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ABSTRACT
In recent years there has been a considerable research

effort dedicated to turbulent pipe flow. Topics of interest
are, amongst others, the scaling of near wall turbulent statis-
tics and the existence of very large scale turbulent struc-
tures at higher Reynolds numbers. These structures have
been observed experimentally in boundary layers, Hutchins
& Marusic (2007) and pipes, Montyet al. (2007). Re-
cently these structures have also been observed in moder-
ate Reynolds number direct numerical simulations of chan-
nel and boundary layer flows. In this paper we will report
on the simulation of turbulent pipe flow at bulk Reynolds
numbers of 24600, 37500, and 75,000. The numerical grid
(up to 7.6e9 grid nodes) is comparable to the grid used by
Jimenez & Hoyas (2008) and should be sufficiently fine to
resolve all scales. At high Reynolds numbers we observe
some evidence of the aforementioned long scale structures.

Introduction
From an engineering point of view turbulent pipe flow

is a very important flow geometry, because of its wide range
of technical applications. Although most engineering prob-
lems involving pipe flows can be solved by simple engi-
neering correlations, there is still considerable fundamental
interest in turbulent pipe flow. One of the open questions is
the scaling of turbulent statistics in pipe flows. For instance,
in the past it has been argued that the peak of the axial
root mean square (rms) value of the turbulent fluctuations
is nearly constant and thus independent of the Reynolds
number, see for instance Mochizuki & Nieuwstadt (1996).
However, the Princeton super pipe experiments indicate that
there is a strong dependence of the peak value of the axial
rms on the Reynolds number, see for instance McKeonet
al. (2004). In a recent paper by Hultmark, Bailey & Smits,
(2010) a new calibration procedure has been used for the
probe which is more accurate for low values of the veloc-
ity, hence it should be more reliable near the curved pipe
wall. The new calibration gives results which are more or
less in line with the observation of Mochizuki & Nieuwstadt
(1996).

Large scale meandering structures have been observed
in turbulent boundary layers, Hutchins and Marusic (2007),
and channel flow Jimenez & Hoyas (2008). They are also
experimentally observed in pipe flows, Montyet al. (2007).
Two point correlations indicate that these structures are con-

siderably longer in pipes than in channels. Hutchins &
Marusic (2007) argue that these large scale structures can
penetrate into the near wall layer and can make a significant
contribution to the kinetic energy in this layer, even down
to D/2− r = 15ν/u∗, (whereu∗ is the friction velocity,D
the pipe diameter andν the kinematic viscosity). This is the
location where in general the peak of the turbulent kinetic
energy is observed. This statement is consistent with the
attached-eddy hypothesis of Townsend (1976). Therefore,
it could thus be argued that the long meandering structures
could have some influence on the peak value of the axial
rms.

Given the points above, and the lack of accurate simu-
lation data for pipe flow, it is in our view useful to perform
well resolved direct numerical simulations of pipe flow at
high Reynolds numbers. These simulations will be espe-
cially useful for the study of near-wall quantities which are
very difficult to measure experimentally, especially at high
Reynolds numbers where distances to the wall become ex-
tremely small.

In contrast to plane channel flow there are for turbulent
pipe flow only a limited number of numerical studies carried
out, see for instance Eggelset al. (1993), Loulou (1997)
and Wu & Moin (2008). These models are based on low
order finite difference methods and it is expected that the
accuracy of the predicted small scales is limited. Therefore,
we have developed a new highly accurate numerical model
using pseudo spectral techniques in the periodic directions
and a 6th order staggered compact finite difference method
in the wall normal direction. The algorithm is very similar
to the one presented by Boersma (2011) for a duct flow.

Numerical method
The flow in the pipe is governed by the incompress-

ible Navier-Stokes equations. Here we will use the formu-
lation given by White (2008) for a constant viscosity. The
equation for conservation of mass in cylindrical coordinates
reads:
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whereur ,uθ , anduz are the velocity components in the ra-
dial, tangential and axial direction respectively. The equa-
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tion for conservation of momentum read:
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In whichur,uθ anduz are the radial, tangential and axial ve-
locity component,p the pressure,ρ the fluids density, andν
the dynamic viscosity. For stability reasons we have refor-
mulated the non-linear term in the skew symmetric form.

The governing equations are normalized with the fric-
tion velocity u∗ and the pipe diameterD. The friction ve-
locity is by definition equal to the square root of the wall
friction divided by the fluids density, i.e.u∗ =

√
τw/ρ.

The (frictional) Reynolds number is now defined asRe∗ =
u∗D/ν and the bulk Reynolds numberReb = (Ub/u∗)Re∗,
where D is the pipe diameter andUb is the bulk veloc-
ity. The distance to the wallD/2− r can be now non-
dimensionalised in the following way

r+ =
(D/2− r)u∗

ν

Spatial discretization
Most numerical simulation models for pipe flow use

2nd order accurate finite differences. This results in gen-
eral in a very efficient computational algorithm. However,
the accuracy of these 2nd order methods, especially for
large wavenumber phenomena is not very good. Therefore,
we have chosen in the present study, for a pseudo spectral
method combined with a highly accurate 6th order stag-
gered compact finite difference method, which has been de-
veloped by us, Boersma (2011)

The Navier-Stokes equations written in cylindrical co-
ordinates are discretized with the pseudo spectral (FFT
based) method in the circumferential and axial direction. In
the radial direction we use the 6th order staggered compact
finite difference method. The grid in the radial direction is
nonuniform, with the grid point slightly clustered towards
the wall. The compact finite differences itself are computed
on a uniform grid with grids pacing∆R. To be able to use
a non-uniform grid in the radial direction a mapping of the
following form is used

d f
dr

=
d f
dR

dR
dr

where d f /dr is the derivative on the non-uniform grid,
d f /dR the derivative on the uniform grid which will be
calculated with the 6th order compact finite difference, and
dR/dr maps the non-uniform grid on the uniform grid. Here
we use a simple a simple relation forR such that thedR/dr
is can be calculated analytically. The derivatived f /dR has
been calculated with a staggered compact finite difference,
see for instance, Boersma (2011)

a( f ′i+1+ f ′i−1)+ f ′i =
b

∆R
( fi+1/2− fi−1/2)+ (2)

c
∆R

( fi+3/2− fi−3/2), with 2≤ i ≤ n−2,

In which f ′i is derivative off with respect tox at pointi, ∆R
is the (uniform) grid spacing anda, b, andc are yet unspeci-
fied coefficients. The coefficientsa, b andc can be obtained
from a Taylor expansions around grid pointi. With the three
coefficientsa,b, andc in equation (2) we can obtain an 6th
order accurate formulation. The values fora,b, andc for
this 6th order scheme are:

a = 9/62, b = 63/62, c = 17/186, 2≤ i ≤ n−2

Close to the boundary at pointsi = 1 andi = n−1 this sixth
order formulation can not be used because information from
outside the domain would be required. Therefore we use a
smaller stencil for these points:

a = 1/22, b = 12/11,c = 0, O(∆R)4

Which is formally fourth order accurate in∆R. At the
boundary i.e., the pointsi = 0 and i = n we use a 3rd or
a 4th order accurate formulation:
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The equation above are for the pointi= 0, for the pointi= n
similar equations can be derived.

Temporal discretization
The time integration is splitted into two steps. In the

first step the velocity is integrated to an intermediate level
u∗ with help of 3rd order Adams-Bashforth method

u∗−un =∆t

[
23
12

f (Rn)− 16
12

f (Rn−1)+
5
12

f (Rn−2)

]
+O(∆t)3

(5)
Where∆t is the time step,f (Rn− j) denotes all the spatial
derivatives in the governing equation at timet = (n− j)∆t.
Subsequently in the pressure correction scheme, the pres-
sure at time leveln+1/2 is used to calculate the velocity at
time leveln+1:

un+1 = u∗−∆t
1
ρ

∇pn+1/2 (6)
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So far the pressure at the time leveln + 1/2 is unknown
but it can be be computed from a Poisson equation which
can be derived by taking the divergence of equation (6), and
enforcing the divergence to zero at time leveln+1

∇ ·un+1 = ∇ ·u∗− ∆t
ρ

∇ ·
(

∇pn+1/2
)
= 0. (7)

∇ ·u∗ =
∆t
ρ

∇ ·
(

∇pn+1/2
)

(8)

After the solution of the pressurepn+1/2 from the Poisson
equation, equation (7), the final velocityun+1 can be com-
puted with help of equation (6). It should be noted that for
a consistent formulation it is essential to use the form given
by equation (8) and not to replace the left hand side by the
Laplacian of the pressure.

Implementation and data storage
The algorithm outlined above is implemented in For-

tran 90 using BLAS and LAPACK libraries. The paral-
lization has been done with the 2D pencil library:2de-
comp&fft . This library is build on top of the message
passing interface (MPI). The library is freely available from
http://www.2decomp.org. The newly developed DNS code
scales well up to 24,000 CPU’s (it actually scales in the
same way as2decomp&fft because all communication in
the code is handled by this library.

In the following section we will present results of three
simulations, with Reynolds numbers of 24,600, 35,000 and
75,000 (based on the bulk velocity and pipe diameter). The
corresponding Reynolds numbers based on the friction ve-
locity are 360, 1842 and 3685. In all cases the pipe length
is equal to 18 diameters. This length is considerable longer
than the length used in the majority of the direct numerical
simulations. We expect that we need this length to be able to
capture the long structures in the flow. The axial gridspac-
ing is in all simulated cases is less than 10 plus units (less
than 10r+), the maximum circumferential gridspacing is al-
ways smaller than 5 plus units and the radial gridspacing
near the wall is≈ 0.5 plus units. For the highest Reynolds
number this results in a grid of 440× 2400× 7200 grid-
points in the radial, circumferential and axial direction re-
spectively. The simulations are all started on a course grid.
The course grid results are interpolate to a finer grid en
eventually to grid with the characteristics given before. On
this grid the simulations are run sufficiently long to obtain
a statistical steady state. Once the simulation have reached
this state 100 to 150 full velocity and pressure fields are
stored for statistical postprocessing. For the finest grid this
gives a data base of approximately 25Tb. All the data sets
are stored on a locally available raid system. After the sim-
ulation is completed these data sets are post-processed on a
serial computer system.

Results
To give an impression of the flow we first present in

Figure 1 he instantaneous axial velocity in ther− θ plane
for the three different Reynolds Numbers. With increasing
Reynolds number clearly the near wall structures become
smaller.

Figure 1. The mean axial velocity for three different
Reynolds numbers (24,600, 35,000 and 75,000.

In Figure 2 we show the mean velocity profiles ob-
tained from the three DNS simulations. In Figure 3 we
show the wall normal root mean square profiles obtained
from the simulations. In this figure we also included the ex-
perimental data by Den Toonder & Nieuwstadt (1997) for a
Reynolds number of 24,800. Away from the wall the agree-
ment between the experimental data and the simulation is
very good. Close to the wall the agreement is less. This
is probably due to difficulties in the measurement close to
the pipe wall. For increasing Reynolds number the peak
value of the radial rms is slightly increasing while the value
at the centerline remains constant. In Figure 4, we report
the axial root mean square profiles. In this figure we have
again included the experimental data of the Den Toonder
& Nieuwstadt (1997), showing a very good agreement be-
tween simulations and experiment. In Figure 5 we show the
Reynolds shear stress and in Figure 6 we show the flatness
of the radial velocity (kurtosis). All the profiles presented
in Figure 2 to 6 show a slight dependence on the Reynolds
number. Furthermore, it is observed that the values of the
second (and higher) order statics at the centerline remains
constant. In Figure 7 we show the root mean square of the
pressure fluctuations. The Reynolds number dependence of
the pressure rms is much larger then the Reynolds number
dependence of the velocity statistics.
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Figure 2. The mean axial velocity as a function of the non-
dimensional distance to the wall.
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Figure 3. The radial root mean square profiles as a func-
tion of the non-dimensional distance to the wall. The
symbols denote the experimental data of Den Toonder &
Nieuwstadt (1997).
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Figure 4. The axial root mean square profiles as a function
of the non-dimensional distance to the wall. The symbols
denote the experimental data of Den Toonder & Nieuwstadt
(1997).

Structures
In Figure 8, we show iso surfaces of theλ2 criterion.

This criterion is to be considered a good measure for vorti-
cal structures in the flow. With increasing Reynolds num-
ber clearly the size of the vortices decreases and the number
greatly increases.
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Figure 5. The Reynolds shear stress as a function of the
non-dimensional distance to the wall.
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Figure 6. The flatness of the radial velocity (kurtosis) as a
function of the non-dimensional distance to the wall.
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Figure 7. The root mean square of the pressure fluctua-
tions as a function of the non-dimensional distance to the
wall.

In Figure 9 we show the instantaneous axial velocity
at a cylindrical shell withr = D/2 for the low and high
Reynolds number case. The spatial extend of the structures
is not decreasing with increasing Reynolds number. From
3D visualizations (not shown here) we have the impression
that the size of the structures is increasing. This observa-
tion is supported by the autocorrelations of the axial veloc-
ity presented in Figure 10 for the three different Reynolds
numbers. For the highest Reynolds numbers the auto corre-
lations for largez values are somewhat higher than for the
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Figure 8. Top: Iso surface ofλ2 = −1e6 colored with the axial velocity for a Reynolds number of 24,600. bottom the same
iso surfaces for a Reynolds number of 75,000. (Due to the large data size especially for the high Reynolds number only a part
of the computational domain can be visualized.

lower Reynolds number cases.

Conclusion and future work
In this paper we have present the first results of three

well resolved numerical simulations of turbulent pipe flow.
The velocity statistics for the low Reynolds number case
agree very well with available experimental data. The
velocity statistics scaled, with the friction velocity and
the non-dimensional distance to the wall show a slight
Reynolds number dependence. Visualizations show the ex-
istence of large scale motions in high Reynolds number pipe
flow. At the moment we have been able to quantitatively this
using axial autocorrelation functions. However, the differ-
ences in these functions are rather small and better quantifi-
cation is necessary. This will be explored in the future.
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