel, the skew-symmetry of convec-
tion and the energy bound will be preserved on the discrete
level by the symmetry-preserving discretization and regu-
larization.

The compressible Navier-Stokes equations are typi-
cally expressed in the conservative form

∂tρ +∇ · (ρ~u) = 0

∂tρ~u+∇ · (ρ~u~u)+∇p = ∇ ·σ
∂tρE +∇ · (ρ~uE)+∇ · (p~u) = ∇ · (σ ·~u)+∇ ·~q (1)

where ρ is the mass density, ~u = (u,v,w) the flow velocity,
E = 1

2~u ·~u+ e the total energy per unit mass, p the pres-
sure, σ the stress tensor, and~q the diffusive heat flux. In the
conservative form, each term is either a divergence or gradi-
ent operator. Upon spatial integration these operators can be
rewritten to surface integrals, and therefore the conservative
form emphasizes conservation of mass, linear momentum,
and energy in a compressible flow.
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In this paper, the state of a compressible fluid is ex-
pressed as a real-valued vector function

~h(~x) =
(√

ρ ,
√

ρ~u/
√

2 ,
√

ρe
)
(~x) (2)

where ~x is inside the domain Ω occupied by the fluid. A
new form of the compressible Navier-Stokes equations can
be obtained by deriving the evolution equation for the state
vector~h

∂t~h = A(~h)~h =
(

C(~h)+P(~h)+V (~h)+H(~h)
)
~h (3)

where the non-linear differential operator A(~h) represents
the right-hand-side of the evolution equation, and the dif-
ferential operators C(~h), P(~h), V (~h), and H(~h) are the terms
related to respectively convection, pressure forces, viscous
friction, and heat diffusion.

The form (3) also emphasizes conservation properties,
but now in the language of functional analysis. To see
this, consider the Hilbert spaces L2(Ω) and L2(Ω)5 of real-
valued, square-integrable scalar and state vector functions
on the domain Ω. The standard inner products are

( f ,g) =
∫

Ω
f gdx

〈
~f ,~g

〉
=

∫

Ω
~f ·~gdx (4)

and the induced norms are denoted by |h| and ||~h||. To sim-
plify the analysis, in this paper the domain Ω is assumed to
be periodic.

The mass, linear momentum, kinetic energy, and inter-
nal energy inside Ω can be expressed as L2(Ω) inner prod-
ucts of the components of~h. For example,

√
2(
√

ρ,
√

ρv/
√

2) , (
√

ρe,
√

ρe) (5)

are respectively the linear momentum in the y direction in-
side Ω and the internal energy inside Ω. The L2(Ω)5 norm
of the dimensionless state vector~h is equal to the sum of the
mass and the energy inside Ω

||~h||2 =
〈
~h,~h

〉
=

∫

Ω
ρ dx+

∫

Ω
ρ
(

1
2
~u ·~u+ e

)
dx (6)

which is constant because mass and energy are conserved
in a compressible flow. Thus, desired solutions ~h of the
compressible Navier-Stokes equations satisfy the bound

||~h||2 = constant < ∞ (7)

and therefore~h is in L2(Ω)5. The bound induces a property
of the right-hand-side of (3)

〈
~h,A(~h)~h

〉
=
〈
~h,∂t~h

〉
=

1
2

∂t ||~h||2 = 0 (8)

which again expresses conservation of mass and energy. In
the sequel, the bound (7) and the equality (8) will provide

numerical stability to the symmetry-preserving discretiza-
tion.

By (5), the mass, linear momentum, kinetic energy, and
internal energy inside Ω can be expressed as L2(Ω) inner
products of the components of~h. Therefore, the conserva-
tion properties of the compressible Navier-Stokes equations
depend on the interaction of the differential operators from
(3) with L2(Ω) inner products; the so-called symmetries of
differential operators. In this article, special attention is
paid to the symmetries of the convection operator C(~h). The
convection operator can be expressed as the componentwise
application of the operator c(~u)

C(~h)~φ = (c(~u)φ1,c(~u)φ2,c(~u)φ3,c(~u)φ4,c(~u)φ5) (9)

where

c(~u)φ =−1
2
~u ·∇φ − 1

2
∇ · (~uφ) (10)

is the scalar convection operator. The scalar convection
operator is skew-symmetric with respect to the L2(Ω) in-
ner product; (ψ,c(~u)φ) + (c(~u)ψ,φ) = 0. The evolution
equation of each component of ~h is of the form ∂thi =
c(~u)hi + . . ., so that for each pair hi and h j

∂t(hi,h j) = (hi,c(~u)h j)+(c(~u)hi,h j)+ . . . (11)

which vanishes by skew-symmetry of the scalar convection
operator. Thus, products of the components of ~h are con-
served by convection. This implies that convection con-
serves mass, linear momentum, kinetic energy, and internal
energy. In the sequel, the skew-symmetry of the convection
operator will be preserved on the discrete level, so that the
discrete mass, linear momentum, kinetic energy, and inter-
nal energy are conserved by discrete convection.

This section demonstrates that by rewriting the com-
pressible Navier-Stokes equations to an evolution equation
for~h, conservation properties can be expressed in the lan-
guage of functional analysis. This line of thought was also
pursued by Vabishevich (2007). He found the same scalar
convection operator, but applied the operator to the energy
variable

√ρe. In this paper, the bound (7) is important for
numerical stability, and therefore

√ρe should be chosen as
the energy variable.

SYMMETRY-PRESERVING DISCRETIZATION
The aim of a symmetry-preserving discretization is to

obtain a stable numerical discretization by preserving con-
servation properties on the discrete level (Verstappen and
Veldman, 2003). In the previous section it was shown that
if the state vector is~h, then conservation properties can be
expressed in terms of inner products. Therefore, to trans-
fer conservation properties to the discrete level in a natural
way, the numerical solution is stored as a state vector~h, and
discrete inner products are defined as

( f ,g) = ∑
j

Ω j f jg j

〈
~f ,~g

〉
= ∑

j
Ω j~f j ·~g j (12)

where j is a grid cell number, Ω j is the size of grid cell
j, and f , g, ~f , and ~g are collocated grid functions. By the
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Figure 1. The grid cell j, its outward-pointing unit normal
~n f at face f , and its neighbour at face f denoted by nb( f ).

remarks preceding (5), the definition of discrete inner prod-
ucts induces natural discretizations of the discrete mass, lin-
ear momentum, kinetic energy, and internal energy inside
Ω.

The norms induced by the discrete inner products (12)
are again denoted by |h| and ||~h||. If the discrete norm
||~h|| of a real-valued numerical solution~h is bounded from
above, then the numerical solution is locally bounded.
Thus, if the continuous bound (7) is preserved on the dis-
crete level, numerical stability is attained. The aim of a
symmetry-preserving discretization is to apply the bound
(7) to numerical solutions ~h by preserving conservation
properties on the discrete level.

Spatial discretization
In this paper, a spatial discretization is called

symmetry-preserving if the equality (8) is preserved on the
discrete level, and if the conservation properties of mass,
linear momentum, kinetic energy, and internal energy of
each operator in the right-hand-side of (3) are preserved on
the discrete level. Discretizations with these conservation
properties already exist (Kok, 2009; Morinishi, 2010) and
are reported to have good stability properties. The exist-
ing discretizations are not derived from the form (3), do not
identify the energy bound (7), and do not explain all the
conservation properties of the convection operator from a
skew-symmetry.

In this paper a curvilinear, structured, collocated com-
putational grid is used. The scalar convection operator (10)
is rewritten to c(~u)φ = 1

2 (∇ ·~u)φ −∇ · (~uφ), which can be
discretized to second-order accuracy as

(c(~u)φ) j =
1
2

φ j
1

Ω j
∑

f∈Fj

A f~n f ·~u f

− 1
Ω j

∑
f∈Fj

A f~n f ·~u f
1
2

(
φ j +φnb( f )

)

= − 1
Ω j

∑
f∈Fj

1
2

A f~n f ·~u f φnb( f ) (13)

where Fj are the faces of cell j, A f the area of face f , and
~u f some interpolation of~u to face f (see figure 1). This dis-
cretization is skew-symmetric with respect to the discrete
L2(Ω) inner product, and locally conserves discrete mass,
linear momentum, kinetic energy, and internal energy. The
discretization from Kok (2009) is obtained for the interpo-
lation~u f =

1
2 ((ρ~u) j +(ρ~u)nb( f ))/

√ρ jρnb( f ). In this paper

the interpolation ~u f =
1
2 (~u j +~unb( f )) is preferred, because

this leads to a more natural implementation of regulariza-
tion models.

The pressure force operator P(~h) is discretized as in
Kok (2009). Richardson extrapolation is applied to the
discretizations of the convection operator and the pressure

force operator as in Kok (2009). The result is an optimized,
fourth-order accurate, symmetry-preserving discretization
of the compressible Euler equations.

The viscous friction operator V (~h) conserves mass, lin-
ear momentum, and total energy. The heat diffusion op-
erator H(~h) conserves internal energy. These conservation
properties are preserved already by a standard finite-volume
discretization. Therefore, the discretizations of the viscous
friction operator and the heat diffusion operator are derived
from a standard second-order accurate finite-volume dis-
cretization. Richardson extrapolation is applied with two
control volumes, yielding a fourth-order accurate discretiza-
tion.

The symmetry-preserving spatial discretization differs
from the standard finite-volume discretization because the
numerical solution is stored in the state vector ~h, and be-
cause the convection is discretized as a skew-symmetric dis-
crete operator. Skew-symmetric discretization of the con-
vection operator is observed to considerably enhance the
stability of a finite-volume method (Kok, 2009). On coarse
grids, a general finite-volume discretization may transfer in-
ternal energy to kinetic energy by convection. This unphysi-
cally alters the energy balance in the flow and causes numer-
ical instability. To suppress or postpone the instability, often
artificial dissipation is added to the discretization. This un-
physically changes the energy balance again, and there is
no reason to believe that the sum of the two counteracting
energy transfers produces a sensible numerical solution. In
fact, flow phenomena that are very sensitive to the energy
balance, such as turbulence and acoustic waves, are known
to be suppressed heavily by artificial dissipation.

Skew-symmetric discretization of the convection oper-
ator eliminates the unphysical convective transfer of inter-
nal energy to kinetic energy. Therefore, no artificial dissi-
pation is needed to suppress the corresponding numerical
instability. The low level of artificial dissipation makes the
symmetry-preserving discretization for compressible flow a
very suitable method for the simulation of turbulence and
acoustic waves.

Temporal discretization

One of the new ideas in this paper is that transferring
conservation properties to the discrete level is easy if the
state vector~h is used. To demonstrate this once more, con-
sider symmetry-preserving time integration.

Assume that a Runge-Kutta method is used to inte-
grate the semi-discrete system ∂t~h j = (A(~h)~h) j. The en-
ergy bound (7) and the discrete mass, linear momentum,
kinetic energy, and internal energy inside Ω can all be ex-
pressed as discrete inner products of the components of~h.
Therefore, a Runge-Kutta method that preserves discrete
inner products of the integrated quantities is symmetry-
preserving. These Runge-Kutta methods are called sym-
plectic. All the symplectic Runge-Kutta methods are im-
plicit. For an extensive investigation of symplectic meth-
ods as symmetry-preserving time-integration methods for
incompressible flow, see Sanderse (2013).

In this work, symmetry-preserving time-integration
methods will not be used. Instead a sufficiently accu-
rate four-stage, low-storage, explicit Runge-Kutta method
is used for time integration.
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REGULARIZATION MODELLING
The computational costs of a direct numerical sim-

ulation are high, and therefore in practice often a large-
eddy simulation is performed. In a large-eddy simulation,
the large eddies in a flow are resolved, and the effect of
the small unresolved eddies is modelled by a subgrid-scale
model. A promising subgrid-scale model for incompress-
ible flow is regularization, which applies explicit filtering to
the Navier-Stokes equations. The aim of the filtering is to
suppress the creation of subgrid scales, and therefore regu-
larization can be used for large-eddy simulation.

A well-known regularization model for incompressible
flow is the Leray regularization. Leray regularization ap-
plies explicit filtering to the convecting velocity field

∂t~u+~u ·∇~u+∇p = ν∆~u
∇ ·~u = 0 (14)

where the bar denotes filtering. The Leray regularization
model was originally proposed as a tool for the mathemat-
ical analysis of the Navier-Stokes equations, but recently it
was recognized that Leray regularization can also be used
as a subgrid-scale model for large-eddy simulation (Geurts
and Holm, 2003).

Another regularization model for incompressible flow
is the symmetry-preserving regularization by Verstappen
(2008). The simplest symmetry-preserving regularization
is obtained by filtering the convection operator three times

∂t~u+~u ·∇~u+∇p = ν∆~u
∇ ·~u = ∇ ·~u = 0 (15)

where the filter operation is self-adjoint (u,v) = (u,v) with
respect to the L2(Ω) inner product and commutes with dif-
ferentiation. The symmetry-preserving regularization pre-
serves the skew-symmetry of the convection operator, and
therefore preserves the important conservation properties of
convection.

Regularization modelling is justified by an exhaustive
body of mathematical analysis. However, upon discretiza-
tion this mathematical analysis loses its rigour, and it be-
comes hard to justify the use of regularization as a practical
subgrid-scale model. Nevertheless, regularization models
produce promising time-averaged results for incompress-
ible flow (Geurts and Holm, 2003; Verstappen, 2008; Trias
et al., 2013), which makes them an interesting research
topic.

Compressible symmetry-preserving regular-
ization

In this section, a symmetry-preserving regularization
for compressible flow is proposed. This regularization ap-
plies explicit filtering to the scalar convection operator in or-
der to suppress the creation of subgrid scales, but preserves
the skew-symmetry of this operator, so that the important
conservation properties of convection are preserved.

A simple symmetry-preserving regularization is ob-
tained by filtering the convecting velocity field

cα (~u)φ = c(~u)φ (16)

which yields the compressible Leray regularization. The
operator cα (~u) is skew-symmetric with respect the L2(Ω)
inner product, and therefore conserves the mass, linear mo-
mentum, kinetic energy, and internal energy inside Ω.

An advantage of using the state vector ~h is that the
skew-symmetric scalar convection operator c(~u) for com-
pressible flow is similar to the convection operator for in-
compressible flow. Therefore, the symmetry-preserving
regularization for incompressible flow (Verstappen, 2008)
can be applied directly to the compressible convection op-
erator

c2(~u) = c(~̃u)φ

c4(~u) = c(~̃u)φ + c(~̃u)φ ′+ c(~u′′)φ

c6(~u) = c(~̃u)φ + c(~̃u)φ ′+ c(~u′′)φ + c(~u′′)φ ′ (17)

where the bar denotes a self-adjoint filter with residual
φ ′ = φ − φ , and the tilde denotes some filter with resid-
ual φ ′′ = φ − φ̃ . In this paper one filter is used; φ̃ = φ . By
the self-adjointness of the filter, the regularizations (17) are
skew-symmetric with respect to the L2(Ω) inner product, so
that global conservation of mass, linear momentum, kinetic
energy, and internal energy inside Ω is preserved. The regu-
larizations are respectively second-order, fourth-order, and
sixth-order accurate approximations of c(~u) with respect to
the filter length.

Selection of the filter
In order to preserve the symmetries of the Navier-

Stokes equations on both the continuous and the discrete
level, the bar filter from (17) should be self-adjoint with
respect to the continuous L2(Ω) inner product, and its dis-
cretization should be self-adjoint with respect to the discrete
L2(Ω) inner product. In this paper, a conservative and self-
adjoint differential filter is used

u = u+
3

∑
i=1

∂i(
∆2

i
24

∂iu) (18)

where ∆i is the filter length in the direction i. As a first
try, the filter length is chosen proportional to the local filter
length ∆i = r∆xi. Note that modern symmetry-preserving
regularization models for incompressible flow use advanced
algorithms that locally determine the filter length (Trias
et al., 2013). Possibly, compressible symmetry-preserving
regularization models can also benefit from these algo-
rithms.

The differential filter (18) with filter length ∆i = r∆xi
is discretized as (see figure 1)

u j = u j +
1

Ω j
∑

f

r2

24
A f~n f · (~xnb( f )−~x j)(unb( f )−u j) (19)

where ~x j denotes the location of the centre of cell j. This
discretization is self-adjoint with respect to the discrete
L2(Ω) inner product, and therefore preserves the skew-
symmetry of the regularizations (17) on the discrete level.

RESULTS AND DISCUSSION
To assess the proposed symmetry-preserving dis-

cretization and regularization model, the methods are vali-
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Figure 2. Mean streamwise velocity profiles without reg-
ularization.

dated in a simulation of compressible channel flow at Mach
0.2. The dimensions of the channel are 4πH × 2H × 2πH,
where H is the half-height of the channel. The channel flow
is driven by a uniform body force per unit mass, and the
bulk Reynolds number based on the channel half-height is
fixed at 2800. The Prandtl number is set to 0.72. At the
bulk Mach number of 0.2 the channel flow is approximately
incompressible, and therefore the incompressible direct nu-
merical simulation by Moser et al. (1999) at wall Reynolds
number Reτ = 178 can be used for validation.

The computational grid is uniform in the streamwise
and spanwise directions. Following Verstappen and Veld-
man (2003), the grid is stretched in the wall-normal direc-
tion with a stretching parameter γ . The four grids used in
this paper are listed in table 1. The time step size is cho-
sen so that the Courant number based on the speed of sound
is approximately 1. The finest grid used in this study has
128 grid cells in the wall-normal direction, just like the grid
used by Moser et al. (1999). However, Moser et al. (1999)
use a spectral method for incompressible flow, whereas here
a finite-difference method for compressible flow is used.

Simulations without regularization have been per-
formed on all the computational grids. All the simulations
are numerically stable without artificial dissipation. Time-
averaged results of the simulations without regularization
are shown in figure 2 and 3. The obtained wall-Reynolds
numbers are shown in table 1. The results obtained on the
grids A1 and A2 coincide with the incompressible direct
numerical simulation by Moser et al. (1999). The high ac-
curacy on sufficiently fine grids and the absence of artifi-
cial dissipation make the symmetry-preserving discretiza-
tion a very suitable method for direct numerical simulation
of compressible turbulent flow. On the coarse grids B and
C the obtained wall Reynolds number is acceptable, but the
slope in the log layer is not captured correctly.

Table 1. The grids used in this study, and the wall
Reynolds number obtained without regularization model.

Grid Dimensions γ ∆y+min Reτ

A1 256×128×128 7.0 0.6 178.7

A2 128×128×128 7.0 0.6 177.8

B 128×64×64 7.0 1.2 179.3

C 32×32×32 6.0 3.4 182.3
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Figure 3. Velocity fluctuations without regularization.
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Figure 4. Mean streamwise velocity profiles with regular-
ization.
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Figure 5. Time-averaged density profile with regulariza-
tion.

On all the grids small spurious wiggles are observed in
the instantaneous internal energy near the wall. The wig-
gles gradually disappear upon grid refinement, which sug-
gests that the internal energy is not yet completely resolved
(Gresho and Lee, 1981). We believe that the wiggles are
produced by viscous dissipation, which transfers kinetic en-
ergy to internal energy near the wall. The viscous source
term of internal energy is σ : ∇~u, which is quadratic in the
velocity gradient. If the velocity is barely resolved, then vis-
cous dissipation tries to create even smaller scales in the in-
ternal energy. These scales cannot be captured on the com-
putational grid, and therefore appear as spurious wiggles.

The symmetry-preserving discretization for incom-
pressible flow correctly captures channel flow already on
very coarse grids without an explicit subgrid-scale model
(Verstappen and Veldman, 2003). Apparently, the im-
plicit subgrid-scale model of this discretization is very suit-
able for the large-eddy simulation of channel flow. This
property is not inherited by the symmetry-preserving dis-
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Table 2. The wall Reynolds numbers obtained on grid C.

no model cα c2 c4

Reτ 182.3 168.8 175.2 182.1

cretization for compressible flow; on coarse grids the com-
pressible symmetry-preserving discretization is stable and
yields acceptable wall Reynolds numbers, but the law of the
wall is not captured correctly. Thus, unlike the symmetry-
preserving discretization for incompressible flow, on coarse
grids the symmetry-preserving discretization for compress-
ible flow needs an explicit subgrid-scale model.

Simulations with the proposed symmetry-preserving
regularization subgrid-scale models have been performed
on grid C. In these simulations, the filter length was set
equal to the mesh spacing; r = 1 and ∆i = ∆xi. Time-
averaged results of the simulations are shown in figure 4 and
5, and the obtained wall Reynolds numbers are listed in ta-
ble 2. The wall Reynolds numbers obtained with the Leray
and c2 regularizations are considerably lower than the wall
Reynolds number obtained without regularization. Both the
Leray and the c2 regularization do not correctly capture the
law of the wall. The results obtained with c4 regulariza-
tion collapse on the results obtained without regularization;
the obtained wall Reynolds number is acceptable, but the
slope in the log layer is not captured correctly. Recall that
c4 regularization is a more accurate approximation of the
convection operator than the Leray and c2 regularizations.
It seems that for channel flow the c4 regularization resem-
bles the unfiltered convection operator so closely, that the
results obtained with c4 regularization become practically
identical to the results obtained without regularization.

An unexpected side-effect of regularization is observed
in the time-averaged density profile (see figure 5); regular-
ization of the continuity equation moves air to the centre
of the channel. We currently do not completely understand
this phenomenon.

CONCLUSION AND OUTLOOK
In this paper, it was shown that the symmetry-

preserving discretization and regularization for incompress-
ible flow can be generalized to compressible flow by rewrit-
ing the compressible Navier-Stokes equations to a new
form. The proposed symmetry-preserving discretization
and regularizations for compressible flow were validated in
simulations of channel flow.

The simulations of compressible channel flow are sta-
ble without artificial dissipation. Results obtained on suf-
ficiently fine grids accurately coincide with the results of
a direct numerical simulation. The high accuracy and
the absence of artificial dissipation make the symmetry-
preserving discretization a very suitable method for di-
rect numerical simulation of compressible flow. On coarse
grids the simulations of compressible channel flow are
stable without artificial dissipation and yield acceptable

wall Reynolds numbers, but the slope in the log layer is
not captured correctly. Apparently, unlike the symmetry-
preserving discretization for incompressible flow (Verstap-
pen and Veldman, 2003), the symmetry-preserving dis-
cretization for compressible flow needs an explicit subgrid-
scale model to correctly capture channel flow.

Therefore, the proposed symmetry-preserving regular-
ization subgrid-scale models have been applied in the com-
pressible channel flow simulations. As a first test, the fil-
ter length was set equal to the local mesh spacing. The
symmetry-preserving regularizations for compressible flow
do not capture the law of the wall correctly. Possibly the
proposed regularization models can be improved by local
calculation of the filter length (Trias et al., 2013).

Our future research will consider subgrid-scale mod-
elling for compressible flow. One of the goals of the re-
search is to improve the proposed symmetry-preserving reg-
ularization model. Another goal of the research is the
derivation of an eddy-viscosity model for compressible flow
with minimal subgrid-scale dissipation in resolved regions
(Verstappen, 2011).
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