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ABSTRACT
In this paper the pressure fluctuations from a simulation

of turbulent channel flow computed with the D3Q19 athermal
lattice Boltzmann method (LBM) are compared to those
calculated by the spectral simulation of Moser et al. (1999).
Special care was taken to ensure that the computational
domains used in each simulation were the same in order to
eliminate the effect of the domain size on the turbulence
statistics. It was found that the LBM over-predicts the
variance of the pressure fluctuations by as much as 7%.
A number of possible causes for this over-prediction were
investigated, and it was concluded that the over-prediction is
most likely caused by compressibility effects since the Mach
number of the LBM simulation was 0.2 while the spectral
simulation was incompressible. The compressibility of the
LBM was examined further by comparing the LBM results
to a fully-compressible discontinuous Galerkin simulation
with the same Mach number. It was determined that, while
the effect of the compressibility on the pressure fluctuations
was similar, the density and temperature fluctuations were
very different. This is because the D3Q19 LBM does not
have enough degrees of freedom to allow the temperature to
vary. For this reason, it is not recommended that this LBM be
used for simulations in which the effect of compressibility is
thought to be important.

INTRODUCTION
The lattice Boltzmann method (LBM) has received

considerable interest as a potential competitor to traditional
methods for direct numerical simulation (DNS) of incom-
pressible turbulent flows in complex geometries. This is due
to its simple and efficient implementation and its scalability

on parallel processing computer systems. However, this
work shows that the pressure fluctuations calculated from
direct numerical simulations computed with the LBM differ
significantly from those computed with methods based on
the Navier-Stokes (NS) equations. This paper explores the
potential causes of the differences in the pressure fluctuations
computed by the LBM.

Direct numerical simulations are typically performed
on flows with relatively high Reynolds numbers and low
Mach numbers. The smallest scale in these types of flows
is the Kolmogorov length scale. Since the Kolmogorov
length scale is generally much larger than the mean-free-path
between molecules, the fluids in these flows can be assumed
to behave as a continuum and their hydrodynamic behaviour
can be modelled by the NS equations. However, statistical
dynamics models, such as the Boltzmann equation, are also
valid for turbulent flows. In fact, the NS equations can be
recovered from the Boltzmann equation by performing a
multiscale expansion (Chapman and Cowling, 1970). The
reason statistical dynamics methods are not widely used is
because their computational cost significantly exceeds that of
finite volume or spectral-type NS solvers. The computational
cost of statistical dynamics methods is higher because of
the number of degrees of freedom required to describe the
microscopic state of the fluid. The LBM, however, restricts
the particles in the model to travel with a discrete set of lattice
velocities. This considerably reduces the computational cost,
which makes the LBM a more viable alternative to traditional
NS solvers.

The LBM was developed as an improvement to lattice
gas cellular automata (LGCA). LGCA model fluids as a set
of representative particles moving on a lattice with particle
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interactions described by a set of collision rules. These
models were able to reproduce hydrodynamic behaviour,
but they suffered from a number of problems, including
noise. This problem was eventually solved by replacing the
representative particles in the LGCA with Boltzmann-type
single particle distributions (McNamara and Zanetti, 1988),
which gave rise to the LBM. It was only shown later (He and
Luo, 1997) that the LBM can actually be derived directly
from the Bolzmann equation.

The LBM must be rigorously validated for simulating
wall-bounded turbulent flows before it can be used reliably
for DNS in a predictive capacity. It can be shown, through
a multiscale expansion, that the LBM is approximately
equivalent to the NS equations for low-Mach-number flows
in the continuum limit (He and Luo, 1997). This analysis
demonstrates the solid theoretical foundation of the LBM,
but the suitability of LBM for DNS can only be determined
by running a simulation and comparing the results to a
known solution. Fully-developed turbulent channel flow
is an ideal benchmark simulation for this purpose. This is
due to its simple geometry, two periodic directions, and the
availability of experimental and numerical data against which
comparisons may be made. In this work, a simulation of
turbulent channel flow is performed with the LBM and the
spectral results of Moser et al. (1999) are used as the basis to
validate the LBM results.

Unfortunately, simulating fully-developed channel flow
with the LBM is very computationally intensive because
the LBM must be implemented on a uniform cubic lattice.
Since the lattice must be cubic, the grid cannot be stretched
in the streamwise and spanwise directions. This means that
the fine grid resolution in the wall-normal direction (which
is typically more restrictive) must be applied in the two ho-
mogeneous directions as well. Additionally, grid refinement
near the wall can only be achieved using a block structured
mesh. This is difficult to implement since algorithms need
to be developed to handle the interactions at the interfaces
of neighbouring meshes. Furthermore, these algorithms
typically reduce the formal order of accuracy of the LBM.
The result of these limitations is that LBM simulations of
turbulent channel flow are usually significantly over-resolved
in the homogeneous directions and near the centre of the
channel.

In an effort to reduce the computational cost, simulations
(see for example Eggels (1996), Lammers et al. (2006), and
Premnath et al. (2009)) have used smaller computational
domains in the streamwise and spanwise directions. However,
the reduction in the size of the computational domain affects
the turbulence statistics obtained. This is especially true
for the pressure statistics, as the two-point correlation for
pressure obtained from Moser et al. (1999) demonstrates that
the correlation length for the pressure fluctuations in the span-
wise direction is much longer than the length of the domains
used in previous LBM simulations. Thus, it is possible that
the over-prediction of the pressure fluctuations observed in
these simulations is a result of using a computational domain
that is too narrow. In order to properly validate the LBM, the
computational domain size must be the same for the LBM

simulation and the database with which it is being compared.

In this work, an LBM simulation of fully-developed
turbulent channel flow was performed with the same
computational domain as the spectral simulation of Moser
et al. (1999). This eliminates the effect of the size of the
computational domain on the turbulence statistics and allows
for a direct comparison of the pressure fluctuations.

METHODOLOGY
The LBM in this work was implemented using the

D3Q19 lattice, which has 19 discrete particle velocities and
three spatial dimensions. The BGK single-relaxation-time
approximation of Bhatnagar et al. (1954) was used to
simplify the collision operator in the Boltzmann equation.
The wall boundary conditions were implemented using the
the bounce-back method, which creates a no-slip boundary
halfway between the wall node and the first node that is
located within the fluid domain. The bounce-back boundary
condition is formally second-order accurate provided that the
flow is oriented parallel to the wall, which is the predominant
direction of the flow in this simulation.

The friction Reynolds number was chosen to be
Reτ ≈ 180 in order to replicate the lowest Reynolds number
simulation of Moser et al. (1999). This Reynolds number is
in the transitional range for channel flow; however, increasing
the Reynolds number would only increase the computational
cost and would not affect the validation of the LBM. It is
expected that the performance of the LBM does not depend
on the Reynolds number provided that the full range of
turbulent scales are adequately resolved.

As mentioned in the previous section, the computational
domain was chosen to have the same dimensions as those
used by Moser et al. (1999). This was done to ensure
that the size of the computational domain had no effect on
the turbulence statistics. This is in contrast to most LBM
simulations in the literature, such as Lammers et al. (2006),
that use a narrower computational domain in order to reduce
the computational cost. Table 1 compares the streamwise
and spanwise dimensions of the LBM simulation in this
work to the LBM simulation performed by Lammers et
al.. While Lammers et al. used a longer domain in the
streamwise direction, their computational domain was four
times narrower in the spanwise direction than the spectral
simulation of Moser et al..

The grid resolution for the LBM simulation was chosen
to be ∆x+ ≈ 2, which is equal to the value of the Kolmogorov
length scale calculated near the wall in the simulation of
Moser et al.. Since the LBM is implemented on a uniform
cubic lattice, this grid resolution leads to a computational
mesh with 1080 × 360 × 182 nodes in the streamwise,
spanwise, and wall-normal directions, respectively. Grid
refinement by means of a block structured mesh was not
implemented to ensure errors from the interface model did
not confound the validation results.

2



Table 1. Computational domain dimensions for channel
flow simulations. The dimensions are written in terms of the
channel half-width, δ .

Lx Ly

MKM 4πδ 4πδ/3

Lammers et al. 16δ δ

Current LBM 12δ 4δ

Since the LBM is a compressible method, the Mach
number must also be specified. Since the spectral results
are incompressible, it would be preferable to specify a
vanishingly small Mach number. However, the time step of
the LBM is linearly proportional to the Mach number, and
thus the Mach number must be finite in order to keep the
computational cost of the simulation reasonable. In order to
minimize the computational cost, it is standard practice to
run LBM simulations at a Mach number near the maximum
allowable value of Ma = 0.3. A Mach number of 0.2 was
chosen for this work.

RESULTS
Once the flow reached a statistically stationary state,

it was integrated for an additional tuτ/δ ≈ 60 in order
to converge the turbulence statistics. The variance of the
pressure fluctuations are shown in Figure 1. A comparison
of the results from the current simulation, labelled “LBM”,
and those found by Lammers et al. shows that the size of
the computational domain significantly affects the intensity
of the pressure fluctuations near the wall, and extending the
computational domain in the spanwise direction improves the
match with the spectral results. However, despite this marked
improvement, the current LBM simulation still over-predicts
the variance of the pressure by approximately 7%.
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Figure 1. Variance of the pressure fluctuations normalised
by the wall shear stress, 〈p′p′〉/τ2

w: LBM; Moser et al.
(1999); Lammers et al. (2006); FV; DG.

One possible cause of the disagreement between the
LBM and the spectral simulation is the inferior precision of

the LBM. The LBM uses finite differences to approximate
the temporal and spatial derivatives in the discrete Boltzmann
equation. Only the second order terms are retained in these
expansions, which introduces a truncation error that affects
the spectral representation of the flow. The rate at which
the error decreases with grid resolution is dependent on the
formal order of accuracy. Since the LBM is second-order
accurate, the error is inversely proportional to the square of
the grid spacing. The spectral method, on the other hand,
does not suffer from truncation error because it writes the
solution as a sum of basis functions and thus the derivatives
do not need to be approximated.

In order to investigate the affect of the truncation error,
a channel flow simulation with the same computational
domain was performed with an “in house” finite volume
code (Keating et al., 2004), which is also second-order
accurate, and the results were compared to the spectral and
LBM results. As figure 1 indicates, the finite volume and
spectral results agree extremely well. This confirms that it is
possible to get good agreement for the the pressure variance
with a code that is second-order accurate in space and time,
provided the grid resolution is sufficient. This suggests that
the difference between the LBM and the spectral results are
due to either another source of error or from insufficient grid
resolution. The only way to prove that the grid resolution is
sufficient is to perform a grid resolution study. Unfortunately,
performing a grid resolution study on the LBM simulation
is prohibitively expensive. This is because a reduction in
the grid resolution in the wall-normal direction (for which
the grid resolution is most critical) must be applied in each
coordinate direction. Thus, increasing the grid resolution
by a factor of two increases the computational cost by a
factor of sixteen since the time step must also be reduced to
accommodate a finer grid resolution. However, it is unlikely
that an increase in grid resolution would significantly improve
the results since the grid resolution chosen was based on the
Kolmogorov length scale that was known a priori from the
results of the spectral simulation of Moser et al..

Lammers et al. (2006) suggested that part of the reason
that the LBM predicts larger pressure fluctuations is because
of the presence of spurious pressure fluctuations in the
simulation. Spurious pressure fluctuations occur in LBM
simulations when the stability limit is approached due to
insufficient grid resolution (d’Humi’eres et al., 2002). In
order to determine whether or not there are spurious pressure
fluctuations in the LBM simulation, the streamwise and
spanwise one-dimensional premultiplied energy spectra were
computed for the pressure fluctuations in the LBM and FV
simulations at a distance of z+ ≈ 60 from the wall. This
location was chosen because it corresponds to the location of
the largest error between the two simulations. These spectra
are displayed in figures 2 and 3.

The one-dimensional energy spectra identify the con-
tribution that each wavenumber makes to the total variance
of the pressure fluctuations. The range of wavenumbers
represented in the simulation is determined by the computa-
tional grid. Since spurious pressure fluctuations are caused
by numerical instability, it is expected that their wavelength
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Figure 2. Streamwise one-dimensional premultiplied energy
spectra for the pressure fluctuations at z+ ≈ 60: LBM;

FV.
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Figure 3. Spanwise one-dimensional premultiplied energy
spectra for the pressure fluctuations at z+ ≈ 60: LBM;

FV.

would be on the order of the grid spacing. Thus, if the
over-prediction of the variance by the LBM were caused
by spurious pressure fluctuations, the one-dimensional
energy spectra in figures 2 and 3 would display a signifi-
cant over-prediction by the LBM in the high-wavenumber
range. However, the greatest disagreement occurs in the
intermediate range (between 2× 10−2 and 6× 10−2). The
LBM and FV energy spectra show excellent agreement in the
high-wavenumber range, which demonstrates that spurious
pressure fluctuations are not present in the simulation. This
also provides further evidence to support the conclusion that
the grid resolution for the LBM simulation is sufficient.

The streamwise and spanwise autocorrelation functions
that correspond to the one-dimensional energy spectra above
are shown in figures 4 and 5. These plots indicate that the
larger intensity of the pressure fluctuations of the LBM
simulation in the intermediate wavenumber range has a
negligible effect on the autocorrelation functions. It should
be noted that the spanwise correlation function has not yet
decayed to zero within a correlation distance equal to half
the spanwise domain size, while the streamwise correlation
function decays to zero well within the boundaries of the
domain. This suggests that the computational domain used
is still not wide enough to contain the largest scales of the
pressure field in the spanwise direction. It also demonstrates

why the variance of the pressure fluctuations is more sensitive
to the width of the computational domain as opposed to the
length.
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Figure 4. Streamwise autocorrelation function for the pres-
sure fluctuations at z+ ≈ 60: LBM; FV.
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Figure 5. Spanwise autocorrelation function for the pressure
fluctuations at z+ ≈ 60: LBM; FV.

It is also possible that the over-prediction of the pressure
fluctuations by the LBM is caused by compressibility effects.
As mentioned in the last section, the LBM is a compressible
method, and the Mach number was chosen to be equal to 0.2
in order to keep the computational cost reasonable. Since the
spectral and finite volume simulations are both incompress-
ible, there must be some error caused by the compressibility
of the LBM. To determine the effect of compressibility on
the pressure fluctuations, the LBM results were compared to
those from a compressible channel flow simulation with the
same Mach number. These results were obtained from an “in
house” code, which uses the discontinuous Galerkin (DG)
finite element method to solve the compressible NS equations
(Wei and Pollard, 2010). The DG results (see figure 7), like
those from the LBM simulation, have a higher intensity in the
near-wall region. This suggests that compressibility is most
likely the cause of the large pressure fluctuations near the
wall in the LBM simulations.
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In order to further investigate the effect of compressibil-
ity on the pressure fluctuations, a Reynolds decomposition
was performed on the data obtained from the DG simulation.
The pressure in the DG simulation is related to the density and
temperature through the ideal gas law. Thus, the fluctuations
in the pressure can be written in terms of the fluctuations in
the density and temperature as follows:

〈
p′p′

〉
= R2 [〈

ρ
′
ρ
′T ′T ′〉+2〈T 〉

〈
ρ
′
ρ
′T ′〉

+2〈ρ〉
〈
ρ
′T ′T ′〉+2〈ρ〉〈T 〉

〈
ρ
′T ′〉

−
〈
ρ
′T ′〉2 + 〈T 〉2 〈

ρ
′
ρ
′〉+ 〈ρ〉2 〈

T ′T ′〉] . (1)

The only terms in the Reynolds decomposition that
make a significant contribution to 〈p′p′〉 are the variance
of the density (〈T 〉2 〈ρ ′ρ ′〉), the variance of the temperature
(〈ρ〉2 〈T ′T ′〉), and the covariance of density and temperature
(2〈ρ〉〈T 〉(〈ρ ′T ′〉)). The magnitude of the variance terms
(figure 6) for the density and pressure are similar, and are as
much as 5− 7 times larger than the variance of the pressure.
This is because the density and temperature fluctuations
counteract each other, as shown by the negative covariance,
to produce a smaller variation in the pressure.
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Figure 6. Contributions to the variance of the pressure
fluctuations: 2〈ρ〉R2 〈T 〉〈ρ ′T ′〉; R2 〈T 〉2 〈ρ ′ρ ′〉;

〈ρ〉2 R2 〈T ′T ′〉. Each term is normalised by 〈p′p′〉.

The relationship between the pressure, density, and
temperature in the LBM is quite different from that in the
DG simulation. The implementation of the LBM used in this
work, and those of Eggels (1996), Lammers et al. (2006),
and Premnath et al. (2009), does not include temperature
fluctuations. Thus, while the LBM also uses the ideal gas law
for its equation of state, the pressure fluctuations are directly
related to the density fluctuations. If the same Reynolds
decomposition were performed on the LBM dataset, the
only non-zero term would be the variance of the density
(R2 〈T 〉2 〈ρ ′ρ ′〉).

The difference between the behaviour of the LBM and
the DG compressible flow simulations is demonstrated in
figure 7. This figure contains plots of the variance of the
density, temperature, and pressure. Since the temperature is
fixed for the LBM, the variance is zero. This means that, in
order for the LBM to recover the same pressure fluctuations
as the DG simulation, the density fluctuations must be
significantly different. The plots in figure 7 indicate that
the pressure fluctuations from the LBM and DG simulations
match reasonably well despite the fact that the density and
temperature fluctuations are completely different. Thus,
for simulations in which only the pressure fluctuations are
of interest, the LBM may give reasonably accurate results;
however, the density and temperature will not be accurate.
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Figure 7. Variance of the density (top), temperature (mid-
dle), and pressure fluctuations (bottom); LBM; DG.
All quantities are normalised with inner scales.

CONCLUSIONS
In this work an LBM simulation of channel flow at

Reτ ≈ 180 was performed with the same computational
domain as the one used by Moser et al. (1999). By using the
same domain size, the effect of the extent of the computa-
tional domain was removed from the turbulence statistics to
allow for a proper validation of the LBM. The over-prediction
of the variance of the pressure fluctuations by the LBM was
significantly reduced by expanding the computational domain
in the spanwise direction. However, the error between
the LBM and the spectral results was still as high as 7%.
This disagreement was found to be predominantly due to
compressibility effects. The compressibility of the LBM can
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be reduced by lowering the Mach number, but doing this
significantly increases the computational cost.

The compressibility of the LBM was analysed by com-
paring the results to those obtained from a compressible DG
simulation. The contributions of the density and temperature
fluctuations to the pressure fluctuations were analysed by per-
forming a Reynolds decomposition on the DG dataset. This
analysis showed that the density and temperature fluctuations
counteract each other, which is indicated by the negative
covariance of density and temperature. Since the temperature
is fixed in the D3Q19 LBM, the interactions between the
density, temperature, and pressure are much different. The
pressure fluctuations are directly linked to the density fluctu-
ations, and thus the density behaves differently in the LBM
simulation. For this reason, the D3Q19 LBM is not suitable
for simulating flows in which the pressure fluctuations may
be considered important. It was also found that there are
differences between the turbulence statistics obtained from
compressible and incompressible simulations, even at low
Mach number. One such difference is that the pressure
fluctuations are stronger in the near-wall region for sim-
ulations that solve the compressible form of the NS equations.

ACKNOWLEDGEMENTS
The authors would like to acknowledge the High

Performance Computing Virtual Laboratory (HPCVL) for
computing resources for this project. They would also like
to thank the Natural Sciences and Engineering Research
Council of Canada, and the Ontario Graduate Scholarship
program for financial support. Special thanks to Ugo Piomelli
for providing access to the finite-volume code used in this
work, and to Liang Wei for providing the dataset computed
with the discontinuous Galerkin finite-element method.

REFERENCES
Bhatnagar, P. L., Gross, E. P. & Krook, M. 1954 A model for

collision processes in gases. I. Small amplitude processes
in charged and neutral one-component systems. Physical
Review 94 (3), 511–525.

Chapman, S. & Cowling, T.G. 1970 The Mathematical Theory
of Non-Uniform Gases: An Account of the Kinetic Theory
of Viscosity, Thermal Conduction and Diffusion in Gases.
Cambridge University Press.

d’Humières, D, Ginzburg, I, Krafczyk, M, Lallemand, P &
Luo, LS 2002 Multiple-relaxation-time lattice Boltzmann
models in three dimensions. Philosophical Transactions Of
The Royal Society Of London Series A-Mathematical Phys-
ical And Engineering Sciences 360 (1792), 437–451.

Eggels, J. G. M. 1996 Direct and large-eddy simulation of tur-
bulent fluid flow using the lattice-Boltzmann scheme. Inter-
national Journal of Heat and Fluid Flow 17 (3), 307–323.

He, X. Y. & Luo, L. S. 1997 A priori derivation of the lattice
Boltzmann equation. Physical Review E 55 (6), R6333–
R6336.

Keating, A., Piomelli, U., Bremhorst, K. & Nesic, S. 2004

Large-eddy simulation of heat transfer downstream of a
backward-facing step. Journal Of Turbulence 5, 020.

Lammers, P., Beronov, K. N., Volkert, R., Brenner, G. &
Durst, F. 2006 Lattice BGK direct numerical simulation of
fully developed turbulence in incompressible plane channel
flow. Computers & Fluids 35 (10), 1137–1153.

Mcnamara, G. R. & Zanetti, G. 1988 Use of the Boltzmann-
equation to simulate lattice-gas automata. Physical Review
Letters 61 (20), 2332–2335.

Moser, R. D., Kim, J. & Mansour, N. N. 1999 Direct numeri-
cal simulation of turbulent channel flow up to Re-tau=590.
Physics of Fluids 11 (4), 943–945.

Premnath, Kannan N., Pattison, Martin J. & Banerjee, San-
joy 2009 Generalized lattice Boltzmann equation with forc-
ing term for computation of wall-bounded turbulent flows.
Physical Review E 79 (2, Part 2).

Wei, Liang & Pollard, Andrew 2010 Direct numerical simula-
tion of a turbulent flow with pressure gradients. In Progress
in Turbulence III (ed. J. Peinke, M. Oberlack & A. Ta-
lamelli), pp. 131–134. Springer.

6


