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ABSTRACT 

Analysis of flows in grooved micro-channels has been 

carried out. One-dimensional grooves with arbitrary 

orientation with respect to the channel axis have been 

considered. It is shown that the drag generation mechanisms 

can be divided into effects associated (i) with the average 

position and (ii) with the shapes of the grooves. Three 

physical mechanisms associated with the shapes have been 

identified, i.e., re-arrangement of viscous stresses, pressure 

interaction drag and pressure form drag. Analysis relies on the 

analytic solutions in the limit of long wavelength corrugation 

and a novel, grid-less, spectrally-accurate algorithm based on 

the Immersed Boundary Conditions (IBC) concept for other 

corrugations.  

 

 

INTRODUCTION 

The need for the re-examination of the role of surface 

roughness is driven by micro-fluidics applications, where 

micro- and nano-conduits are expected to have significant 

surface corrugations (surface roughness) due to the limitations 

of manufacturing technologies. A number of authors 

attempted to provide quantitative predictions of pressure 

losses. Kleinstreuer & Koo (2004) modelled corrugations as 

layers of porous material. Kandlikar et al. (2005) introduced a 

set of roughness parameters. Wang (2003) analyzed flow over 

rectangular grooves/ribs while Thomas et al. (2001) worked 

with sinusoidal grooves/ribs. These investigations provide 

phenomenological information about certain classes for 

roughness forms but do not provide information about the 

mechanisms of drag generation. 

Grooves may lead to flow destabilization and changes in 

the drag through a bifurcation of the flow field. Centrifugal 

instability has been identified in the case of Couette (Floryan, 

2002) and Poiseuille flows (Floryan, 2003). Floryan and 

Floryan (2010) studied travelling wave instability, and 

Szumbarski & Floryan (2006) studied transient growth. 

Experimental verifications of theoretical predictions dealing 

with the effects of sinusoidal surface corrugation on the 

critical Reynolds number have been reported by Asai & 

Floryan (2006). 

The modelling of roughness geometry represents a 

challenge due to the potentially uncountable number of 

geometric shapes. This problem has been settled using spectral 

models of roughness geometry (Floryan, 1997). It has been 

shown that in many situations it is sufficient to use the leading 

Fourier mode from the Fourier expansion describing 

roughness shape to capture the main physical processes 

(Floryan, 2007). The difficulties associated with solving of the 

field equations in an irregular flow domain have been settled 

by using either the immersed boundary conditions method or 

the domain transformation method (Szumbarski & Floryan, 

1999; Husain & Floryan, 2010; Mohammadi & Floryan, 

2011). These methods permit determination of flow details 

with a spectral accuracy for the complete range of roughness 

shapes being of practical interest.  

 

 

PROBLEM FORMULATION 

Consider flow in a channel bounded by two grooved walls 

extending to ±∞ in the x- and z-directions, where the x-axis 

overlaps with the direction of the flow (Fig.1). The grooves 

are periodic with wavelengths λx=2π/α and λz=2π/β, where  α 

and β stand for the wave numbers in the x- and z-directions, 

respectively. Shapes of the grooves are specified as  yU(x,z) 

and yL(x,z), where the subscripts U and L refer to the upper 

and lower walls, respectively. The grooves are inclined with 

respect to the flow direction with an angle π/2−φ, i.e., the 

ridges form angle φ with the z-axis (see Fig.1).  We shall refer 

to grooves corresponding to φ=0° as the transverse grooves, 

φ=90° as the longitudinal grooves, and 0°<φ<90° as the 

oblique grooves. The shapes of the grooves can be expressed 

in terms of Fourier expansions in the form 
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where *),(),( mn

U

mn

U HH −−= , *),(),( mn

L

mn

L HH −−= , stars denote the 

complex conjugates, and NA is the number of Fourier modes 

needed to describe groove geometry. It is convenient to 

introduce a different reference system (x̃,y,z̃) where the x̃-axis 

is perpendicular and the z̃-axis is parallel to the grooves' ridges 

(see Fig.1). The new system permits description of geometry 

of the grooves in terms of single Fourier expansions, i.e., 
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where *)()( ~~ n

U

n

U HH −= , *)()( ~~ n

L

n

L HH −=  and α̃ stands for the wave 

number in the x̃-direction. Transformation between the (x,y,z) 

and (x̃,y,z̃)  systems has the form 

 

 zxx )sin()cos(~ φφ −= , zxz )cos()sin(~ φφ += . (3a,b) 

 

Relations between coefficients of expansions (1) and (2) 

have the form 
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and relations between the wave numbers take the form 

 

 )cos(
~ φαα = , )sin(~ φαβ = . (6a,b) 

 

 
 

Figure 1. Channel with grooved walls. The (x,y,z) coordinate 

system is flow-oriented and the (x̃,y,z̃)  system is grooved-

oriented. The angle φ shows the relative orientation of both 

systems. 

 

 

Flow between smooth walls is taken as the reference flow 

and the direction of this flow defines the reference flow 

direction. This flow is driven by a constant pressure gradient 

directed in the negative x-direction resulting in the velocity 

and pressure fields which in the auxiliary reference system 

take the form 

 

 )]sin()1(,0,)cos()1([]~,~,~[)(
~ 22

0000 φφ yywvuy −−==V , (7) 

 czxRezxp ++−= − )]sin(~)cos(~[2)~,~(~ 1

0 φφ , (8) 

 

where 0

~
V  is the reference velocity vector, 0

~p  is the reference 

pressure and c denotes an arbitrary constant. It is 

advantageous to carry out numerical solution using the  

(x̃,y,z̃)-system defined by Eq.(3). The total velocity and 

pressure fields can be expressed in this system as 
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where subscripts 0 and 1 refer to the reference flow and flow 

modifications due to the presence of the grooves, respectively, 

xh~  and zh~  denote modifications of the mean pressure 

gradient in the x̃- and z̃-directions, respectively and q̃(x̃,y) 

describes the x̃-periodic part of the pressure modification. 

The flow in the auxiliary reference system is a function of 

only two coordinates, i.e., (x̃,y), which reduces the field 

equations to the following form  
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where 
22222

/~/ yx ∂∂+∂∂=∇  and dydD /= . The reader 

may note that equations (11)–(13) do not contain w̃1 and thus 

they form an independent system that can be solved separately 

from (14). It can be shown that such separation may be carried 

out only for certain types of flow constraints.  

In order to form a close system of equations one needs to 

specify two arbitrary closing conditions. Four types of 

conditions/constraints are of interest: fixed volume flow rate 

per unit width in the x-direction, fixed volume flow rate per 

unit width in the z-direction, fixed mean pressure gradient in 

the x-direction and fixed mean pressure gradient in the z-

direction. 

The boundary conditions take the form 
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))~((~))~((~
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1 =xyv L , ))~((~))~((~
01 xywxyw LL −= .(16a-c) 

 

Only when either the volume flow rate constraints or the 

pressure gradient constraints are chosen, Eqs.(11)–(13) with 

boundary conditions (15a,b) and (16a,b) become independent 

of w1 and can be solved separately. Their solution describes a 



3 

 

two-dimensional motion in the (x̃,y) plane. The flow in the z̃-
direction can be determined in the second step of the solution 

process by solving equation (14) with the boundary conditions 

(15c) and (16c). If the flow rate and the pressure gradient 

constraints are mixed, the decoupling does not occur and one 

needs to solve Eqs. (11)–(14) as a single system.  

 

 

NUMERICAL METHOD 

The above problems were solved using spectral 

discretization method based on the Fourier expansions in the 

x̃- and z̃- directions and Chebyshev expansions in the y-

direction. The problem of irregularity of the solution domain 

in the y-direction has been overcome by the use of the 

Immersed Boundary Conditions (IBC) method (Szumarski and 

Floryan, 1999). This method relies on the use of a fixed 

computational domain extending in the y-direction far enough 

so that it completely encloses the grooved channel (see Fig.1) 

and imposition of flow boundary conditions is carried out 

through specially constructed boundary relations.  

The solution process consists of two steps, i.e., solution of 

the nonlinear problem (11-13) to determine flow in the (x̃,y) 

plane and the follow up solution of the linear problem (14) to 

determine flow in the (y,z̃) plane. The former problem is 

solved using an iterative technique described by Mohammadi 

and Floryan (2011). Efficient solution methods for the latter 

problem are discussed by Mohammadi and Floryan (2011). 

Results presented in this paper are based on transverse 

grooves (φ=0) with fixed flow rate constraint. 

 

 

DISCUSSION OF RESULTS 

Pressure gradient hx induced by the grooves can be 

expressed in terms of friction factor and this method of 

presentation will be used in this presentation.  

Pressure loss in a channel can be expressed as  

 

 ( ) )2/()(/2/ 2

ss

*** LUρxpLp ∂∂=∆∆ , (17) 

 

where stars denote dimensional quantities,  Ls and Us are the 

length and velocity scales, respectively, ∆p* stands for the 

pressure loss over the channel length ∆L* and ρ* denotes the 

density. The typical length scales Ls are either half of the 

channel opening L or the hydraulic diameter Dh=4A/P, where 

A is the cross-sectional area and P is the wetted perimeter of 

the cross-section; Dh=4L for a plane channel with opening 2L. 

The typical velocity scales Us are either the maximum of the 

reference velocity Umax or the average reference velocity 

Uave=2/3 Umax. The friction factor f is defined by 

 

 xpf ∂∂−= /2  (18) 

 

and it takes different numerical values depending on the 

length and velocity scales. There are four possible 

combinations: Scale A is based on Ls=L and Us=Umax, Scale B 

is based on Ls=L and Us=Uave, Scale C is based on Ls=Dh and 

Us=Umax, and Scale D is based on Ls=Dh and Us=Uave. The 

pressure gradient and its corresponding friction factors written 

in scale D for the channel with transverse grooves takes the 

form 

 

 xhxpxp +∂∂=∂∂ // 0 , (19) 

 xxxx ffhxpf 100 2/2 +=−∂∂−= , (20) 

 

where ∂p0/∂x=−48/ReD  is the pressure gradient of the 

reference flow, ReD=UaveDh/ν, fx denotes the total friction 

factor in the x-direction, f0x denotes the reference friction 

factor (i.e., friction factor for the smooth channel), and f1x 

refers to the modification of the friction factor in the x-

direction. All results of friction factors will be presented using 

scale D from above, i.e., 

 

 RehRef xDDx ∗∗−=∗ 4896, , 96,0 =∗ DDx Ref , (21a,b) 

 RehRef xDDx ∗∗−=∗ 48,1 . (21c) 

 

Grooves may produce changes in the flow through two 

separate mechanisms, i.e., (i) change in the average channel 

opening and (ii) through spatial modulations induced by the 

shape of the grooves. Since the former effect may be 

introduced inadvertently when creating grooves, it is 

necessary to account for it properly when interpreting results. 

We shall start discussion with the former effect. 

 

 

Effect of the average position of the grooves 

Consider a channel with two flat walls located at yU=1 and 

yL=−1+ε. Maintenance of the same flow rate as in the 

reference channel (Q=4/3) requires imposition of a pressure 

gradient of the magnitude 

 

 
31

)2/1(2/
−− −−=∂∂ εRexp . (22) 

 

The change of pressure gradient hx generated by the 

change in the channel opening can be easily evaluated as 

 

[ ]31

01 )2/1(12/// −− −−=∂∂−∂∂=∂∂= εRexpxpxphx  (23) 

 

and expressed in terms of the friction factor as 

 

 [ ]3

,1 )2/1(19648 −−−−=∗∗−= εReh*Ref xDDx . (24) 

 

We shall now modify the above channel by adding sinusoidal 

transverse grooves (ϕ=0°) to the lower wall. The channel 

geometry is described in the (x,y,z) and (x̃,y,z̃) coordinate 

systems as 

 

 1=Uy , )cos()2/(1)( xSSxy aveL α⋅++−= , (25a,b) 

 )~~
cos()2/(1)~( xSSxy aveL α⋅++−= , (25c) 

 



4 

 

0 0.01 0.02 0.03 0.04 0.05 0.06
-6

-4

-2

0

2

4

6

S

f 1
x ,

D
 *

 R
e D

Case C

α=0.1

0.1

0.1

1

1

1

5

5

5Case A

Case B

Re=1000

 
       

Figure 2. Variations of the modification friction factor 

f1x,D*ReD as a function of the grooves' amplitude S for 

representative values of the grooves' wave number α for the 

flow Reynolds numbers Re=1000. Shape of the walls is given 

by Eq.(26) with Save=0.03, 0, −0.03 in Cases A, B, C, 

respectively. 

 

 

where S, Save and α ̃ (=α) define the height, the average 

position and the wave number of the grooves. Variations of 

the additional pressure loss (expressed in term of the 

modification friction factor) as a function of the groove 

amplitude S are illustrated in Fig.2 for three average positions 

Save for selected values of the groove wave numbers α and the 

flow Reynolds number Re. Cases A, B and C correspond to 

Save = 0.03, 0 and −0.03, respectively. When S = 0 all cases 

correspond to a smooth channel, where the effect of the 

grooves' shape is absent but the effect of change in the average 

channel opening remains. Equation (24) gives additional 

friction factors for smooth channel in all these cases as 

 

 Case A: 4.45*,1 =DDx Ref ,Case B: 0*,1 =DDx Ref ,  

 Case C: 194*,1 .Ref DDx −= . (26) 

 

Results for Case B are obvious, and friction factors for Cases 

A and C are shifted by constants 4.45 and −4.19, respectively. 

Addition of grooves, i.e., increase of S, results in an increase 

of the friction factor in all cases considered. The reader may 

note, however, that the curves for cases A, B and C shown in 

Fig.2 are shifted by the amounts given by Eq.(26) in the whole 

range of S considered. This demonstrates that the effect of the 

average position of the wall on the pressure losses can be 

separated from the effect of shape of the grooves; change in 

the average wall position is accounted for by an additive 

constant that can be predicted analytically and added to the 

computed pressure loss associated with the shape of the 

grooves. It is sufficient therefore to concentrate in the rest of 

this analysis of the effects of shape of the grooves only.  

 

 

Effect of the dominant geometric/flow parameters 

Consider transverse sinusoidal grooves placed at the lower 

wall, i.e.,   

 

 1=Uy , )cos()2/(1)( xSxyL α⋅+−= . (27) 

Figure 3 shows the variations of the modification friction 

factor f1x,D*ReD as functions of different dominant 

geometric/flow parameters. These results show that the 

modification friction factor f1x,D*ReD increases with increase 

in any of grooves' wave number α, grooves' amplitude S or the 

flow Reynolds number Re. 
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Figure 3. Variations of the modification friction factor 

f1x,D*ReD as functions of different parameters for transverse 

grooves with shape defined by Eq.(27). Fig.3A– f1x,D*ReD as 

functions of grooves' wave number α and grooves' amplitude 

S for two values of the flow Reynolds number Re=0.01 (solid 

lines) and Re=1000 (dash lines), Fig.3B– f1x,D*ReD as 

functions of the flow Reynolds number Re and grooves' 

amplitude S (solid lines) for grooves with α=3  and as 

functions of the flow Reynolds number Re and grooves' wave 

number α (dash-dot lines) for grooves with S=0.05. 

 

 

Long wavelength grooves 

Consider a grooved channel with geometry described by 

Eq.(27). In  the limit α→0 solution can be assumed in the 

form of expansions 

 

 )(0 2

10 αα ++= uuu , )(0 2

10 αα ++= vvv ,  

 )(001

1 αα ++= −
− ppp . (28a-c) 

 

Substitution of above expansions into the governing equations, 

application of transformation in the form 

 

 xαξ =  , 1]4/)cos(1)[1(
1 +−−= −

xSy αη , (29a,b) 

 

retention of terms of the two leading orders of magnitude and 

solution of the resulting equations lead to 
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35
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where pressure has been normalized to have p=0 at ξ=0. In 

the above, M=1+3Q1x/4 and ( ) ( )[ ] ( )[ ] 12252
2414121

−

+−−= /S/S//hReM
/

x
 

for the fixed flow rate and the fixed mean pressure gradient 

constraints, respectively, Q1x is the modification of flow rate 

due to the presence of the grooves for the case of mean 

pressure gradient constraint, [ ]4)cos(1)( /ξSf −=ξ  and 

H=2M/Re. Results displayed in Fig.2 for the y-velocity 

component demonstrate that the range of validity of Eqs. (30)-

(33) extends up to α=0(1) if Re is small (Re=0.1); at Re=1000 

this range decreases to α=0(10−2).  
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11

ξ,ηvξ,ηvv ca
ηπ,ξπ
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≤≤−≤≤−

between the asymptotic va 

and the complete vc solutions for the y-velocity component as 

a function of the corrugation wave number α for selected 

values of the corrugation amplitude S and for the flow 

Reynolds numbers Re=1000 (solid lines) and Re=0.1 (dash-

dot lines) for the fixed mass flow rate constraint (Q1x=0). 

 

 

The drag is generated solely by viscous shear in the case 

of smooth walls. Presence of the corrugation alters distribution 

of shear and this leads to changes in the shear drag. 

Corrugation represents an obstacle to the flow and this leads to 

generation of the pressure drag. 

Distribution of the x-component of shear and the total 

viscous force acting on the fluid at the lower wall have the 

forms 

 

)(0)]([)sin(
105

4
)]([2 22221 αξαξ ++−= −−− fξSMfReMdFx,visc ,(34a) 

 [ ] )(0)4(14
23211 αα +−−=

−−− /

x,visc S/πMReF . (34b) 

 

Distribution of the x-component of the pressure force 

acting on the fluid at the lower wall has the form 

 

 [ ] )sin()(05.0 2

01 ξppSdFx, pres αα ++= − . (35) 

The total pressure force can be evaluated through 

numerical integration of Eq.(35). It is instructive, however, to 

replace dp−1/dξ in Eq.(32a) with its Fourier expansion and 

integrate this expansion with respect to ξ to arrive at a more 

convenient analytical expression for  the pressure, i.e., 

 

 [ ][ ] ξS//S/Hp
/ 2522

1 )4(12)4(1
−

− −+−=   

                 [ ] L+−−
−

)sin()4(1)4/3(
252 ξS/HS

/

 (36) 

 

Integration of Eq.(35) over one corrugation period, say 

from γ to γ+2π, with p−1 expressed by Eq.(36) shows that 

terms omitted in Eq.(36) as well as p0 do not contribute to the 

total force. The total force has the form 

 

[ ][ ]{ } )cos()4(12)4(1
25221 γS//S/πSHFFF

/

x,interx,formx,pres

−− −+=+= α

 [ ] )(0)4(1)8/3(
25221 αα +−−

−− /

S/HπS ,  (37) 

 

where the first term is associated with the mean pressure 

gradient acting on an obstacle (corrugation) and thus we shall 

refer to it as the "form drag". The form drag is a periodic 

function of γ with the amplitude defined by the curly bracket. 

These variations of the form drag need to be accounted for in 

interpretation of any experimental measurements as in the case 

of a corrugation in the form of a depression the form drag will 

likely reduce the total drag while in the case of the corrugation 

in the form of a bump the form drag will likely increase the 

total drag.  

The second term in (37) arises out of an interaction of the 

periodic part of p−1 with the wall geometry and thus we shall 

refer to it as the "interaction drag". The part of the pressure 

field that gives rise to the "interaction drag" is proportional to 

sin(ξ) (see Eq.36) while the corrugation shape is described by 

cos(ξ); π/2 shift between both distributions results in the 

interaction drag. The interaction drag does not depend on the 

location of the test segment of the corrugation, i.e., does not 

depend on γ. 

It can be shown that the distribution of the x-component of 

the local viscous forces dGx,visc as well as the total viscous 

force Gx,visc at the upper wall are same as at the lower wall, 

i.e., dGx,visc=dFx,visc , Gx,visc=Fx,visc. Pressure does not generate 

any forces in the x-direction at the upper wall. 

Balance of forces acting on a control volume extending 

over one wavelength and corresponding to γ=−π gives the 

total pressure force Ftotal acting between the left and right 

control surface as  

 

[ ][ ] ( )








−+−++= −−−−

Re

π
SS//S/

Re

π

Re

π
F

/

total

8
4/1)4(12)4(1

88 1252211 ααα ,(38) 

 

where the second term on the RHS describes change in the 

force due to the presence of the corrugation. This force is 

opposed by the shear force Fs, by the force Fform due to the 

form drag and by the force Finter due to the interaction drag, 

which have forms 
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 [ ]{ }1)4(188
2321111 −−+=

−−−−− /

s S/πReπReF αα , (39) 

 [ ][ ] 252211
)4(12)4(12

/

form S//S/ReSπF
−−− −+= α , (40) 

 [ ] 252121

int )4(175.0
/

er S/πReSF
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Results displayed in Fig.5 demonstrate that the total drag 

increases rapidly with an increase of the corrugation 

amplitude. The largest part of this increase comes from the 

form drag, followed by the interaction drag, and the smallest 

comes from the re-arrangement of the viscous drag. 

Contributions of the pressure form and interaction drag 

increase to the level of 35% and 23% of the total force, 

respectively, when corrugation amplitude reaches value S=2. 

The form drag, the interaction drag and the additional viscous 

drag are responsible for 45%, 30% and 25% of this increase. 
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Figure 5. Variations of the total force per unit channel length 

(Re/λ)*Ftotal and its various components (Fig.5A; see Eqs (38-

41)) and percentage of these contributions (Fig.5B) as a 

function of the corrugation amplitude S. In the above, λ=2π/α 

denotes the wavelength of the channel, curves 1, 2, 3, 4, 5, 6 

correspond to (Re/λ)*Ftotal, (Re/λ)*Fs, (Re/λ)*Fform, 

(Re/λ)*Finter, (Re/λ)*Ftotal,1 and (Re/λ)*Fs,1, respectively, 

Ftotal,1 and Fs,1 denote the difference between the total forces 

and viscous forces in the corrugated and smooth channels, 

respectively. Fractions describing contributions of the form, 

interaction and viscous drag are defined as 

fform=(Fform/Ftotal)*100, finter=(Finter/Ftotal)*100 and 

fs=(Fs/Ftotal)*100,  respectively. 

 

 

CONCLUSIONS 
Flows through channels with grooved walls have been 

analyzed using a combination of analytical solutions and 

numerical simulations based on the novel, grid-less, spectral 

algorithm implementing the Immersed Boundary Conditions 

concept. It has been shown that surface grooves may produce 

changes in the flow through two separate mechanisms, i.e., (i) 

change in the average channel opening and (ii) through spatial 

modulations induced by the shape of the grooves. Three 

mechanisms for generation of additional pressure losses have 

been identified in the later case. The first one is associated 

with the alteration of the shear stress distribution at the smooth 

and corrugated walls, the second one is associated with the 

presence of an obstacle (corrugation) in a flow with a mean 

pressure gradient and is referred to as the form drag, and the 

third one is associated with the interaction of the periodic part 

of the pressure field and the surface geometry and occurs due 

to a phase shift between them.  
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