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ABSTRACT
In this work, we propose a linear-nonlinear separa-

tion method, which hybridizes the 5th-order dispersion-
dissipation-optimized WENO scheme in Huet al. (2012)
with its optimal linear scheme, for direct numerical sim-
ulation of shock-turbulence interaction. The method is
based on the characteristic-wise formulation, by which
the application of linear and nonlinear schemes are sep-
arated by measuring the non-resolvability of the linear
scheme. Taking the advantage of characteristic-wise for-
mulation, the measurement is formulated as a single uni-
versal non-dimensional number. Since the linear scheme
omits the computation of the WENO weights, and most
of the characteristic-projection operations, the scheme in-
crease the overall computational efficiency greatly.

Introduction
In direct numerical simulation (DNS) of shock-

turbulence interaction, there are three essential require-
ments for the choice of numerical schemes: high-order ac-
curacy and low-dissipation to capture the fine-scale turbu-
lent flow features, high numerical stability to capture flow
discontinuities and as high as possible computational effi-
ciency. However, it is very difficult to find a single numer-
ical scheme which is able to meet all these requirements.
On one hand, many linear schemes, including standard fi-
nite difference schemes and compact schemes, can achieve
very high order of accuracy and very low numerical dissi-
pation with high computational efficiency, but are not nu-
merically stable when there are flow discontinuities. On the
other hand, many nonlinear schemes, such as such as PPM,
FCT, MUSCL and WENO, can achieve very high numerical
stability and sufficient high-order accuracy, but have high
numerical dissipation and low computational efficiency.

A promising approach to overcome these difficulties
is using hybrid methods as in Refs. Adams & K. (1996);
Johnsenet al. (2010); Pirozzoli (2011). The key idea is
switching or blending between the nonlinear scheme and
the linear scheme according to a shock sensor or disconti-
nuity detector. The discontinuity detector is usually imple-
ment by the trouble-cell detecting approach, in which the

numerical fluxes at cell-faces of all the neighboring cells are
computed by the nonlinear scheme, or by the characteristic-
wise approach, in which the discontinuity detectors are im-
plemented on evaluating the numerical flux of each compo-
nent on the characteristic filed. Up to now, the choice of an
effective discontinuity detector remains a problematic issue
for these methods when applied to complex or large-range
of applications. Usually, problem-dependent parameters are
required to tune for more stable simulation, more accurate
results or higher computational efficiency.

In this paper, we propose a simple, highly effi-
cient hybrid WENO scheme based on the characteristic-
decomposition approach. The scheme switches the nu-
merical fluxes of each characteristic variables between
those of the WENO scheme and its corresponding opti-
mal linear scheme. Since the linear scheme omits the
computation of the WENO weights, and most of the
characteristic-projection operations due to component-wise
reconstruction, it increases the overall computational effi-
ciency largely. Furthermore, the scheme employs a new
broadly effective non-dimensional discontinuity detector,
which measures the resolution limit of the linear scheme
and does not degenerate at critical points.

Method
We assume that the fluid is inviscid and compressible,

described by the one-dimensional Euler equations as

∂U
∂ t

+
∂F(U)

∂x
= 0, (1)

whereU = (ρ ,m,E)T , andF(U) = [m,ρu2+ p,(E+ p)u]T .
This set of equations describes the conservation laws for
mass densityρ , momentum densitym≡ ρu and total energy
densityE = ρe+ ρu2/2, wheree is the specific internal
energy. To close this set of equations, the ideal-gas equation
of statep= (γ −1)ρewith a constantγ is used.
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Characteristic-wise WENO scheme
For completeness, we briefly recall the classical 5th-

order WENO scheme in Jiang & Shu (1996) for solving Eq.
(1). The discretization is within the spatial domain such that
xi = i∆x, i = 0, ...,N, where∆x is the spatial step, the semi-
discretized form by the method of lines yields a system of
ordinary differential equations

dUi

dt
=

1
∆x

(
F̂i−1/2− F̂i+1/2

)
, (2)

whereF̂i±1/2 are the numerical flux atxi±1/2, respectively.
Once the right-hand side of this expression has been evalu-
ated, a TVD Runge-Kutta method is employed to advance
the solution in time. In the typical characteristic-wise finite-
difference WENO scheme, thêFi+1/2 are usually recon-
structed within the local characteristic fields. Let us take
the matrixAi+1/2 to be the Roe-average Jacobian∂F/∂U
at xi+1/2. We denote byλs, rs (column vector) andls (row
vector) thesth eigenvalue, and the right and left eigenvec-
tors of Ai+1/2, respectively. The physical fluxes and con-
servative variables on the respective reconstruction stencil
are mapped to the characteristic field by the characteristic-
projection step

v j,s = ls ·U j , g j,s = ls ·F j , (3)

where i + 3 > j > i − 2 ands= 1,2,3. For each compo-
nent of the characteristic variables, the corresponding split
numerical fluxes are constructed by

f+j,s =
1
2

(
g j,s+αsv j,s

)
, f−j,s =

1
2

(
g j,s−αsv j,s

)
, (4)

whereαs = |λs| for a Roe flux (RF). Alternatively one can
useαs = max|λl ,s|, wherel represents the entire computa-
tional domain for a Lax-Friedrichs flux (LF) or the neigh-
borhood ofi for a local Lax-Friedrichs flux (LLF).

The calssical fifth-order WENO reconstruction in Jiang
& Shu (1996) gives

f+i+1/2,s =
2

∑
k=0

ω+
k,s f+k,i+1/2, f−i+1/2,s =

2

∑
k=0

ω−
k,s f−k,i+1/2,s,

(5)
wheref±k,i±1/2,s are 3rd-order reconstructions from the 3 up-

wind 3-point stencils, andω±
k,s are WENO weights defined

by

ω±
k,s =

αk

∑2
k=0 αk,s

, αk,s =
dk(

βk,s+ ε
)q , (6)

wheredk = { 3
10,

3
5 ,

1
10} are optimal weights. These optimal

weights generate the 5th-order upwind scheme, by which
the numerical flux is reconstructed from a 5-point stencil.
ε > 0 prevents division by zero,q= 1 or 2 is chosen to ad-
just the distinct weights, andβk,s are the smoothness indi-
cators. For the 5th-order dispersion-dissipation-optimized
WENO scheme in Huet al. (2012), the reconstruction uses
all the 4 upwind and downwind 3-point stencils. The non-
linear weights are given by

ωk =
αk

∑3
k=0 αk

, αk = dk

(
Cq+

τ6

β3,k+ ε∆x2

)q

, (7)

where dk = {0.065,0.495,0.405,0.035} are the optimal
weights yielding a low dissipation 5th-order linear scheme,
q = 4 is an integer parameter,Cq = 103 is a positive con-
stant parameter andε = 10−8 is a small positive number.
For the WENO methodology and the details of computing
β3,r , β3,ave and τ6, the reader should refer to Ref. Hu &
Adams (2011).

The numerical flux in each characteristic field is then
computed by

f̂i+1/2,s = f+i+1/2,s+ f−i+1/2,s. (8)

At last, this numerical flux is projected back to the physical
space by

F̂i+1/2 =
3

∑
s=1

f̂i+1/2,srs. (9)

It can be found that the major part of floating-point oper-
ations in the characteristic-wise WENO scheme are due to
the characteristic-projection step (matrix-vector product) of
Eq. (3), and the computation of the WENO weights in Eq.
(6).

Hybrid WENO scheme
In order to decrease the number of floating-point oper-

ations, we propose to hybridize the WENO scheme with its
optimal linear scheme by the characteristic-decomposition
approach. A straightforward implementation is to switch
between Eq. (8) and the corresponding flux of the optimal
linear scheme based on the characteristic-variable projec-
tion. Here, however, we consider a component-wise recon-
struction for the optimal linear scheme to further save the
computational effort for the characteristic-projection step.

Optimal linear scheme with component-
wise reconstruction In this formulation, the ap-
proximated physical fluxes and the differences of ap-
proximated conservative variables atxi+1/2 are computed
component-by-component as

Fi+1/2 =
1
2

(
F+

i+1/2+F−
i+1/2

)
, (10)

∆Ui+1/2 =
1
2

(
U+

i+1/2−U−
i+1/2

)
. (11)

With the optimal linear scheme of the 5th-order dispersion-
dissipation-optimized WENO scheme, one has

Fi+1/2 =
1
60

(Fi−2−8Fi−1+37Fi

+ 37Fi+1−8Fi+2+Fi+3), (12)

∆Ui+1/2 =
1

200
(Ui−2−5Ui−1+10Ui

− 10Ui+1+5Ui+2−Ui+3). (13)

Note that Taylor-series expansion of Eq. (13) suggests

∆Ui+1/2 =−∆x5

200
∂ 5U(x)

∂x5

∣∣∣∣
i+1/2

+O(∆x7). (14)
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ThenFi+1/2 and∆Ui+1/2 are projected onto the character-
istic field by

∆vi+1/2,s = ls ·∆Ui+1/2, gi+1/2,s = ls ·Fi+1/2. (15)

For each component of the characteristic variables, the cor-
responding numerical flux is constructed by

f̂i+1/2,s = gi+1/2,s+αs∆vi+1/2,s, (16)

whereαs are chosen in the same way as Eq. (4). At last, the
numerical flux obtained in each characteristic field is pro-
jected back to the component space by Eq. (9). Note that,
compared to the characteristic-wise WENO scheme, the lin-
ear scheme omits the computation of the WENO weights in
Eq. (6), and decreases by 5/6 the characteristic-projection
operations of Eq. (3).

Hybridization and discontinuity detector
Since the linear scheme is numerically unstable for solu-
tions with discontinuities, it should be switched on only in
smooth regions of the solution according to a discontinu-
ity detector. A proper discontinuity detector should rely on
problem-independent measure to indicate that the resolu-
tion limit of the linear scheme is reached. A usual way to
achieve a problem-independent measure is using the non-
dimensional ratio between high- and low order undivided
differences, like in Refs. Renet al. (2003); Kim & Kwon
(2005); Li & Qiu (2010). Since undivided difference corre-
sponds to approximation of a spatial derivative, this type of
discontinuity detectors degenerate near critical points with
zero low order derivatives as the denominators approach
zero and switches on the WENO scheme. To decrease the
over-dissipation associated with the degeneration, dimen-
sional parameters must be introduced, which lead again to
problem-dependent discontinuity detectors.

In this paper, we achieve a problem-independent mea-
sure in a different way. By noticing that the characteristic
variables have the dimension of density we define a non-
dimensional discontinuity detector by

σs =

(∆vi+1/2,s

ρ̃

)2

, (17)

whereρ̃ is the Roe-average density ofAi+1/2. From Eq.
(14) it can be found thatσs also is related to the 5th-order
derivatives of the characteristic variables due to the lin-
earized characteristic projection. Since the optimal 5th-
order linear scheme reconstructs with 4th-degree polynomi-
als and is not able to resolve 5th or higher order derivatives,
σs is actually a measure on the resolution limit of the linear
scheme. If there is no vacuum in the flow (which is almost
always the case), the denominator ofσs does not degener-
ate.

With a given thresholdε ≪ 1, the hybrid scheme can
be constructed as follows: for each component of the char-
acteristic variables the numerical flux is obtained by lin-
ear flux of Eq. (16) ifσs < ε; otherwise it is obtained by
WENO flux of Eq. (8). Note that the above approach can
be directly applied to multiple dimensions by a dimension-
by-dimension approach, and can be very easily extended to
higher-order or modified WENO schemes. The only modi-
fication for other WENO schemes is that Eq. (10) should be
computed with the corresponding optimal linear schemes.

Numerical examples
The following numerical examples are provided to

illustrate the potential of the proposed hybrid WENO
scheme. The governing equations are the one- and two-
dimensional compressible Euler or Navier-Stokes equa-
tions. While the original 5th-order dispersion-dissipation-
optimized WENO scheme is denoted as WENO-5, the
present hybrid scheme is denoted as H-WENO-5. The 3rd-
order TVD Runge-Kutta scheme is used for time integra-
tion as in Shu & Osher (1989). The local computational
efficiency on each cell-face through the entire computa-
tion time is measured byη = MLinear/(MLinear+MWENO),
whereMWENO is the number of operations with WENO
flux and MLinear is the number of operations with linear
flux. The overall computational efficiency is obtained by
averagingη over the entire computational domain. We set
ε = 10−7 for all numerical examples. If not mentioned
otherwise, all the computations are carried out with a CFL
number of 0.6.

Propagation of broadband sound waves
This problem, taken from Sunet al. (2011), corre-

sponds to the propagation of a sound wave packet which
contains acoustic turbulent structure with various length
scales. The initial condition is

p(x,0) = p0

{
1+ ε

N/2

∑
k=1

[
Ep(k)

]1/2 sin[2πk(x+φk)]

}
,

ρ(x,0) = ρ0

[
p(x,0)

p0

]1/γ
,

u(x,0) = u0+
2

γ −1

[
c(x,0)

c0

]
,

whereφk is a random number between 0 and 1 with uniform
distribution,ε = 10−3, γ = 1.4, c is the speed of sound and

Ep(k) =

(
k
k0

)4

exp−2(k/k0)
2

is the energy spectrum which reaches its maximum atk =
k0. A periodic boundary condition is applied atx = 0 and
x= 1. Computations have been carried out on a 128-point
grid using a CFL number of 0.2 for one period of time. The
numerical results shown in Fig. 1 suggest that no WENO
flux is switched on during the computation and the solution
recovers that obtained by the optimal linear scheme.

Shock interaction problems
Here, we consider two important shock interaction

problems: the shock-density-wave interaction problem
from Shu & Osher (1989) and the two-blast-wave interac-
tion problem from Colella & Woodward (1984).

For the shock density-wave interaction problem, the
initial condition is set by a Mach 3 shock interacting with a
perturbed density field

(ρ ,u, p) =
{
(3.857,2.629,10.333) if 0 ≤ x< 1
(1+0.2sin(5x),0,1) if 10 ≥ x> 1

and the final time ist = 1.8. A zero-gradient boundary con-
dition is applied atx= 0 and 10. We examine the numerical
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Figure 1. Propagation of broadband sound waves computed on a 128 points grid: (a) pressure and (b) local computational
efficiency distribution.

solution on a 200-point grid. For the two-blast-wave inter-
action problem, the initial condition is

(ρ ,u, p) =




(1,0,1000) if 0 < x< 0.1
(1,0,0.01) if 0.1< x< 0.9
(1,0,100) if 1 > x> 0.9

,

and the final time ist = 0.038. The reflective boundary
condition is applied at bothx = 0 andx = 1. We exam-
ine the numerical solution on a 400-point grid. Nothe that,
the reference ”exact” solutions for this two problems are the
high-resolution solutions on a 3200-point grid computed by
WENO-CU6 scheme from Huet al. (2010).

Figure 2 gives the profiles of computed density and lo-
cal computational efficiency. While good agreement with
the reference solutions is observed, and the overall effi-
ciencies of 97.7% and 91.9%, respectively, are obtained.
Note that, while producing numerical stable solution for
the two-blast-wave interaction problem, the present method
achieves solutions of comparable or better accuracy than
previous hybrid schemes in Refs. Johnsenet al. (2010);
Adams & K. (1996) for shock-density wave interaction
problem.

Viscous shock tube problem
We consider the two-dimensional viscous flow prob-

lem in a square shock tube with unit height and insulated
walls from Daru & Tenaud (2000). In this problem, the
propagation of the incident shock wave and contact discon-
tinuity lead to a thin boundary layer. After its reflection on
the right wall, the shock wave interacts with this boundary
layer and results a separation region and the formation of a
typical ”λ -shape like shock pattern”. The initial condition
is

(ρ ,u, p) =
{
(120,0,120/γ) if 0 ≤ x< 1

2
(1.2,0,1.2/γ) if 1 ≥ x> 1

2

The fluid is assumed as ideal gas withγ = 1.4 and con-
stant dynamics viscosityµ = 0.005 and Prandtl number
Pr = 0.73 and satisfying the Stokes assumption. If the

reference values are chosen as the initial speed of sound,
unit density and unit length, the Reynolds number is 200.
By applying the symmetry condition at the upper bound-
ary, only the lower half domain is actually computed. For
other boundaries, the no-slip and adiabatic wall conditions
are applied. The viscous and heat transfer is calculated by
6th-order accuracy, Here, we examine the numerical solu-
tion with two resolutions on a grid of 500×250 points.

Figure 3 gives the profiles of computed density and lo-
cal computational efficiency. Note that, numerical conver-
gence is indicated because no notable differences, except
the near shock region, can be identified from the converged
density contours in Sjögreen & Yee (2003) obtained with
much higher grid resolutions. Also note that the overall effi-
ciency for this problem is 99.4%, which suggests essentially
negligible effort for computing WENO flux.

Concluding remarks
We propose a simple hybrid WENO scheme to increase

computational efficiency and decrease numerical dissipa-
tion. Based on the characteristic-wise approach, the scheme
switches the numerical flux of each characteristic variables
between that of the WENO scheme and its optimal linear
scheme according to a discontinuity detector measuring the
resolution limit of the linear scheme. As shown by a number
of numerical examples the overall efficiency, measured by
the fraction of linear flux used, is always higher than 90%,
shows that the hybridization increases the computational ef-
ficiency largely. Also, by choosing the largely problem-
independent threshold for the discontinuity detector, com-
pared to the original WENO scheme, much lower overall
numerical dissipation is achieved without compensating ro-
bustness. Since the method uses a general characteristic-
wise formulation of the WENO scheme, it can be applied
to multiple-species flows, where the overhead of local char-
acteristic projection and WENO weights calculation is even
more serious.
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Figure 2. one-dimensional examples: (a) density and (b) local computational efficiency for the shock-density-wave interaction
problem computed on 200 grid points; (c) density and (d) local computational efficiency for the two-blast-wave interaction
problem computed on 400 grid points.
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Figure 3. Viscous shock-tube problem computed on 500×250 grid points: (a) 20 density contours from 15 to 130, (b) 20
local computational efficiency contours from 0.81 to 0.99.
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