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ABSTRACT
The numerical investigation of a high Reynolds num-

ber compressible separating-reattaching flow around a sim-
plified space launcher afterbody is carried out using Zonal
Detached Eddy Simulation (ZDES). The geometry consists
of a cylinder extended by another cylinder of smaller di-
ameter. Spectral analysis of the three-dimensional unsteady
pressure field is carried out by means of a discrete Fourier
approach as well as a dynamic mode investigation. First, the
visualisation of the Power Spectral Density (PSD) around
the geometry evidences that high fluctuating energy areas
are located on the second half of the emerging cylinder on
the skin of the same geometry. It is revealed that such high
PSD areas are associated with low frequencies which is of-
ten the case for separated flows. The analysis of the dy-
namic mode associated with the vortex shedding Strouhal
number StD = f D

U∞
= 0.18 exhibits a large scale double-

helical organisation which is consistent with results from
other investigations in the literature using alternative post-
processing tools at lower Reynolds numbers.

INTRODUCTION
Within the atmospheric flight of a space launcher, the

flow around the propulsion stage is ruled by the complex
dynamics of vortical structures. The drastic pressure fluc-
tuations due to a highly turbulent flow separation expose
the nozzle to unsteady and potentially intense loads. The
so-called Buffeting mode, identified as the azimuthal mode
m = 1, is likely to trigger loads which can disturb the sta-
bility of the launcher and cause severe damages to the pay-
load. In the literature, various geometries were used in order
to investigate flow-induced forces such as for axisymmet-
ric bluff bodies as in Eldred (1961), Deprés et al. (2004),
Deck & Thorigny (2007), and Weiss et al. (2009) or sud-
denly expanded flows as in Gagnon et al. (1993). In the
bluff body case, it was revealed that mechanical efforts are
mainly induced by the oscillatory dynamics of the recircu-
lation bubble. With the intention to evidence such dynamics
and investigate their natural frequencies on an axisymmet-
ric backward facing step, Deck & Thorigny (2007) showed
by means of two-point correlation analysis on a crown of
sensors that the azimuthal mode m = 1 contributes to more
than 50% of the total energy at a dimensionless frequency
f D
U∞

= 0.2 associated to the vortex shedding. Using a lo-
cal stability analysis, Weiss et al. (2009) have recently con-
firmed that the m = 1 antisymmetric mode is dominated by

a helical organisation (as suggested by Fuchs et al. (1979))
associated to an absolute instability. However, the unsteady
spatial organisation associated with the characteristic fre-
quencies of the flow is still not fully understood. The aim
of this paper is twofold. First, the Power Spectral Density
analysis is extended from 2D (as in Weiss & Deck (2011))
to 3D dataset in order to track the flow dynamics responsible
for the PSD distribution at the wall which has been previ-
ously derived. Finally, the Fourier modal analysis is applied
to the 3D database in order to unveil the spatial organisation
associated with a given frequency.

The geometrical setup as well as the numerical strategy
are described in the first section. Then it is provided a brief
description of the unsteady flow field deriving from the nu-
merical simulation prior to the presentation of the Power
Spectral Density and dynamic mode analyses around the
emerging cylinder. The main conclusions are given in the
last section.

TEST CASE AND NUMERICAL SETUP
The geometry studied is an axisymmetric backward

facing step presented in figure 1. The characteristic aspect
ratios are chosen to fit with existing experimental models at
ONERA, as that of Deprés et al. (2004) or Meliga & Rei-
jasse (2007), based on a simplified launcher geometry.

Figure 1. Characteristic dimensions and main direction of
the flow.
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The computational grid contains 12× 106 points dis-
tributed on a structured multiblock mesh and have 240
points in the azimuthal direction (i.e. 1.5◦ per plan). The
grid is locally refined in the separation area, in particular
close to the separation edge (figure 1) in order to model
the early stage of the mixing layer instability. In addition,
the vorticity thickness of the mixing layer is discretised
over 15 points as recommended by Simon et al. (2007).
This resolution increases in the streamwise direction as the
shear layer develops and as the vorticity thickness grows.
The Reynolds number based on the greatest diameter D
is ReD = 1.2× 106 and the free stream Mach number is
M∞ = 0.702. The initial external boundary layer thickness
ratio δ/D is equal to 0.2 at the separation edge of the body
with diameter D.

The numerical simulation was performed using the
Zonal Detached Eddy Simulation approach developped by
Deck (2005, 2012) and implemented in the finite volume
solver FLU3M (Guillen & Dormieux (1989)). The FLU3M
code developed by ONERA has been assessed on various
applications and in particular on launcher geometries (Deck
& Thorigny (2007), Simon et al. (2007), Weiss et al. (2009),
Weiss & Deck (2011)). In these last references, the nu-
merical results are thoroughly compared with the available
experimental data and second-order analysis. The ZDES
zonal hybrid RANS/LES method is well-fitted for mas-
sively separated flows, due to the quick switch from RANS
to LES near the separation point which avoids delays in the
development of the instabilities. The strategy of this method
is to select the flow areas (see Deck (2012)) to be computed
with RANS or LES according to the problem of interest as
illustrated in figure 2.

Figure 2. Classification of typical flow problems in the
frame of ZDES. I: separation fixed by the geometry, II: sep-
aration induced by a pressure gradient on a curved surface,
III: separation strongly influenced by the dynamics of the
incoming boundary layer. (from Deck (2012)).

In the present case, ZDES is applied in its first mode
since the flow separation is triggered by a sharp geomet-
ric discontinuity. The time integration of the discretised
Navier-Stokes equations is performed by means of the sec-
ond order accurate backward Gear scheme and the spatial
scheme is a modified AUSM+ Liou (1996). The phys-
ical time step is ∆t = 2× 10−6 s which corresponds to
∆t̃ = ∆tU∞/D = 4.7× 10−3. Finally, four inner Newton-
Raphson sub-iterations per time step enabled a residual de-
cay of at least one order of magnitude during the conver-
gence process.

RESULTS AND DISCUSSION
First, the instantaneous data of the ZDES simulation

are represented in figure 3 with a visualisation of the co-

herent structures around the afterbody by means of isosur-
faces of the normalised Q-criterion: QU2

∞/D2 = 50 (with
Q =− 1

2
∂ui
∂x j

∂u j
∂xi

). Contours of numerical Schlieren are plot-
ted on the skin of the emerging cylinder and in a stream-
wise cut-off plane. Very close to the edge of the step, one
can clearly identify a sequence of toroı̈dal structures denot-
ing the roll-up of the shear layer (known as the Kelvin-
Helmholtz instability). As analysed by Deck & Thorigny
(2007) and Weiss et al. (2009), these coherent structures
merge together as they are being convected downstream
(pairing phenomenon), grow in size, then distort into 3D
structures with a hairpin shape near the solid reattachment
and finally adopt a fully three dimensional organisation in
the wake region.

Figure 3. Isosurfaces of the normalised Q-criterion
(QU2

∞/D2 = 50) coloured by the streamwise velocity with
contours of numerical Schlieren (grey scale) on the skin of
the emerging cylinder and in a cut-off plane through the
main flow direction.

Spectral analysis of the fluctuating pressure
field

A Discrete Fourier Transform approach was used in or-
der to compute the Power Spectral Density spectrum for the
fluctuating pressure field (p

′
(t)= p(t)− p). The 3D spectral

analysis consisted in computing the PSD spectrum noted
G( f ) at each point in the computational domain shown with
red bounds in figure 4 (left). The input 3D dataset for
the PSD analysis is acquired over a total acquisition period
Tacq = 0.2 s with a sampling rate fs = 1

∆ts = 100 kHz (where
∆ts is the time interval between each sample) in order to
avoid any aliasing issues. The total acquisition volume con-
sists of 4.5×106 points corresponding to 2 T-bytes in mem-
ory storage. The Power Spectral Density describes how the
levels of fluctuations are distributed in the frequency space
and is defined as follows:

σ2 =
∫ ∞

0
G( f )d f =

∫ ∞

0
f G( f )d [log( f )] (1)

where σ is the standard deviation of the input signal. For
convenience, G( f ) spectra are plotted as a function of the
Strouhal number StD = f D/U∞ which is the normalised fre-
quency.

Figure 4 presents the main steps of the 3D PSD anal-
ysis in order to select only the most energetic frequencies.
First, the process consists in extracting the maximum value
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Figure 4. Power Spectral Density (PSD) analysis.(left) Isosurface max(x,y,z)[G( f )] = 900 Pa2.Hz−1 coloured by the Strouhal
number StD. (middle) Contours of the maximum value for G( f ) at each point of the streamwise cut-off plane (max(x,y,z)[G( f )]).
(right) PSD spectrum associated with the position located in figure 4 (middle).

of G( f ) noted max(x,y,z) [G( f )] and the corresponding value
StD(max(x,y,z) [G( f )]) at each point in the domain as illus-
trated in figure 4 (right). As this process is iterated for ev-
ery point in the acquisition volume, this leads to the three-
dimensional distribution of max(x,y,z) [G( f )] shown in figure
4 (middle) in a streamwise cut-off plane. In this figure, it ap-
pears that the highest levels of PSD are located in the mix-
ing layer close to the separation edge and on the second half
of the recirculation bubble. The wall signature of this large
area corresponds to high RMS wall pressure coefficient val-
ues as evidenced by Deck & Thorigny (2007) and is likely
to be due to the growth of the coherent structures from the
shear layer as the vortices are pairing. This is consistent
with the results from Hudy et al. (2003) who suggested that
such an increasing fluctuating rate close to the reattachment
point is due to the impingement of the coherent structures
from the mixing layer on the wall.

Finally, the isosurface max(x,y,z) [G( f )] = 900
Pa2.Hz−1 is plotted in figure 4 (left). This isosurface
corresponds to the area where approximately 60% of the
global maximum value for max(x,y,z) [G( f )] in the entire
acquisition volume is located. The isosurface is coloured
by the Strouhal number associated with the PSD peak
StD(max(x,y,z) [G( f )]). It appears that such an energetic
area is associated with Strouhal numbers StD ≤ 0.25 and is
located mainly on the second half of the domain, forming a
crown around the emerging cylinder. The size of this crown
is of the order of one step height which highlights that most
of the energy is contained in the recirculation area.

In addition, the contours of StD(max(x,y,z) [G( f )]), the
most energetic normalised frequencies are presented in fig-
ure 5 in a streamwise cut-off plane. Four main flow dynam-
ics corresponding to four different normalised frequencies
can be identified. Dynamics in area III corresponds to the
vortex shedding (StD ∼ 0.2) and is located in the interval
0.4 ≤ x/D ≤ 0.75. This corroborates the results of Weiss
et al. (2009) who derived the existence of an absolutely un-
stable area associated with the vortex shedding in the same
space interval. On each side of zone III are located two

zones with StD ∼ 0.03 which is associated with the flap-
ping motion of the mixing layer and the streamwise oscilla-
tions of the instantaneous reattachment point as in Kiya &
Sasaki (1983). Finally, area II is associated with the Kelvin-
Helmholtz dynamics occurring in the shear layer, and area
IV corresponds to the wake dynamics by the end of the ge-
ometry.

Modal analysis
The aim is now to investigate the spatial organisation

associated with the Strouhal numbers identified above with
the view to provide a deeper insight into the flow mecha-
nisms and in particular those responsible for the unsteady
side-loads. In practice, such an analysis is usually fulfilled
by decomposing the flow structures into modes. To this
end, the Fourier mode decomposition method is used in
this paper since each Fourier mode is characterised by its
own frequency and energy level. A comparison with the re-
cent Dynamic Mode Decomposition method (Rowley et al.
(2009),Schmid (2010)) is briefly performed, with the view
to cross-check the first analysis.

Fourier modes The temporal Discrete Fourier
Transform provides Fourier modes defined on a given fre-
quency range. Such Fourier modes, denoted X( f ) here, are
computed by means of a Welch periodogram. It consists
in dividing the raw input signal into overlapping blocks of
equal frequency length and resolution. The hereby spectral
investigations are carried out on a frequency window rang-
ing from 5 Hz (StD = 2× 10−3) to 100 kHz (StD = 42.2)
by steps of ∆ f = 60 Hz (StD ∼ 2.5×10−2). The total CPU
time elapsed was approximately 20 h for the processing of
the 4,600,000 pressure signals discretised in N = 20,000
snapshots with T = 200 ms. While the previous section fo-
cused on the Power Spectral Density Gp′( f ) of each Fourier
mode (i.e. the square modulus of X( f ) over the integration
period for each frequency band ∆ f ), this paragraph concen-
trates on the complex Fourier mode at each point in the
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computational volume (shown in figure 4). The complex
Fourier modes associated with the vortex-shedding (StD =
0.18) was extracted as it has been identified as the most
contributing dynamics in the unsteady side-loads (Deprés
et al. (2004) and Deck & Thorigny (2007)). In addition,
StD = 0.6 is investigated as it constitutes an energetic fre-
quency by the end of the geometry. The imaginary part of
each of those Fourier modes is depicted in figures 6 and 7
respectively.

Contours of ℑ [XStD=0.18( f )] (figure 6) clearly exhibit
a sequence of two diametrically opposed positive and neg-
ative large scale regions. Such an antiphase behaviour
is consistent with the experimental results from Deprés
et al. (2004) and the numerical investigations of Deck &
Thorigny (2007) on the same geometry with a jet. Both
of these authors evidenced that the azimuthal mode m = 1
strongly dominates the vortex shedding frequency.

The hereby visualisation of the three-dimensional
Fourier mode associated to StD = 0.18 therefore enables to
evidence the spatial organisation of the fluctuating pressure
field which is mainly responsible for the aerodynamic un-
steady side-loads. The phase shift of the positive and nega-
tive pressure areas indeed induces an imbalance of the force
acting on the wall. Besides, the wave length in the stream-
wise direction approximately amounts for 2L = 2.4D (L is
the length of the cylinder with diameter d = 0.4D see figure
1). This is in agreement with the maximum absolute wave-
length λ0 = 2.6 derived by Weiss et al. (2009) by means of

Figure 5. Spectral map of the most energetic frequencies
StD(max(x,y,z) [G( f )]).

Figure 6. Contours of ℑ(X ( f ))× fs in Pa and isosurfaces
of ℑ(X ( f ))× fs =±200 Pa of the Fourier mode associated
with StD = 0.18.

Figure 7. Contours of ℑ(X ( f ))× fs in Pa and isosurfaces
of ℑ(X ( f ))× fs =±200 Pa of the Fourier mode associated
with StD = 0.60.

a local linear stability analysis.
The spatial distribution of the Fourier mode related to

StD = 0.6 is similar to that of StD = 0.18 with a shorter
streamwise wave length (λx ' 0.7D).

Dynamic modes The recent Dynamic Mode De-
composition derived by Rowley et al. (2009) and Schmid
(2010) has been used in this section with the view to support
the results of the previous section. This method relies on the
spectral analysis of a linear operator called the Koopman
operator (Rowley et al. (2009)) and each dynamic mode is
characterised by its own frequency. Chen et al. (2012) have
mathematically shown that DMD on mean-subtracted input
data is equivalent to the temporal Discrete Fourier Trans-
form. As such, this method is a well-adapted tool to com-
pare with the Fourier results.

In order to reduce the CPU costs involved for the appli-
cation of such a post-processing, a subset of the total numer-
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Figure 8. (left) Isosurfaces of the imaginary part of the
dynamic mode associated with StD = 0.18 (kj : ℑ(kj) =

50 Pa (red) and ℑ(kj) = −50 Pa (blue)) with contours of
ℑ(kj) in a streamwise cut-off plane. (right) Dynamic mode
analysis spectrum: normalised norm of the dynamic modes
as a function of the Strouhal number. The dynamic mode
represented on the left is circled in red.

ical data is considered consisting of N = 10,000 snapshots
with a time interval of 4.7 ·10−2D/U∞ providing maximum
and minimum resolvable Strouhal numbers of respectively
10.55 and 0.0021 based on the Nyquist-Shannon criteria.
Besides, the dynamic modes were computed on a coarser
grid consisting of 35×23×121 points. This coarser mesh
was derived from the initial one using space modulos in all
three directions. The following scalar product, derived from
Aubard et al. (2011), is used to project the dynamics on a
lower-dimensional space:

∫ ∫ ∫ [ρu′2i
2

+
p′2

2γP

]
dxdydz (2)

The computation of the Koopman modes for the en-
tire volume shown in figure 4 is performed by means of
the DMD algorithm described by Schmid (2010). The ap-
proximated CPU time including reading the snpashot files,
the computation of the Companion matrix (Rowley et al.
(2009),Schmid (2010)) and the eigenproblem resolution
amounted for 88 hours with an in-house sequential code.

Each of the eigenvalues is associated with one dy-
namic mode kj whose frequency is given by f j =
ℑ
(
log(λ j)

]
/2π∆t, where λ j is the eigenvalue associated

with kj.
Figure 8 (right) depicts the DMD spectrum with the

normalised norm of the dynamic modes (‖ kj ‖2
2 / fs where

fs is the sampling frequency, kj is the dynamic mode num-

ber j, and ||• j ||22 =
√
(• j,1)2 +(• j,2)2 + . . .+(• j,m)2 is the

L2-norm) as a function of the Strouhal number StD.
The spectrum features a sequence of peaks, from low

to high frequency ranges, with some of them clearly distin-
guable by their higher magnitude. Let us focus on StD =
0.18, circled in red in the spectrum, as it appears to be one
of the dominant dynamics. In figure 8 (left) is presented the
shape of the corresponding dynamic mode with the contours
of the imaginary part of kj in a cut-off plane. According to
the isosurfaces ℑ(kj) = 200 Pa and ℑ(kj) = −200 Pa, it is
observed that the structures form an anti-clockwise large-
scale double helical organisation. Such a spatial organisa-
tion seems to be consistent with the results of Monkewitz

(1988) who evidenced that the preferred instability mode
in the axi-symmetric wake is a spiral at low and moderate
Reynolds numbers. This has also been put forward by Sand-
berg & Fasel (2006) for the supersonic regime by means of
local stability calculations.

Figure 9. Isosurfaces of the imaginary part of the dynamic
mode associated with StD = 0.60 (kj : ℑ(kj) = 100 Pa (red)
and ℑ(kj) = −100 Pa (blue)) with contours of ℑ(kj) in a
streamwise cut-off plane.

Although the spatial distribution of the StD = 0.18 dy-
namic mode differ from the corresponding Fourier mode,
the characteristic wave length in the streamwise direction fit
well with each other. Such a discrepancy with the Fourier
approach might be due to either the coarser grid and time
resolution or to the difference in the quantity that is de-
composed: the Fourier approach deals with the fluctuating
pressure field p′(t) while the dynamic mode decomposition
deals with the scalar from equation 2.

In opposition, the distribution of the dynamic mode as-
sociated with StD = 0.6 is very close to that of the corre-
sponding Fourier mode.

CONCLUSIONS
The Zonal Detached Eddy Simulation (ZDES) of an

axisymmetric backward facing step of finite length has been
performed at a Reynolds number based on the largest di-
ameter ReD = 1.2× 106 and a free stream Mach number
M∞ = 0.7. A spectral analysis of the three-dimensional data
set in the separated zone has been carried out.

First, the analysis of the three-dimensional fluctuat-
ing pressure field around the smallest cylinder evidenced an
area with high fluctuating energy level located on the sec-
ond half of the recirculation region. It was evidenced that
such an intense pressure fluctuation zone is mainly driven
by StD ≤ 0.25 dynamics which coincides with the available
results from the literature. Several other dynamics, such as
StD = 0.6 by the end of the geometry and StD ' 0.03 as-
sociated with the flapping motion of the mixing layer, were
identified as being locally the most energetic frequencies.

Besides, a modal investigation has been performed.
The visualisation of the three-dimensional complex Fourier
modes highlighted the characteristic spatial organisation as-
sociated with StD = 0.2 and StD = 0.6. A pair of two dia-
metrically opposed regions with a phase shift of π was evi-
denced for the vortex-shedding which is in agreement with
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the results of Deprés et al. (2004) and Deck & Thorigny
(2007) who associated StD = 0.2 with the antisymmetric
azimuthal mode m = 1. Such a diametrically opposed dis-
tribution unveils the behaviour of the m = 1 mode which
strongly dominates the unsteady side-loads process as em-
phasized by Weiss et al. (2009) for a two-dimensional fluc-
tuating pressure signal.

The use of the dynamic mode decomposition to cross-
check the previous modal analysis allowed to confirm the
characteristic streamwise wave lengths for StD = 0.2 and
StD = 0.6. The spatial distribution of the dynamic mode
associated with StD = 0.2 slightly differ from that of the
corresponding Fourier mode which might be due to either
the difference in space and time resolution between both
methods or to the pre-processing process.

The authors thank the Centre National d’Etudes Spa-
tiales (CNES) for financial support. The Ph.D. work of R.
Pain is funded by CNES and ONERA.
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