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ABSTRACT
A six-dimensional model is proposed as a low-order

representation of the vortex dynamics in the turbulent wake
of a wall-mounted square-cross-section cylinder of height-
to-width ratio h/d = 8 with one face normal to the flow
at a nominal Reynolds number of 12,000. The wake flow
is experimentally investigated for two oncoming turbulent
boundary layers of thicknessδ/d = 0.72 and 2.6 using si-
multaneous planar PIV and surface pressure measurements.
A novel generalized phase averaging technique is used
to determine global harmonic and shift modes, represent-
ing the shedding instability and low-frequency behaviour,
respectively. The generalized phase average provides a
parametrization of the phase as well as the oscillation am-
plitude and base flow drift. Using this technique, two dis-
tinct coherent structure topologies are found, depending on
δ/d, distinguished by the topology of the stream/cross-
streamwise vortical strands giving rise to half-ring and full-
ring structures for the thinner and thicker boundary layer,
respectively. A six-dimensional model is derived where the
state of the system,f(a(t),ξ (t)), depends on the vector of
mode amplitudes,a(t), and a stochastic term,ξ (t), simulat-
ing higher order contributions.

BACKGROUND
Many turbulent flows display oscillatory coherent

structures with low frequency base flow drifts and modu-
lation of the oscillation amplitude. Examples include vor-
tex shedding behind bluff bodies (Williamson, 1996), he-
lical vortices in swirling jets (Oberleithneret al., 2011),
Kelvin-Helmholtz structures in mixing layers (Liu, 1989),
and Rossiter modes in cavities (Rowley & Williams, 2006).

A classical approach for educing the coherent structures in
such flows is a triple decomposition of the velocity field in a
mean, a coherent (constant amplitude and frequency) and an
incoherent (unresolved) component. The traditional phase
average, however, lacks an account of the temporal vari-
ations of the oscillation amplitude and the low frequency
drifts of the base flow. These two phenomena are intimately
coupled, as has been described for laminar vortex shedding
(Noack et al., 2003), and remain so under fully turbulent
conditions (shown herein). These two low frequency as-
pects are incorporated into a novel generalized phase av-
erage decomposition described in Bourgeoiset al. (2013),
whereby planar velocity POD modes determine global har-
monic and shift modes, representing the shedding instability
and the base flow slow-drift behaviour.

The case investigated is the wake of a relatively tall,
wall-mounted bluff body protruding a nominally thin turbu-
lent boundary layer. Two different mean wake flow topolo-
gies have been reported: either a single pair of counter-
rotating streamwise trailing vortices extending from the
free-end or two pairs extending from the free-end and body-
wall junction. This change in mean flow topology has been
related to the obstacle height-to-width aspect ratio,h/d, for
circular (Sumneret al., 2004) and square (Wanget al., 2009;
Bourgeoiset al., 2011) section cylinders. Herein, the aspect
ratio is held constant while the boundary layer thickness,
δ/d, is varied to show similar changes in mean topologi-
cal structure. Instantaneously, highly three-dimensional co-
herent vortex structures are shed quasi-periodically which
display corresponding differences in topology. The turbu-
lent vortex shedding that occurs displays a high degree of
amplitude and base flow modulation, making a traditional
phase average inadequate to describe the flow dynamics.

1



August 28 - 30, 2013 Poitiers, France

COH2E

This paper proposes to investigate these dynamics. Us-
ing the generalized phase averaged planar field, the 3D
coherent structure construction is realized by correlating
surface pressure and planar modal coefficients. A six-
dimensional model is derived based on the most ener-
getic modes and a stochastic-deterministic term simulating
higher-order contributions.

GENERALIZED PHASE AVERAGING
In order to increase the fidelity of dynamical represen-

tation, generalized phase averaging (Bourgeoiset al., 2013)
was introduced as a triple decomposition accounting for
time variations of the base flow and the amplitude of co-
herent oscillations. This formulation is a more robust repre-
sentation of the dynamic coherent structure behaviour than
the traditional phase average. While the latter takes the base
flow and oscillatory mode amplitudes to be constant in time,
the generalized phase average incorporates temporal varia-
tions of both. Figure 1 presents the data reduction procedure
where the velocity,u(x, t), is decomposed as

u(x, t) = uB(x, t)+uφ (x, t)+uS(x, t) (1)

The base flow,uB(x, t), is the sum of the long-time
mean,U, and shift mode,u∆ (Noacket al., 2003) (defined
as the first POD mode of the Gaussian time-filtered field
u−U),

uB(x, t) = U(x)+a∆(t)u∆(x) (2)

The periodic fluctuations,uφ (x, t), are represented as
an expansion ofNh empirical harmonic modes. Each har-
monic consists of a pair of complementary modes that have
either symmetry (even harmonics) or anti-symmetry (odd
harmonics) with respect to the geometrical plane of sym-
metry,y= 0. Symmetric and anti-symmetric modes will be
denoted with superscripts ‘s’ and ‘a’, respectively. For ex-
ample, the 1st harmonic mode pair is denotedua

1 andua
2, or

as a single complex modẽu1 = ua
1− iua

2. The second har-
monic isũ2 = us

1− ius
2, and so on. These modes are deter-

mined using the POD of the velocity fluctuationu−uB such
that the periodic fluctuations may be written as functions of
these modes or fluctuation amplitudes,An, and phases,nφ ,
of each harmonic,

uφ (x, t) =
Na

∑
n=1

(aa
2n−1ua

2n−1+aa
2nua

2n)

+
Ns

∑
n=1

(as
2n−1us

2n−1+as
2nus

2n)

=
Nh

∑
n=1

ℜ
[
Aneinφ(t)ũn

]
.

(3)

where the total number of harmonics in the expansion is
equal to the sum of the anti-symmetric (odd) and symmet-
ric (even) harmonicsNh = Na +Ns. The remaining term,
uS(x, t), is the remaining stochastic fluctuation (unresolved
residual) of the decomposition.

DYNAMIC-STOCHASTIC MODEL
A Galerkin projection of the Navier-Stokes equations

onto the five mode velocity field expansion (eq. 1), with
u = ∑5

i aiui whereu1 = ua
1, u2 = ua

2, u3 = us
1, u4 = us

2,
u5 = u∆, andai the corresponding amplitudes, yields the
following set of ODEs (Holmeset al., 2012).

dai

dt
= ci +

5

∑
j=1

l i j a j +
5

∑
j,k=1

qi jka jak, i = 1, . . . ,5. (4)

The strongest limitation of eq. 4 which remains consis-
tent with the empirical POD observations of the planar PIV
measurements follow the form

aa
1 = A1cos(ω∗

1t) (5a)

aa
2 = A1sin(ω∗

1t) (5b)

as
1 = A2cos(2ω∗

1t + τ) (5c)

as
2 = A2sin(2ω∗

1t + τ) (5d)

a∆ = BFP+B′ (5e)

whereA1, A2, B′ and ω∗
1 are slowly varying functions of

time as compared to the oscillation periodT1 = 2π/ω∗
1 .

The constantBFP is chosen so thatU+BFPu∆ represents the
fixed point of the Navier-Stokes equation,i.e., for which the
amplitude of the modes are zero,{ai = 0}.

Closely following a generalized mean-field model
derivation (Noacket al., 2003; Luchtenburget al., 2009),
the following stochastic-deterministic dynamical model is
found

daa
1

dt
= (σ1−β1B′+βξ ξ )aa

1− (ω1+ γ1B′)aa
2 (6a)

daa
2

dt
= (σ1−β1B′+βξ ξ )aa

2+(ω1+ γ1B′)aa
1 (6b)

das
1

dt
= (σ2−β2B′)as

1− (2ω1+2γ1B′)as
2+hs

1 (6c)

das
2

dt
= (σ2−β2B′)as

2+(2ω1+2γ1B′)as
1+hs

2 (6d)

dB′

dt
= σ∆ B′+c1A2

1 (6e)

dξ
dt

= −σgξ +n(t). (6f)

This is a two-harmonic oscillator system augmented by
a Langevin equation (eq. 6f) with a Gaussian noise term
n(t) leading to a Wiener process,ξ (t). The first harmonic
is self-excited with growth-rateσ1 − β1B′ and frequency
ω1 + γ1B′. The growth-rate is damped by the base-flow
amplitudeB′ and modulated by the Wiener process,ξ (t),
which accounts for the source/sink effect of the stochastic
term,uS, in eq. 1.

The second harmonic is a damped oscillator with
growth-rateσ2−β2B′ < 0 and the frequency 2ω1+2γ1B′,
driven by the quadratic forcing terms

hs
1 = f [(aa

1)
2− (aa

2)
2]+2gaa

1aa
2, (7a)

hs
2 = −g[(aa

1)
2− (aa

2)
2]+2 f aa

1aa
2. (7b)
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Figure 1. Flow chart for generalized phase average processing.

The base-flow is described by eq. 6e, and following
Noacket al.(2003); Luchtenburget al.(2009), its slow vari-
ation can be exploited, reducing to the algebraic relationship

a∆ = BFP+c1A2
1. (8)

The coefficientsσ1, σ2, β1, β2, βξ , ω1, γ1, σg, f ,
g, BFP, and c1 are calibrated empirically based on the
state{ai} determined by generalized phase averaging of un-
steady flow data following Luchtenburget al. (2009).

EXPERIMENTAL SETUP
The generalized phase average is undertaken on a set of

PIV measurements conducted in the University of Calgary
wind tunnel. Horizontal (x-y) and vertical (x-z) planes (see
Fig. 2 for coordinate system and schematic) were measured
in the wake of the wall-mounted square cylinder, installed
in a blow-down open-test-section wind tunnel. A LaVi-
sion FlowMaster high-frame-rate particle image velocime-
try (PIV) system is used with a pulse separation of 50µs
and frame rates of 500 Hz (capturing 4 to 5 data points per
shedding cycle). This planar data is used to generate a 3D
construction of the coherent structures in the wake.

Test conditions were a free-stream velocity,U∞ = 15
m/s, a Reynolds numberRe= U∞d/ν = 12,000, a free-
stream turbulence intensity of 0.8%, and an aspect ratio of
the square cylinder ofh/d = 8, mounted with one face nor-
mal to the flow. The vortex shedding Strouhal number was
found to beSt= f d/U∞ = 0.102± 0.003. The turbulent
boundary layer originates at the leading-edge of the mount-
ing plate. Two boundary layers with thicknessδ/d = 0.72
and 2.6 (at the cylinder mounting location with the cylinder
removed) were investigated.

For the 3D flow reconstruction, 6 simultaneous surface
pressure measurements atz/h = {0.25,0.50,0.75} on ei-
ther side of the cylinder were correlated with the flow state
observed from POD of the PIV data. Using techniques
described in Bourgeois (2012); Bourgeoiset al. (2013),
the pressure data is correlated with the velocity field POD
modes and a prediction scheme is used to estimate the 3D

Figure 2. Schematic of experimental configuration.

coherent flow at any instant given the surface pressure.
The methodology is similar to remote sensing techniques
(Borée, 2003; Taylor & Glauser, 2004). The sampling rate
for the surface pressure is 10.24 kHz and is synchronized
with the PIV measurements using a TTL trigger.

RESULTS
Figure 3 depicts the 3D topology of the shed vortex

skeletons, for an arbitrary phase and identified using the
λ2-criterion, based on the reconstructed flow in the wake of
an aspect ratio 8 cylinder forδ/d = 0.72 and 2.6. Briefly,
while the two topologies are anti-symmetric, correspond-
ing to a staggeredvon Kàrmàn-likearrangement of counter-
rotating shed vortices, dynamically important near-wall dif-
ferences are evident. Whereas the thicker boundary layer
case is characterized by a chain of interconnecting counter-
rotating ring structures, the thinner case generates half-ring
structures interconnected on the free-end side, but with the
near-wall vortex cores diverting outwards suggesting strong
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Figure 3. Coherent structures identified byλ2.

interactions with the wall flow. The flow physics of the vor-
tex shedding for the two cases are interesting, but the focus
here is on the improved dynamical representation provided
by the generalized phase average over traditional means.

Despite the differing spatial flow structure, the tempo-
ral behaviour of the respective modes,ai(t), captured by
the generalized phase average is similar. In both cases, the
dominant (most energetic) fluctuations are represented by
the 1st and 2nd harmonic pairs and the slow-drift mode, thus
conforming well to eqs. 5. Although the stochastic model
constants for each case differ, the form of the model de-
scribing their dominant modal dynamics is the same (see
also the case of theh/d = 4 wake where the technique was
first applied, Bourgeoiset al., 2013). Hence, the general-
ized phase average is a robust data reduction method for in-
creased dynamical resolution of the 3D turbulent shedding
phenomenon across parameter changes (e.g.,h/d, δ/d).

Focusing on the results of the planez/d= 4 for the two
boundary layers, the amplitude of the oscillatory modes,

A1 =
√

(aa
1)

2+(aa
2)

2, over time is far from constant in both

cases (see Fig. 4). Large amplitude excursions are found, as
shown by the instantaneous data points of phase and ampli-
tude shown in Fig. 4 (from projection of the PIV data onto
the harmonic mode pair POD eigenfunctions). The tradi-
tional phase averaged amplitude is shown as solid lines in
the figure. Clearly, a richness of dynamic information on
the coherent motion is lost when considering the behaviour
on the limit cycle only.

The identification of the relationship of the instanta-
neous oscillatory and shift mode amplitudes by the gener-
alized phase average supports that mean field theory devel-
oped for laminar flows (Noacket al., 2003) holds at least
approximately (within some stochastic deviation) for fully
turbulent wakes as seen in Fig. 5. This theory describes
how slow variations of the base flow are coupled to the vari-
ations in the oscillatory mode amplitude through the mean
field paraboloid (eq. 8 derived from the Galerkin projection
of the Navier-Stokes equations).

The degree the oscillation amplitude modulation, and
the coupled changes in the base flow through the shift mode,
is quite high in the studied wakes. The standard deviation
of the amplitude is more than 30% of the mean amplitude
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Figure 4. State observed from the fundamental harmonic
mode pair (δ/d = 0.72: blue; δ/d = 2.6: grey) and the
phase averaged amplitude (δ/d = 0.72: red; δ/d = 2.6:
black). Plane:z/d = 4.
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Figure 5. Amplitude and shift mode state observed
(δ/d = 0.72: blue;δ/d = 2.6: grey) and regression of the
mean field paraboloid curve (δ/d = 0.72: red;δ/d = 2.6:
black). Plane:z/d = 4.

for the planez/d = 4. These aspects (modulated fluctuation
amplitude and base flow) of the flow are therefore particu-
larly important for a low residual description of the coher-
ent structures, or conversely, for maintaining a high-fidelity
resolution of the coherent energetic content independently
of the fluctuation amplitude and base flow modulations.

The mean square residuals, normalized by the mean
square fluctuation, is given by:

Z :=

∫
Ω(u− û)• (u− û) dA∫

Ω u′′ •u′′ dA
=

‖u− û‖2
Ω

‖u′′‖2
Ω

(9)

whereu is the PIV data,̂u is the estimate according to the
phase average (either generalized or traditional), andu′′ =
u−U. This residual represents the ratio of the unresolved
to total fluctuation energy.

As expected, the mean squared residuals of the two de-
scriptions (traditional and generalized phase average) are
similar when the oscillation amplitude is close to its mean
(i.e. near the limit cycle), however, instantaneous residu-
als are typically 30 to 40% of the mean fluctuation level
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higher for the phase averaged description when amplitudes
deviate from the mean amplitude (Fig. 6). The general-
ized phase average, meanwhile, has roughly constant resid-
uals over the range of observed oscillation amplitudes. The
residual level is an estimation of the unresolved fluctuation
energy. The present observations imply that for increasing
deviations from the limit-cycle, the traditional phase aver-
age yields an increasingly poorer resolution of the coherent
motion, whereas the estimations obtained with generalized
phase average are independent of the state in the low-order
space. Therefore, the generalized phase average provides a
superior descriptive framework for the dynamics.
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Figure 6. Normalized residual,Z, of the phase aver-
aged (triangles) and generalized phase average (circles) and
probability density,P. Blue: δ/d= 0.72; black:δ/d= 2.6.
Plane:z/d = 4.

Using the correlations of the velocity modes with the
pressure field allows for 3D flow estimations and applica-
tion of the generalized phase averaging to the 3D field. The
flow state observations were used to calibrate the stochas-
tic model described by eqs. (6 - 8). The integration of this
model is portrayed in Fig. 7 (black line) which displays a
good agreement with the observations (grey points).

The filtered behaviour that the pressure estimated flow
field (with a state corresponding to the grey points behind
the model solution trajectory in Fig. 7) provides a clear il-
lustration of the benefits of the generalized phase average
over the harmonic oscillations captured by the traditional
phase average, namely the modulated fluctuation ampli-
tudes,A1(t) andA2(t), and the intimately linked base flow
modulation described bya∆(t). The 3D data shows a clear
parabolic relationship between the base flow amplitude,
a∆, and that of the fundamental harmonic together with a
stochastic fluctuation associated with higher-order mode in-
teractions. In the low-order system, the stochastic contribu-
tions are modelled with the Langevin equation modulating
only the fundamental harmonic amplitude. Notwithstand-
ing, the behaviour along the mean-field paraboloid and the
1st harmonic phase plot are well rendered for both cases.
When comparing the two wakes, the observed wider ampli-
tude fluctuation range for the thicker relative to the thinner
boundary layer case is also rendered. Note that in the cho-
sen planez/d= 4, the structures are least distorted (see Fig.
3) and it is expected that the differences between the two
cases are quantitative rather than qualitative.

The second harmonics and baseflow are subsequently
coupled to this modulation and interact through the linear
and quadratic mode-interaction terms of eqs. 6–8. This ap-
proach is well-justified for both cases when comparing the
observed and modelled phase portraits linking the 1st and
2nd harmonics in Fig. 7. The two cases show significant
qualitative differences. The second harmonic is associated
with the dynamics of the connector strands, which display
distinct structures as observed from Fig. 3.

The pressure-velocity correlations found from each set
of simultaneous PIV planar and surface pressure measure-
ments provides a preprocessing scheme which subsequently
acts as a means for 3D flow estimation from pressure data.
As such, the estimated flow field loses some of the stochas-
tic behaviour observed in Figs. 4 and 5.

This low-order representation and its associated model
presents the next most-significant modal and inter-mode dy-
namics of the vortex shedding wake (and other analogous
systems), and offers the next step on the path of increasing
complexity that turbulent coherent structures display.

CONCLUDING REMARKS
This study outlines a generalized phase average de-

composition applicable to a wide range of turbulent flows
with oscillatory dynamics. This technique is used to extract
the two typical shed vortex topologies found in the wake of
a wall-mounted square-cylinder depending on the boundary
layer thickness,δ/d. The oscillation and base flow ampli-
tude are highly modulated (30% standard deviation relative
to the mean is common) and thus the generalized descrip-
tion is preferred over the traditional description in order to
appropriately describe the flow over the range of conditions
observed. The fact that these modulations are analytically
coupled, approximately obeying the mean field paraboloid,
further supports the analytical inclusion of time varying am-
plitude and base flow parts since they portray a highly co-
herent and repeatable behaviour which should be accounted
for in low-order representations. These strengths are ulti-
mately demonstrated through a six-dimensional stochastic
reduced order model of the wake flow.
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