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ABSTRACT
We extend the simple forcing-response model devel-

oped by McKeon & Sharma (2010) to predict the wall pres-
sure field associated with coherent structures in turbulent
pipe flow. Realistic coherent structures such as modulating
packets of hairpin vortices arise from the superposition of a
small number of the velocity response modes predicted by
this model. The wall pressure fluctuations associated with
these velocity response modes capture many features ob-
served in laboratory experiments and DNS, such as the lo-
cation of pressure minima beneath coherent structures, the
near-circular aspect ratio of wall pressure fluctuations, and
the discrepancy in the characteristic length scales associated
with the streamwise velocity and wall pressure fluctuations.

INTRODUCTION
The fluctuating wall pressure induced by turbulent

flows is important across a range of engineering problems
- from aerodynamic noise generation and structural load-
ing, to sediment transport in river channels. Further, the
wall pressure field is coupled to turbulent velocity fluctua-
tions across the entire domain via a Poisson equation (Kim,
1989), and the wall-parallel gradient of wall pressure is di-
rectly proportional to the flux of vorticity from the wall
(Koumoutsakos, 1999). As a result, an improved under-
standing of the wall pressure field could also benefit flow
diagnostics and control.

Unfortunately, there are many technical challenges as-
sociated with obtaining accurate wall pressure measure-
ments. The small spatial scales associated with turbulent
flows impose severe sensor size limitations (Schewe, 1983;
Klewicki et al., 2008). The presence of significant back-
ground noise and structural vibration results in inherently
noisy measurements that require careful correction (Tsuji
et al., 2007, 2012). Recent advances in Direct Numerical
Simulation (DNS) (Jimenez & Hoyas, 2008), along with
improved pressure measurement techniques and the devel-
opment of large-scale, high Reynolds number flow facilities

(Tsuji et al., 2007; Klewicki et al., 2008) have provided sig-
nificant insight into the statistical nature of the wall pressure
field. Some well-established theoretical predictions, such
as the presence of a k−1 spectral range (k is the stream-
wise wavenumber), as well as the logarithmic increase of
inner normalized mean-square wall pressure

(
p′2w
)+ with

Reynolds number have been confirmed (Jimenez & Hoyas,
2008; Klewicki et al., 2008). (Note: throughout this paper,
a superscript + refers to normalization with respect to the
friction velocity, uτ , and kinematic viscosity, ν .)

Despite these advances, the structural nature and ori-
gin of the wall pressure field is less well established.
This is because an accurate structural description requires
temporally- and spatially-resolved wall pressure data. The
resulting storage and processing requirements compound
any technical challenges associated with obtaining such
data in the first place. Broadly, numerical (Kim, 1989;
Jimenez & Hoyas, 2008) and experimental (Klewicki et al.,
2008) results agree that, unlike the streamwise velocity fluc-
tuations, wall pressure fluctuations are nearly circular in
terms of aspect ratio (i.e., comparable streamwise and span-
wise length scales). Yet, there is little consensus on the
characteristic length scales and advection speeds associated
with the wall pressure field.

In this paper, we use the forcing-response model de-
veloped by McKeon & Sharma (2010) to study the wall
pressure field associated with the passage of coherent struc-
tures in turbulent pipe flow. Although we only consider pipe
flow, we expect our results to be applicable across different
flow configurations (e.g. channel and boundary-layer flow).
The model employs the Navier-Stokes equations (NSE),
Fourier-transformed in the homogeneous spatial directions
and in time, along with an assumed mean velocity profile.
Under the Fourier transform, each wavenumber-frequency
combination corresponds to an obliquely propagating wave.
The nonlinear advective terms in the NSE are treated as an
unstructured forcing. The well-known linear Navier-Stokes
resolvent operator maps this nonlinear forcing to a veloc-
ity response. Note that the mean velocity is sustained in
the full model but is assumed here for convenience. With
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this assumption, the system can be considered as a series
of linear sub-units (corresponding to each wavenumber-
frequency combination) with unstructured forcing. A sin-
gular value decomposition of the resolvent operator iden-
tifies the highest-gain forcing and response mode shapes
(i.e., profiles in the inhomogeneous wall-normal direction).
McKeon & Sharma (2010) show that, in general, the ve-
locity response modes identified by this model resemble
the near singular critical-layer solutions obtained via clas-
sical, linear Orr-Sommerfeld-Squire analyses. Further, the
response modes appear consistent with observations in real
flows.

More recently, Sharma & McKeon (2013) have shown
that structures resembling hairpin vortices arise naturally
from the superposition of a pair of obliquely propagat-
ing critical-layer velocity response modes, with spanwise
wavenumber ±n. More complex structures, such as modu-
lating packets of hairpin vortices, arise from the superposi-
tion of three obliquely propagating mode pairs (±n) that are
triadically consistent in terms of frequency and wavenum-
ber. In what follows, we study the wall pressure field associ-
ated with such model structures. We show that these simple
models are able to qualitatively reproduce many of the ob-
served structural features of the wall pressure field beneath
wall turbulence.

FORCING-RESPONSE MODEL (RESOLVENT
ANALYSIS)

This section provides a brief review of the model de-
veloped by McKeon & Sharma (2010), and describes the
extension to include pressure. We consider turbulent flow
through a long cylindrical pipe. Given the statistical homo-
geneity in the streamwise direction and in time, along with
the integer constraint on azimuthal (spanwise) wavenumber,
the total turbulent velocity field, ũ, can be expressed as a su-
perposition of Fourier modes with streamwise wavenumber
k, spanwise wavenumber n, and temporal frequency, ω:

ũ(x,y,θ , t) = ∑
n

∞∫

−∞

∞∫

−∞

uk(y)ei(kx+nθ−ωt)dk dω (1)

Here, x and θ are the streamwise and azimuthal directions,
respectively, and t is time. The wall-normal coordinate is
y = 1− r, where r is the radial coordinate normalized by
pipe radius, R. Retaining boundary-layer terminology, the
velocity vector ũ = (ũ, ṽ, w̃) represents the streamwise (ũ),
wall-normal (ṽ), and azimuthal velocities (w̃). The turbu-
lent mean velocity profile is u0 = (U(y),0,0), and the fluc-
tuating velocity field is u = ũ−u0. At each wavenumber-
frequency combination, k = (k,n,ω), this Fourier decom-
position yields an input-output relationship. The nonlinear
advective terms in the NSE are treated as an unstructured
forcing (input) to the system, fk = (u ·∇u)k. The Navier-
Stokes resolvent operator, Hk, comprises the transfer func-
tions that map this forcing to the velocity response (output).

McKeon & Sharma (2010) projected the NSE onto a
space of divergence-free basis functions that satisfied the
correct boundary conditions, uk(y= 0) = 0, to eliminate the
pressure term and satisfy mass continuity. To capture the
fluctuating pressure associated with the velocity response
modes, the forcing-response system is derived directly in
terms of the so-called primitive variables instead. Pressure,

pk, is retained explicitly in the formulation:

[
uk(y)
pk(y)

]
=

(
−iω

[
I

0

]
−
[

Lk −∇k
∇T

k 0

])−1 [ I
0

]
fk

= Hk(y)fk(y) (2)

Here, Hk is a modified resolvent operator, Lk(k,u0,Re)
is the linear Navier-Stokes operator and Re is the Reynolds
number. The first row of the operator inside the parenthe-
ses on the right-hand side of (2) represents the momentum
equations, while the last row represents continuity. Follow-
ing McKeon & Sharma (2010), a singular value decompo-
sition of the discretized resolvent operator,

Hk = ∑
m

uk,mσmf∗k,m

with

σ1 > σ2... > σm > 0
f∗k,lfk,m = δlm
u∗k,luk,m = δlm

(3)

identifies the forcing mode shape fk,1(y) that leads to the
most amplified velocity response σk,1uk,1(y) under an L2

(energy) norm. A superscript (∗) denotes the conjugate
transpose.

McKeon & Sharma (2010) show that large velocity
responses (high σk,1) arise through two mechanisms: via
the lift-up mechanism associated with the high mean shear
close to the wall, or at the critical layer where the phase
speed of the propagating mode matches the local mean ve-
locity, c = ω/k = U . As mentioned earlier, in the lat-
ter case, the velocity response modes closely resemble the
critical-layer solutions obtained from classical linear Orr-
Sommerfeld-Squire analyses. Extending the concepts of
linear stability analysis to the present turbulent case, the
first singular response modes uk,1 are, in a sense, the least
damped velocity fields. They are sustained by minimal forc-
ing in the direction of fk,1. The importance of linear pro-
cesses in turbulent wall flows has been recognized for some
time (Kim, 2003). The model considered here identifies the
nonlinear interactions as a forcing to the linear system.

Importantly, analysis of the resolvent operator at k
combinations observed in real turbulence suggests that
these transfer functions are effectively low-rank. Only, a
limited number of input directions, fk,m are highly ampli-
fied and so the velocity field uk may be reasonably approx-
imated by the first singular response, uk,1. In other words,
the first singular response mode is so highly amplified that
it dominates the velocity field, as long as a non-zero com-
ponent of forcing exists along fk,1 in the real flow. Recent
studies by Sharma & McKeon (2013) and Moarref et al.
(2013) have shown that this low-rank model captures many
of the key statistical and structural properties of wall turbu-
lence. As a result, we consider only the first singular forcing
and response modes for the remainder of this paper. For no-
tational convenience, we drop the additional subscript 1.

PRESSURE POISSON EQUATION
Taking the divergence of the momentum equation (top

line of 2) yields the Poisson equation for the turbulent pres-
sure field in incompressible flows. The source terms in the
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Figure 1: (a) Log-spaced contours showing the magnitude of the Green’s function at the wall for source terms at
the wall. (b) Green’s functions for wall pressure for the four wavenumber combinations marked in (a), k1 = (6,6)
(black line), k2 = (1,6) (bold black line), k3 = (7,12) (fine black line), and kb = (60,60) (gray line).

pressure Poisson equation consist of a linear or rapid contri-
bution arising from the product of the mean shear (U ′) and
streamwise gradient of wall-normal velocity (ikvk), and a
nonlinear or slow contribution representing interactions be-
tween the fluctuating velocity components (∇k · fk):

∇2
k pk =−2ikvkU ′+∇k · fk (4)

The DNS of Kim (1989) and Jimenez & Hoyas (2008) sug-
gest that the slow component of pressure is dominant except
very close to the wall. Near the wall, the rapid component
of pressure tends to be larger. However, in general, the mag-
nitude of both terms is comparable. The resolvent analysis
approach considered here emphasizes linear mechanisms.
Hence, we expect our model to yield reasonable predictions
for the rapid component of pressure associated with each
mode. The slow component of pressure depends on nonlin-
ear interactions, requiring additional knowledge about the
relative magnitude and phase of each mode.

The fluctuating pressure field must satisfy the follow-
ing Neumann boundary condition at the wall, which results
from the wall-normal momentum equation:

∂ pk
∂ r

(r = 1) =
1

Re

[
1
r

∂
∂ r

(
r

∂vk
∂ r

)]
(5)

However, previous studies (Kim, 1989) show that the effect
of this inhomogeneous boundary condition is negligible at
high Reynolds number and that it may be replaced by

∂ pk
∂ r

(r = 1) = 0 (6)

Although the inhomogeneous wall boundary condition (5)
does not significantly affect the pressure field, this does not
imply that the presence of the wall does not significantly
affect pressure fluctuations. Kim (1989) suggests that the
effect of the wall is built into the source terms in (4), via the
no-slip boundary condition instead.

Green’s Function Solution
To gain further insight into the nature of the fluctuating

wall pressure associated with the velocity response modes

at each k, we consider a Green’s function representation.
It can be shown that the Green’s function for (4) and (6)
corresponding to (k,n) 6= 0 is:

Gk(r,r′) =

{−AkIn(kr′)In(kr)− In(kr′)Kn(kr), r > r′

−AkIn(kr′)In(kr)− In(kr)Kn(kr′), r < r′

(7)

with

Ak =
Kn−1(k)+Kn+1(k)
In−1(k)+ In+1(k)

(8)

Here, In and Kn are modified Bessel functions. Using (7),
the solution to (4) becomes:

pk(r) =
r∫

0

Gk(r,r′)Sk(r′)r′ dr′ (9)

where Sk(r′) represents the source terms in the Poisson
equation (4) located at r′. Note that (4-9) have been ex-
pressed in terms of the radial coordinate, r. However, unless
otherwise stated, the discussion below is framed in terms of
the wall-normal coordinate y = (1− r) and velocity.

The magnitude of the Green’s function at the wall (y =
0) corresponding to a source located at the wall (y′ = 0)
is shown in Fig. 1a. It is clear that the magnitude of the
Green’s function decreases with increasing streamwise and
spanwise wavenumbers. Further, the contours are roughly
symmetric in k and n. In agreement with prior observa-
tions, this suggests that for identical source strengths, circu-
lar structures with similar streamwise and spanwise length
scales are likely to generate larger wall pressure signatures
compared to structures elongated in either the streamwise
or spanwise directions.

Figure 1b shows the variation in the Green’s functions
at the wall (y = 0) for varying source locations (y′), for
four different wavenumber combinations: the triadically-
consistent modes k1 = (k,n) = (6,6), k2 = (1,6), and k3 =
(7,12) considered by Sharma & McKeon (2013), along
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with kb = (60,60). The streamwise wavenumber k is nor-
malized based on pipe radius, such that k = 1 corresponds to
a streamwise wavelength 2πR. The Green’s functions cor-
responding to higher wavenumbers (e.g. kb, k3) decay very
rapidly away from the wall compared to those for the lower
wavenumbers (e.g. k2). As a result, larger-scale structures
in the velocity field are likely to have a longer-range influ-
ence on wall pressure. At the same time, the source terms
for the pressure Poisson equation (4) depend on gradients in
the velocity fields. These gradients are likely to be smaller
for the larger-scale structures.

Below, we consider the velocity and pressure fields for
mode kb, as well as a packet comprising modes k1, k2, and
k3. These fields are computed based on the singular value
decomposition of the Navier-Stokes resolvent operator at
Reynolds number Re = 2ŪR/ν = 75× 103 (R+ = 1800),
where Ū is the bulk-averaged mean velocity. The dis-
cretized resolvent operator in (2) is constructed using the
experimental mean velocity data of McKeon et al. (2004).

SINGLE MODE
Figure 2 shows the velocity and pressure for the mode

kb = (k,n,ω) = (60,60,30) computed under the singular
value decomposition of the Navier-Stokes resolvent. This
mode combination represents a helical wave of streamwise
and spanwise wavelength λx = λθ = 2πR/60 (λ+

x = λ+
θ ≈

190), propagating downstream at half the pipe centerline
velocity, c = ω/k = 0.5 (c+ ≈ 12). The wall-normal lo-
cation of the critical layer for this mode, where U = c, is
y+c ≈ 23. Importantly, although we only consider a specific
wavenumber-frequency combination, the results presented
below are generally representative of the velocity and pres-
sure fields predicted by the extended resolvent analysis.

Figure 2a shows that the magnitude of the streamwise
velocity (u) peaks close to the critical layer. The wall-
normal velocity (v) peaks at a location slightly further away
from the wall, y+ ≈ 30. In general, the pressure magnitude
(p) exhibits little variation (< 20%) for y+ < 30. However,
there is a discernible peak in pressure near the critical layer
y+ ≈ 25 (Fig. 2a), corresponding to the location where the
rapid source term in the pressure Poisson equation (4) is
maximum. The pressure decays for y+ > 40, as the rapid
source term becomes negligible.

Note also the distinct phase profiles for the velocity and
pressure fields shown in Fig. 2b. The wall-normal velocity
(fine black line) is approximately π out of phase with the
streamwise velocity at the critical layer. Further, the phase
of the streamwise velocity decreases by π across the critical
layer (from y+ ≈ 10 to y+ ≈ 40). These phase profiles are
typical of the critical layer solutions expected from linear
analysis of the Orr-Sommerfeld-Squire equations. The π
phase difference between the wall-normal and streamwise
velocities comes about because the mean shear and viscous
terms in the u-momentum equation must balance at the crit-
ical layer, vkU ′ ∼ ∇2

kuk. When traveling downstream with
the mode at speed c, this characteristic phase profile also
leads to the well-known cat’s eye sreamline patterns in the
streamwise-wall normal plane (see e.g. Fig. 3b). The cat’s
eye streamline pattern is associated with two-dimensional,
inviscid Kelvin-Stuart vortices. Sharma & McKeon (2013)
suggest that the response modes predicted by our model
may be interpreted as the three-dimensional equivalent (reg-
ularized due to viscosity).

Fig. 2b shows that there is a nearly-constant π/2 phase
difference between the pressure (gray line) and wall-normal

Figure 2: Wall-normal variation in the absolute mag-
nitude (a) and phase (b) of the streamwise velocity
(u, black line), wall-normal velocity (v, fine black
line), and pressure (p, gray line) for the mode kb =
(60,60,30). (c) Temporal variation in wall pressure,
and the streamwise and wall-normal velocities at the
critical layer. Dashed gray lines represent the rapid
component of pressure, computed using (9).

velocity field (fine black line). This means that the wall-
normal velocity leads (lags) the pressure in space (time).
Pressure minima occur during periods of rapidly increasing
wall-normal velocity, as shown in Fig. 2c.

The constant π/2 phase difference between pressure
and wall-normal velocity also suggests that the primary
contribution to the pressure field comes from the rapid
source term in the pressure Poisson equation (4) such that
∇2

k pk ∼−ikvkU ′. This is further confirmed by the Green’s
function solutions to pressure shown in Fig. 2 (dashed gray
lines). These solutions are computed based on (9), as-
suming contributions only from the rapid source term (i.e.,
Sk = −2ikvkU ′). There is close agreement between the
Green’s function solution and the pressure computed from
the resolvent analysis, showing that the model developed
here generates forcing mode shapes that are near solenoidal,
∇k · fk ≈ 0. Unlike McKeon & Sharma (2010), we do
not enforce solenoidal fk in this paper. Solenoidal forcing
arises naturally from the singular value decomposition as
the input direction that leads to the largest velocity response
(i.e., highest σk). Intuitively, this may be attributed to
the Helmholtz decomposition; non-solenoidal forcing does
not directly contribute to the solenoidal velocity field, and
hence the velocity response would be lower for such forcing
(i.e., lower σk). The dominance of the rapid pressure terms
also underscores the link between the present model and
the linear analysis associated with Rapid Distortion Theory
(Hunt & Carruthers, 1990; Pope, 2000). This link will be
elaborated elsewhere.

Sharma & McKeon (2013) show that structures re-
sembling hairpin vortices arise from the superposition of
two obliquely traveling modes. This is illustrated by the
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swirling strength1 isosurfaces shown in Fig. 3a for the su-
perposed modes k+

b = (60,60,30) and k−b = (60,−60,30).
The modes themselves generate an equal number of pro-
grade and retrograde vortices. However, the presence of the
shear associated with the mean velocity profile suppresses
the retrograde vortices and strengthens the prograde vor-
tices. The resulting structures appear consistent with prior
observations (see Sharma & McKeon (2013) for more infor-
mation). Note that the degree to which retrograde vortices
are suppressed and prograde vortices are strengthened de-
pends on the relative magnitude of the mean shear, and that
associated with modes k±b . Our model does not yield any
information on the relative amplitudes of the mode and the
mean velocity profile. The data shown in Fig. 3 assume that
the amplitude of the mean velocity profile, U , is 100× that
of the modes uk+

b
and uk−b

.
A local pressure minimum is often used as an intuitive

measure for vortex detection (Chakraborty et al., 2005).
The structures predicted by our model provide additional
physical insight into this measure. Figure 3a shows that
the heads of the hairpin vortices predicted by our model sit
above wall pressure minima in the streamwise and span-
wise directions. This is a direct consequence of the π/2
phase difference between wall-normal velocity and pres-
sure shown in Fig. 2, whereby the minimum pressure coin-
cides with periods of rapidly increasing wall-normal veloc-
ity (i.e., during periods of prograde rotation). In the wall-
normal direction, the hairpin heads are located just above
the critical layer (Fig. 3b). This is close to the location of
the maximum pressure amplitude.

The boundary-layer experiments of Schewe (1983) and
Johansson et al. (1987) showed that, despite their infre-
quent occurrence, periods of high intensity (i.e., large am-
plitude) wall pressure fluctuations contributed significantly
to the long-time root-mean-square value for wall pressure.
Conditional averages of the pressure measurements made
by Johansson et al. (1987) at Reynolds number similar to
that considered here (δ+ = 1800, where δ is boundary layer
thickness) showed that these high amplitude pressure peaks
originated from shear-layer structures in the buffer region
of the flow, with characteristic length scale L+ ≈ 150 and
advection speed U+

a ≈ 12 (c.f. λ+
x ≈ 190,c+ ≈ 12 for

mode kb). Schewe (1983) obtained similar results at a lower
Reynolds number (δ+ ≈ 600). Johansson et al. (1987) also
noted that large amplitude positive pressure peaks were as-
sociated with periods of increasing streamwise velocity and
decreasing wall-normal velocity at y+ ≈ 15. The time-
varying wall pressure and critical-layer velocities for mode
kb, shown in Fig. 2c, reproduce all of these features. Fur-
ther, Johansson et al. (1987) found that the amplitude of
the pressure peak scaled linearly with the velocities mea-
sured at y+ ≈ 15, indicating the dominance of the linear,
rapid component of pressure. In light of these observations,
the high intensity pressure fluctuations observed by Schewe
(1983) and Johansson et al. (1987) may be attributed to the
presence of modes similar to kb in the real flow.

THREE-MODE PACKET
Sharma & McKeon (2013) show that the triadically

consistent combination of mode pairs k1 = (6,±6,4), k2 =
(1,±6,2/3), and k3 = (7,±12,14/3), propagating at speed
c = 2/3, can recreate realistic complex structure consist-
ing of modulating hairpin vortex packets. Fig. 4 shows the

1The imaginary component of the complex conjugate eigen-
value of the velocity gradient tensor (Chakraborty et al., 2005)

Figure 3: (a) Swirling strength isosurfaces (at 50% of
maximum) for the superposed modes k+

b and k−b . The
isosurfaces are colored based on the local azimuthal
vorticity; red denotes prograde rotation (i.e., in the
direction of mean shear) and blue denotes retrogade
rotation. The contours beneath the isosurfaces show
the normalized wall pressure field (contours at -0.8,-
0.6,-0.4,-0.2). (b) Azimuthal vorticity at the spanwise
location nθ/2π = 1 (dashed line in a). Solid lines
show swirling strength isocontours at 50% of maxi-
mum value. Arrows show the velocity relative to the
propagation speed of the mode, c = 0.5 (not to scale).

swirl field associated with this mode combination. To arrive
at these results, the complex amplitudes of the velocity and
pressure fields for the three modes were set to (a1,a2,a3) =
(1,4.5,0.83i) and the amplitude of the mean velocity pro-
file was set to 1000, so that ũ = 1000u0 +a1uk±1

+a2uk±2
+

a3uk±3
. These amplitudes were selected to be representative

of experiments. The swirl field for this mode combination
shows packets of prograde, hairpin-like structures (Fig.4a).
Together, the modes k1 and k3 would lead to a beating ef-
fect over a streamwise length scale ≈ 6R+, set by k1−k3.
The additional longer k2 mode organizes the hairpins into
discrete packets with the same streamwise length scale.

Figure 4 shows that the hairpin-like structures are as-
sociated with wall pressure minima. As before, this can
be attributed to the π/2 phase difference between the wall-
normal velocity and pressure (Fig. 2b). The wall pressure
field is dominated by structures corresponding to mode k1
(i.e., with streamwise and spanwise length scale L+ ≈R+ =
1800) despite the amplitude of mode k2 being set to 4.5×
that for mode k1. The larger wall pressure for mode k1 is
explained by the form of the rapid source term in the pres-
sure Poisson equation, Sk ∼ kvkU ′ (4). Since k1 = 6k2 and
|vk1 |max ≈ 4|vk2 |max, the source term is ≈ 24× larger for
mode k1 compared to mode k2. This increase in source
strength leads to a 16-fold increase in wall pressure for
the smaller k1 mode, which offsets the higher amplitude of
mode k2. In contrast to the wall pressure, the magnitude of
the streamwise velocity is comparable for all three modes.
As a result, the longer k2 mode dominates the streamwise
velocity field given its higher amplitude, a2 = 4.5 (data not
shown). These results are broadly consistent with the DNS
of Jimenez & Hoyas (2008), who show that the streamwise
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Figure 4: (a) Isometric and (b) plan views of swirling strength isosurfaces (at 50% of maximum) for the modulating
packet comprising modes k1, k2 and k3. The isosurfaces are shaded based on the local azimuthal vorticity; red
denotes prograde rotation and blue denotes retrogade rotation. The contours beneath the isosurfaces show the wall
pressure field. Red (blue) contour lines denote regions of high (low) pressure.

length scales associated with the pressure spectrum tend to
be smaller than those associated with the streamwise veloc-
ity spectrum.

Finally, although we only consider a single wave speed,
c, in this section, the form of the Green’s function solution
permits further comment. The model developed here pre-
dicts that wall turbulence is dominated by mode shapes re-
sembling critical-layer solutions. Hence, we anticipate that
modes with lower c are likely to be localized closer to the
wall, in regions of higher mean shear (U ′), leading to an
increase in the strength of the rapid source term in the pres-
sure Poisson equation (4). Everything else being equal, this
increase in source strength coupled with the closer prox-
imity to the wall, is likely to result in larger wall pressure
fluctuations for modes with lower c.
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