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ABSTRACT

The partially integrated transport modeling (PITM)
method viewed as a continuous approach of hybrid
RANS/LES with seamless coupling is used to derive a
subfilter-scale stress model in the framework of second mo-
ment closures (SMC) applicable in a rotating frame of ref-
erence. In this work, the pressure-strain correlation term
is modeled from a physical standpoint in an invariant form
under an arbitrary change of non-inertial frame of reference.
As a result of the simulations, it is found that the subfilter-
scale stress model reproduces fairly well the mean features of
turbulent rotating channel flows performed on coarse grids
with a reduction of the computational cost.

INTRODUCTION

Numerous applications in turbomachinery industry
are concerned with turbulent flows in system rotation. In
this framework, fully developed turbulent channel flows
subjected to a spanwise rotation as shown in figure 1 have
been previously studied both experimentally (Johnston et
al., 1972) and numerically by several authors. Such rotating
channel flows have been initially computed in the past by
using Reynolds stress models (RSM) in RANS methodology
(Schiestel, 2008) and then, due to the increase of computer
power, by large eddy simulations (LES) for investigating the
mean features of these rotating turbulent flows (Lamballais
et al., 1998). These experimental and numerical studies
have shown that the Coriolis forces associated with the rota-
tion appreciably affect the mean motion and the turbulent
fluctuations. In particular, as the rotation rate increases,
the mean flow becomes more and more asymmetric with
respect to the channel center and the turbulence activity
dramatically decreases with respect to the non-rotating
case. From a quantitative point of view, experimental
flow visualizations as well as recent direct numerical simu-
lations have provided the structural information on the flow.

Conventional large eddy simulations which consist of
modeling the more universal small scales corresponding
to the region of the spectrum located after the cutoff
wave number k. while the resolved scales are explicitly
computed by the numerical scheme are a promising method.
They allow to mimic the acting mechanisms of turbulence
interactions. However, most of LES simulations assume
a direct constitution relation between the turbulent stress
and strain components that is only valid for fine grained
turbulence. On the other hand, Reynolds stress models
used in RANS appear well suited for predicting engineering
flows without requiring prohibitive computation times but
they can not reproduce the instantaneous flow structures.

In this framework, the partially integrated transport
modeling (PITM) method has been developed recently
(Chaouat and Schiestel, 2005; Schiestel and Dejoan, 2005;
Chaouat and Schiestel, 2007; Chaouat and Schiestel, 2009)
for performing hybrid RANS/LES simulations on relatively
coarse grids with seamless coupling between the RANS and
LES regions, the cutoff wave number being located almost
anywhere within the energy spectrum. From a theoretical
point of view, the PITM method gains major interest
because it bridges these two different levels of description
in a consistent way by a unifying formalism developed
in the spectral space (Chaouat and Schiestel, 2007). As
the transport equations for the subfilter stress in terms
of central moment are formally similar to the statistical
equations, the PITM method can be applied to almost all
statistical models to derive their hybrid LES counterparts
corresponding to subfilter models, provided an adequate
dissipation equation is coupled to the turbulent energy or
stress transport equations. These derived subfilter models
include both eddy viscosity models k,r; —€5 75 (Schiestel and
Dejoan, 2005; Befeno and Schiestel, 2007) and stress models
(Tij)sfs — €sfs (Chaouat and Schiestel, 2005; Chaouat and
Schiestel, 2009; Chaouat, 2010a), depending on the level
of closures. The variables kqfg, (7ij)sfs and e,f; denote
the subfilter turbulent energy, stress and dissipation-rate,
respectively. These models have been previously used for
successfully simulating engineering flows on coarse grids
or turbulent flows with strong departure from spectral
equilibrium. In the last several years, the PITM method
has become more and more widespread in turbulence
modeling because of its practical interest in the field of
engineering applications. But these derived models require
a specific modeling to tackle engineering flows encountered
in turbomachinery industry subjected to system rotation.

In this work, considering that second moment closures
(SMC) constitute a convenient framework for system ro-
tation, we propose to derive a subfilter-scale stress model
(Tij)sfs —€sts for performing large eddy simulations of rotat-
ing turbulent flows on relatively coarse grids. This modeling
strategy is motivated by the idea that the recognized advan-
tages of second moment closures are worth transposing to
subfilter-scale modeling, especially for rotating flows when
the subfilter-scale (SFS) part is not small compared to the
resolved part. We will show that the Coriolis term must be
embedded in the subfilter stress model as a source term and
that the pressure-strain-correlation term which plays a piv-
otal role by redistributing the turbulent energy among the
different stress components can be developed in an invariant



form under arbitrary time-dependent rotations of the spatial
frame of reference. In this study, coarse grids are deliber-
ately chosen to highlight the ability of the PITM method to
simulate large scales of the flow with a sufficient fidelity for
engineering computations.

THE FILTERING PROCESS AND GOVERNING EQUA-
TIONS

We consider the turbulent flow of a viscous incompres-
sible fluid. In a frame rotating at angular velocity €2, the
instantaneous momentum equation reads
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where u;, p, €1, v are the velocity vector, the pressure,
the Levi-Civita’s permutation tensor, the kinematic vis-
cosity of the fluid, respectively. The terms appearing in
the right hand side of this equation are referred to as the
Coriolis acceleration —2€2 X u, and centrifugal acceleration
—Q x (2 x @). In large eddy simulations, the flow vari-
able ¢ is decomposed into a resolved scale part ¢ including
the statistical mean (¢) and the large scale ¢p< = ¢ — ()
and a subfilter-scale (or modeled) fluctuating part ¢'. The
resolved variable ¢ is defined by the filter function Ga as
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where A is the filter width. Applying the filtering operation
to the instantaneous momentum equation yields the filtered

equation
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where (7;j)ss, denotes the subfilter scale stress tensor de-
fined by the mathematical relation

(Tij)sfs =Uju; — ﬂiﬂj (4)

The presence of the turbulent contribution (73;)s s in equa-
tion (3) indicates the effect of the subfilter-scales to the
resolved field. The resolved scale tensor is computed by the
relation

(Tij)ies = Wilhj — (wi) (u;) (5)

Assuming that the large and small scale fluctuations are un-
correlated as for spectral cutoff filter defined by the Fourier
transform, the Reynolds stress 7;; then reads

7ij = ((Tij)sfs) + {(Tij )ies) (6)

The closure of the filtered momentum equation (3) requires
to model the subfilter-scale turbulent stress (7;;)sfs. In the
framework of second moment closures, this is made by means
of its transport equation which is the required level for accu-
rately reproducing the physical processes of turbulent flows.

PARTIAL INTEGRATED TRANSPORT MODELING
METHOD

Principle of the method

The PITM method finds its basic foundation in the
spectral space by considering the Fourier transform of the
two-point fluctuating velocity correlation equations in ho-
mogeneous turbulence. The extension to non-homogeneous

turbulence is developed within the approximate framework
of the tangent homogeneous space at a point of a non-
homogeneous flow field assuming Taylor series expansion
in space for the mean velocity field (Chaouat and Schies-
tel, 2007). When transposing the spectral equation in the
physical space by inverse Fourier transform involving a par-
tial integration of the turbulent field in the range [kc, k4|
where k. = m/A is the cutoff wave number computed by
the grid size width A, and kg4 is the dissipative wave number
placed at the end of the inertial range of the spectrum com-
pletely after the transfer zone, one can derive a subfilter-scale
model based on the transport equations for the subfilter-
scale stresses (7;;)s s and the dissipation rate €, s that looks
formally like the corresponding RANS/RSM model but the
coefficients used in the model are no longer constants. They
are now some functions of the dimensionless parameter 7. in-
volving the cutoff wave number k. and the turbulent length
scale Le built using the total turbulent kinetic energy k, the
subfilter dissipation rate €, , and the large scale dissipation
rate denoted €<
T k3/2
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Ne = Kele = (7)
In PITM methodology, the subfilter-scale stress model varies
continuously with respect to the ratio of the turbulent
length-scale to the grid-size Le/A. Note that a formalism
based on temporal filtering has been proposed recently to
handle non-homogeneous flows leading to a variant of the
PITM method called TPITM method (Fadai-Ghotbi et al.,
2010a).

Exact transport equations in presence of rotation

The first step of the present approach consists of writ-
ing the exact transport equation of the subfilter-scale stress
(7ij)sfs in presence of rotation. By using the material
derivative operator D/Dt = 8/t + 0/ dxy,, the transport
equation of the subfilter stress tensor can be therefore writ-
ten in the simple compact form as

D(7ij)sts
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where the terms appearing in the right-hand side of this
equation are identified as production, redistribution, diffu-
sion and dissipation. The production term P;; is composed
by the term Pilj produced by the interaction between the
subfilter stress and the filtered velocity gradient
ou; o
Pl = —(r; —L (7 — 9
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and by the term Pfj generated by the rotation involving the
Coriolis forces
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The exact expressions of the redistribution II;;, diffusion .J;;
and dissipation rate (e;;)sfs appearing on the right-hand
side of equation (8) are the following
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where in equations (11), (12), (13), the functions ® of two
or three variables are defined by ®(f,g) = fg — fg and
®(f,g,h) = fgh — f®(g,h) — §2(h, f) — h®(f, 9) — fgh ap-
plicable for any turbulent quantities f, g, h. The quantity
S;; appearing in equation (11) denotes the strain deforma-

tion 178 5
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Modeling of the subfilter-scale stress transport equation in
presence of rotation

Contrary to the production term P;; which is exact, the
redistribution, diffusion and dissipation terms need to be
modeled in the wave number range [kc, kq]. The present for-
malism (Chaouat and Schiestel, 2007) shows clearly the for-
mal analogy between the statistical and filtered approaches
and their compatibility. As a consequence, the closure ap-
proximations used for the statistical partially averaged equa-
tions are assumed to prevail also in the case of large eddy
numerical simulations. As it was emphasized in second-
moment closures, the pressure-strain correlation term TI;;
plays a pivotal role by redistributing the turbulent energy
among the stress components allowing a more realistic de-
scription of the flow anisotropy than eddy viscosity models,
and also a better account of history and nonlocal effects.
It requires a specific modeling to account for the rotation.
This term defined in equation (11) can be reduced to the
pressure-strain subfilter fluctuating correlations in a first ap-
proximation

;= 2®(p, Sij)/p ~ 2p'S}; /p (15)

In system rotation, it is simple matter to show that the
subfilter-scale fluctuating pressure p’ is solution of the Pois-
son equation that reads
1 82 ! 82 Ot; ou'.
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Like in RANS statistical modeling, when integrating this
equation in space in absence of boundaries, using the Green’s
function solution and then multiplying by the fluctuating
strain ng, it is found that TI;; can be decomposed into a
slow part Hilj and a rapid part Hizj as follows
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where r = |& — &|. These equations clearly show that the

slow term Hilj characterizes the return to isotropy due to the

action of turbulence on itself whereas the rapid term Hizj

describes the return to isotropy by action of the absolute
filtered velocity gradient involving the rotation defined by
O Ug _ Oty
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In the present case, these terms IT!. and II?, are modeled
assuming that the usual statistical Reynolds stress model
(Chaouat, 2005) must be recovered in the limit of vanishing
cutoff wave number k. (k. — 0). Considering that the small
scales return more rapidly to isotropy than the large scales
before cascading into smaller scales by non-linear interac-
tions, Hilj reads

€ 2
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where c;rs, is an increasing function of the parameter 7.
The second term H? is modeled taking into account the ab-
solute filtered velocity gradient leading to the result (Laun-
der et al., 1987)

3 = —co (Pllj + %PZQJ - %Pﬁlm 5ij> (21)
where the coefficient ¢s remains the same as in statistical
modeling. The diffusion term .J;; appearing in equation (8)
due to the fluctuating velocities and pressure together with
the molecular diffusion, is modeled assuming a gradient law
hypothesis
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where ¢; is a numerical coefficient set to 0.22. Closures of
equation (8) require to model the subfilter tensorial dissi-
pation rate (€;;)s¢s which is approached by 2/3ed;;. The
modeling of the dissipation-rate €, s, is made in the present
case by means of its transport equation. This allows to ob-
tain an accurate estimate of the subfilter dissipation rate
even in situation of non-equilibrium flows when the grid-size
is no longer a good estimate of the characteristic turbu-
lence length-scale. As a result of the theory developed in
the spectral space (Chaouat and Schiestel, 2007), the fluc-
tuating modeled transport equation for the subfilter-scale
dissipation-rate €55 reads

2
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where P = P} /2. The coefficient csfs, is constant
whereas the coefficient c; 4., appearing in equation (23) is
now a function of the ratio to the subfilter energy to the total
energy (ksss) /k as follows (Chaouat and Schiestel, 2007)

k
Csfses = Cep + % (052 - Cfl) (24)

and where the coefficients cc; and ce, appearing in this
equation denote the usual constants used in the statisti-
cal dissipation rate transport equation. The theory shows
that the coefficients of the production term remain the
same for both RANS and LES dissipation-rate equations
Csfse; = Cey = 3/2. In the present case, the values retained
are ce; = 1.50 and ce, = 1.90. Equation (23) using the rela-
tion (24) constitutes the main feature of the PITM approach
where only the part of the spectrum for k > k. is modeled.
The ratio ks fs/k appearing in equation (24) is evaluated by
means of an accurate energy spectrum E(k) leading to the
result (Chaouat and Schiestel, 2009)
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Equation (25) indicates that the function cgf,sc, acts like
a dynamical parameter which controls the spectral distri-
bution of turbulence and verifies the limiting behaviors
lim 5.0 Csfses(Ne) = Cey, implying that the model be-
haves like a RANS/RSM whereas lim n,—00Csfse, (Me) = Cey
means that the computation switches to DNS (or under re-
solved DNS if the grid-size is not enough refined). The
theoretical value of the coefficient 8, in equation (25) is
Bur = (2/3Ck)%/? where Ck is the Kolmogorov constant.
In practice, this value is optimized for Cx = 1.3 according to
previous flow simulations. The diffusion term J. appearing
on the left hand side of equation (23) is modeled assuming
a well-known gradient law hypothesis
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where the coefficient ¢, is set to 0.18.

Invariance of the subfilter-scale pressure-strain correlation
term
In this section, we examine the transformation of the
exact and modeled pressure-strain terms IT;; under an ar-
bitrary time-dependent rotation and a translation of the
spatial frame of reference and shift of the origin of time ¢
given by
z*=Q(t)x+bt), tx =t+c (27)

where c is a constant coefficient, b is a time-dependent vec-
tor and @ is any time-dependent proper orthogonal tensor
verifying the well known relation

QkmQim = —QimQkm = €mkim (28)

The approach developed in RANS methodology (Speziale,
1979; Speziale, 1980) is transposed to the PITM method.
We compute first the mean velocity as well as the fluctu-
ating velocity under the change of frame of reference given
by equation (27). As a result, the instantaneous velocity
transforms as

u: = QimUm + Qimxm + b’L (29)

whereas the filtered velocity ; is then obtained by applying
the general definition (2) leading to the result

ﬁ = szﬁm + Qimjm + b’L (30)

for the particular case of isotropic filters. The subgrid fluctu-
ating velocity is then obtained by subtracting equation (30)
from equation (29)

up = Qim iy, (31)

showing that it is frame-indifferent. The mean and fluctu-
ating pressures remain frame-indifferent as a consequence of
the principle of material frame-indifference. By using the
chain rule of differentiation,
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the mean strain transforms as

As a result (Chaouat, 2011), the exact pressure-strain term
H;‘j remains invariant under a change of frame since it obeys
the tensor transformation rule as follows

HZJ‘ = ®(p", Si*j) = QimQjnlmn (34)

Now, we examine the transformation of the modeled
pressure-strain term II;;. It can be expressed as a function
of the anisotropy tensor a;; = ((Tij)sfs — 2/3ksfs5ij)/ksfsa
the mean strain term S;; and the absolute vorticity tensor
W;j defined by
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where w;; denotes the relative vorticity. This term IIj;, =

M(af;, S5, W) is determined by computing aj;, S7; and
W}, respectively. Applying the tensor rule (30), one can

show (Chaouat, 2011) that (7;;)sfs transforms as

(Ti’fj)st = QimQjp(Tmp)sfs + Qimij [UmTp — UmTp]

+Qjm Qip [Tty — Tmlip] + Qim Qjp [TmTp — Tmp] (36)

Equation (36) indicates that the subfilter stress (7;)s s de-
pends on the motion of the frame of reference through the
rotation but is frame indifferent through the translation.
This result is different from what would be guessed from
physical intuition. But one can argue that the additional
terms appearing in the right hand side of equation (36) are
small in comparison with the first term so that in a first
approximation, (Ti’})sfs can be reduced to

(T55)s1s R QimQjp(Tmp)sfs (37)

By using equation (32), it can be shown that the absolute
filtered vorticity tensor sz transforms as

ij - Qimijme (38)

thanks to equation (28). Taking into account equations (33),
(37) and (38), we finally find that the modeled pressure-
strain correlation term II;; transforms as

o* =T(QaQ",Q5Q",QWQ") ~ QT(a, S, W)Q"

(39)
In a mathematical sens, equation (39) means that IT;; is an
isotropic tensor function of its arguments (Speziale et al.,
1991). Consequently, the modeled pressure-strain correla-
tion term transforms like the exact pressure-strain correla-
tion term, provided however that the approximation (37) is
conceded in PITM methodology.

NUMERICAL METHOD AND CONDITIONS OF COMPU-
TATIONS

Numerical method

The numerical simulations are performed using a re-
search code (Chaouat, 2010b) which is based on a finite
volume technique. The governing equations are integrated
in time by a Runge-Kutta scheme of fourth-order accuracy
and the convective fluxes at the interfaces are computed by a
quasi-centered numerical scheme of second-order accuracy in
space. In practice, with the aim to avoid the model to reach a
purely RANS or LES limiting behavior during the transition
phase, a dynamical procedure (Fadai-Ghotbi et al., 2010b)
has been activated during the computations. The computa-
tional domain is of dimension 3§ x 24 x § in the streamwise,
spanwise and normal directions, respectively z1, z2, z3 and
the rotation vector is oriented along the spanwise direction
as seen in figure 1. The present simulations are performed on
a coarse mesh 24 x48 x 64 and on a medium mesh 84 x 64 x 64
at the Reynolds number Rr = u-d/2v = 386, based on the
friction velocity u, and the channel half width §/2 or, equiv-
alently, at the Reynolds number R,, = umd/v = 14000
based on the bulk velocity wm. The grid spacing AT in
the periodic directions are Af’ ~ 96.5, A;‘ ~ 32.2 and
Air ~ 27.5, A; = 24.1, respectively for the coarse and
medium meshes.

RESULTS AND DISCUSSION

Different values of the rotation number Rom = Q§/um
varying from moderate and high rotation regimes Ro.,, =
0.17 and 0.50 are considered in this work. Note that in
the literature, rotating flows are sometimes characterized
by the Rossby number defined by Rgm = 3um/dQ which
is directly related to the rotation number Rgm = 3/Rom.
The PITM results including the velocities and stresses are
compared with the data of highly resolved LES simulations
(Lamballais et al., 1998) using the spectral-dynamic model
derived from the eddy-damped quasi normal Markovian sta-
tistical theory (EDQNM). Figures 2 and 3 show the mean



dimensionless velocity profiles normalized by the bulk veloc-
ity (u1) /um versus the global coordinates for both rotation
regimes and for the coarse and medium meshes. As ex-
pected, the mean velocity presents an asymmetric character
which is more pronounced as the rotation regime increases
from Romy = 0.17 to 0.50. Even for the coarse grid res-
olution, one can see that both PITM simulations provide
velocity profiles in good agreement with the reference data.
In particular, one can notice that the mean velocity profile
exhibits a linear region of constant shear stress. The compu-
tations indicate that the slope of the mean velocity gradient
d(u1) /O3 is approximately equal to 2Q2, and corresponds
to a nearly-zero mean spanwise absolute vorticity vector, i.e.,
(W) = (w2) + 2Q2 & 0. Figure 4 displays the subfilter, re-
solved and Reynolds turbulent shear stresses for the PITM
simulations performed at Ro,, = 0.50. It can be shown
that the subfilter stress model behaves more or less like the
RANS/RSM model in the near wall region, although the
grid is very refined in the normal direction to the wall, and
like LES in the core flow. Obviously, the sharing out of the
turbulent energy between the modeled and resolved energies
is modified according to the grid spacing but not the total
energy which agrees well with the reference data. More pre-
cisely, the SF'S part of the shear stress is larger for the coarse
mesh than the one observed for the medium mesh whereas
the reverse situation occurs for the resolved part of the shear
stress. Figure 5 shows the streamwise, spanwise and normal
turbulent stresses for the PITM2 simulation performed at
Rom = 0.50 on the medium grid. Overall, a relatively good
agreement is observed with the reference data. It can be
noted that the flow anisotropy is well reproduced thanks to
the pressure-strain correlation term that redistributes the
energy among the different stress components. This term
appearing only in second-moment closures demonstrates the
usefulness of the present sufbilter stress model providing a
more realistic flow prediction than viscosity-based subfilter-
scale models. Figure 6 shows the isosurfaces of instantaneous
vorticity modulus, illustrating the dynamical elements of the
flow in wall turbulence. Although the grid is very coarse,
the computation succeeds in reproducing qualitatively these
structures even if the grid resolution is not really sufficient in
the streamwise and spanwise directions to get quantitative
results obtained by DNS or highly resolved LES

CONCLUSION

The partially integrated transport modeling (PITM)
method has been reconsidered for devising a subfilter-scale
stress model to account for rotation in the framework of sec-
ond moment closures (SMC). As a result, it has been found
that the present PITM simulations performed on both coarse
and medium meshes have reproduced fairly well the mean
features of turbulent rotating channel flows at moderate and
high rotation regimes, allowing a drastic saving of computa-
tional cost in comparison with highly resolved LES.
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Figure 1: Schematic of fully-developed turbulent channel
flow in a rotating frame.
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Figure 2. Mean velocity profile (u1) /um in global coordi-
nate. (a) PITM1 (24 x 48 x 64): o; (b) PITM2 (84 x 64 x
64): o; Highly resolved LES (Lamballais et al., 1998): — .
Ry = 14000, Rom = 0.17.

Figure 5: Turbulent Reynolds stresses (7i;)'/2 /um. PITM2
(84 x 64 x 64); A: i=1; <: i=2; >: i=3. Highly resolved LES
(Lamballais et al., 1998): A:i=1, 4 :i=2, » :i=3. Ry =
14000, Roym = 0.5 .

Figure 6: Isosurfaces of vorticity modulus w = 3um /6 at
R, = 14000 and Ro,, = 0.17. PITM1 (24 X 48 x 64)
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Figure 3. Mean velocity profile (u1) /um in global coordi-

nate. (a) PITM1 (24 x 48 x 64): o; (b) PITM2 (84 x 64 x

64): o; Highly resolved LES (Lamballais et al., 1998): — .
m = 14000, Rom, = 0.5.
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Figure 4. Turbulent shear stress (ri3) /u2,. (a) PITM1
(24 x 48 x 64); (b) PITM2 (84 x 64 x 64); 7;;/u2,: o;
(Tij)sfs/uZy: A; (Tij)ies/u2,: V. Highly resolved LES (Lam-
ballais et al., 1998): — . R, = 14000, Rom = 0.5.



