
CONTINUOUS HYBRID NON-ZONAL RANS/LES SIMULATIONS OFTURBULENT ROTATING FLOWS USING THE PITM METHODBruno ChaouatDepartment of Computational Fluid Dynamis, ONERABP 72 - 92322 Châtillon edex, FraneBruno.Chaouat�onera.frABSTRACTThe partially integrated transport modeling (PITM)method viewed as a ontinuous approah of hybridRANS/LES with seamless oupling is used to derive asub�lter-sale stress model in the framework of seond mo-ment losures (SMC) appliable in a rotating frame of ref-erene. In this work, the pressure-strain orrelation termis modeled from a physial standpoint in an invariant formunder an arbitrary hange of non-inertial frame of referene.As a result of the simulations, it is found that the sub�lter-sale stress model reprodues fairly well the mean features ofturbulent rotating hannel ows performed on oarse gridswith a redution of the omputational ost.INTRODUCTIONNumerous appliations in turbomahinery industryare onerned with turbulent ows in system rotation. Inthis framework, fully developed turbulent hannel owssubjeted to a spanwise rotation as shown in �gure 1 havebeen previously studied both experimentally (Johnston etal., 1972) and numerially by several authors. Suh rotatinghannel ows have been initially omputed in the past byusing Reynolds stress models (RSM) in RANS methodology(Shiestel, 2008) and then, due to the inrease of omputerpower, by large eddy simulations (LES) for investigating themean features of these rotating turbulent ows (Lamballaiset al., 1998). These experimental and numerial studieshave shown that the Coriolis fores assoiated with the rota-tion appreiably a�et the mean motion and the turbulentutuations. In partiular, as the rotation rate inreases,the mean ow beomes more and more asymmetri withrespet to the hannel enter and the turbulene ativitydramatially dereases with respet to the non-rotatingase. From a quantitative point of view, experimentalow visualizations as well as reent diret numerial simu-lations have provided the strutural information on the ow.Conventional large eddy simulations whih onsist ofmodeling the more universal small sales orrespondingto the region of the spetrum loated after the uto�wave number � while the resolved sales are expliitlyomputed by the numerial sheme are a promising method.They allow to mimi the ating mehanisms of turbuleneinterations. However, most of LES simulations assumea diret onstitution relation between the turbulent stressand strain omponents that is only valid for �ne grainedturbulene. On the other hand, Reynolds stress modelsused in RANS appear well suited for prediting engineeringows without requiring prohibitive omputation times butthey an not reprodue the instantaneous ow strutures.

In this framework, the partially integrated transportmodeling (PITM) method has been developed reently(Chaouat and Shiestel, 2005; Shiestel and Dejoan, 2005;Chaouat and Shiestel, 2007; Chaouat and Shiestel, 2009)for performing hybrid RANS/LES simulations on relativelyoarse grids with seamless oupling between the RANS andLES regions, the uto� wave number being loated almostanywhere within the energy spetrum. From a theoretialpoint of view, the PITM method gains major interestbeause it bridges these two di�erent levels of desriptionin a onsistent way by a unifying formalism developedin the spetral spae (Chaouat and Shiestel, 2007). Asthe transport equations for the sub�lter stress in termsof entral moment are formally similar to the statistialequations, the PITM method an be applied to almost allstatistial models to derive their hybrid LES ounterpartsorresponding to sub�lter models, provided an adequatedissipation equation is oupled to the turbulent energy orstress transport equations. These derived sub�lter modelsinlude both eddy visosity models ksfs��sfs (Shiestel andDejoan, 2005; Befeno and Shiestel, 2007) and stress models(�ij)sfs � �sfs (Chaouat and Shiestel, 2005; Chaouat andShiestel, 2009; Chaouat, 2010a), depending on the levelof losures. The variables ksfs, (�ij)sfs and �sfs denotethe sub�lter turbulent energy, stress and dissipation-rate,respetively. These models have been previously used forsuessfully simulating engineering ows on oarse gridsor turbulent ows with strong departure from spetralequilibrium. In the last several years, the PITM methodhas beome more and more widespread in turbulenemodeling beause of its pratial interest in the �eld ofengineering appliations. But these derived models requirea spei� modeling to takle engineering ows enounteredin turbomahinery industry subjeted to system rotation.In this work, onsidering that seond moment losures(SMC) onstitute a onvenient framework for system ro-tation, we propose to derive a sub�lter-sale stress model(�ij)sfs��sfs for performing large eddy simulations of rotat-ing turbulent ows on relatively oarse grids. This modelingstrategy is motivated by the idea that the reognized advan-tages of seond moment losures are worth transposing tosub�lter-sale modeling, espeially for rotating ows whenthe sub�lter-sale (SFS) part is not small ompared to theresolved part. We will show that the Coriolis term must beembedded in the sub�lter stress model as a soure term andthat the pressure-strain-orrelation term whih plays a piv-otal role by redistributing the turbulent energy among thedi�erent stress omponents an be developed in an invariant



form under arbitrary time-dependent rotations of the spatialframe of referene. In this study, oarse grids are deliber-ately hosen to highlight the ability of the PITM method tosimulate large sales of the ow with a suÆient �delity forengineering omputations.THE FILTERING PROCESS AND GOVERNING EQUA-TIONSWe onsider the turbulent ow of a visous inompres-sible uid. In a frame rotating at angular veloity 
, theinstantaneous momentum equation reads�ui�t + ��xj (uiuj) = �1� �p�xi + � �2ui�xj�xj � 2�ijk
juk��ijk�kpq
j
pxq (1)where ui, p, �ijk, � are the veloity vetor, the pressure,the Levi-Civita's permutation tensor, the kinemati vis-osity of the uid, respetively. The terms appearing inthe right hand side of this equation are referred to as theCoriolis aeleration �2
 � u, and entrifugal aeleration�
 � (
 � x). In large eddy simulations, the ow vari-able � is deomposed into a resolved sale part �� inludingthe statistial mean h�i and the large sale �< = �� � h�iand a sub�lter-sale (or modeled) utuating part �0. Theresolved variable �� is de�ned by the �lter funtion G� as��(x) = Z Z ZD G�(x� x0)�(x0) d3x0 (2)where � is the �lter width. Applying the �ltering operationto the instantaneous momentum equation yields the �lteredequation��ui�t + ��xj (�ui�uj) = �1� ��p�xi + � �2�ui�xj�xj � �(�ij )sfs�xj�2�ijk
j �uk � �ijk�kpq
j
pxq (3)where (�ij)sfs denotes the sub�lter sale stress tensor de-�ned by the mathematial relation(�ij )sfs = uiuj � �ui�uj (4)The presene of the turbulent ontribution (�ij )sfs in equa-tion (3) indiates the e�et of the sub�lter-sales to theresolved �eld. The resolved sale tensor is omputed by therelation (�ij )les = �ui�uj � huii huji (5)Assuming that the large and small sale utuations are un-orrelated as for spetral uto� �lter de�ned by the Fouriertransform, the Reynolds stress �ij then reads�ij = 
(�ij)sfs�+ h(�ij)lesi (6)The losure of the �ltered momentum equation (3) requiresto model the sub�lter-sale turbulent stress (�ij)sfs. In theframework of seond moment losures, this is made by meansof its transport equation whih is the required level for au-rately reproduing the physial proesses of turbulent ows.PARTIAL INTEGRATED TRANSPORT MODELINGMETHODPriniple of the methodThe PITM method �nds its basi foundation in thespetral spae by onsidering the Fourier transform of thetwo-point utuating veloity orrelation equations in ho-mogeneous turbulene. The extension to non-homogeneous

turbulene is developed within the approximate frameworkof the tangent homogeneous spae at a point of a non-homogeneous ow �eld assuming Taylor series expansionin spae for the mean veloity �eld (Chaouat and Shies-tel, 2007). When transposing the spetral equation in thephysial spae by inverse Fourier transform involving a par-tial integration of the turbulent �eld in the range [�; �d[where � = �=� is the uto� wave number omputed bythe grid size width �, and �d is the dissipative wave numberplaed at the end of the inertial range of the spetrum om-pletely after the transfer zone, one an derive a sub�lter-salemodel based on the transport equations for the sub�lter-sale stresses (�ij)sfs and the dissipation rate �sfs that looksformally like the orresponding RANS/RSM model but theoeÆients used in the model are no longer onstants. Theyare now some funtions of the dimensionless parameter � in-volving the uto� wave number � and the turbulent lengthsale Le built using the total turbulent kineti energy k, thesub�lter dissipation rate �sfs and the large sale dissipationrate denoted �<� = �Le = � k3=2�1=3 (
�sfs�+ h�<i) (7)In PITM methodology, the sub�lter-sale stress model variesontinuously with respet to the ratio of the turbulentlength-sale to the grid-size Le=�. Note that a formalismbased on temporal �ltering has been proposed reently tohandle non-homogeneous ows leading to a variant of thePITM method alled TPITM method (Fadai-Ghotbi et al.,2010a).Exat transport equations in presene of rotationThe �rst step of the present approah onsists of writ-ing the exat transport equation of the sub�lter-sale stress(�ij)sfs in presene of rotation. By using the materialderivative operator D=Dt = �=�t+ �uk�=�xk , the transportequation of the sub�lter stress tensor an be therefore writ-ten in the simple ompat form asD(�ij)sfsDt = Pij +�ij + Jij � (�ij)sfs (8)where the terms appearing in the right-hand side of thisequation are identi�ed as prodution, redistribution, di�u-sion and dissipation. The prodution term Pij is omposedby the term P 1ij produed by the interation between thesub�lter stress and the �ltered veloity gradientP 1ij = �(�ik)sfs ��uj�xk � (�jk)sfs ��ui�xk ; (9)and by the term P 2ij generated by the rotation involving theCoriolis foresP 2ij = �2
p��jpk(�ki)sfs + �ipk(�kj )sfs� (10)The exat expressions of the redistribution �ij , di�usion Jijand dissipation rate (�ij)sfs appearing on the right-handside of equation (8) are the following�ij = 2� � (p; Sij) ; (11)Jij=���(ui; uj ; uk)�xk �1� ��(p; ui)�xj �1� ��(p; uj)�xi +� �2�(ui; uj)�xk�xk(12)(�ij)sfs = 2� �� �ui�xk ; �uj�xk� (13)



where in equations (11), (12), (13), the funtions � of twoor three variables are de�ned by �(f; g) = fg � �f�g and�(f; g; h) = fgh� �f�(g; h)� �g�(h; f)� �h�(f; g)� �f�g�h ap-pliable for any turbulent quantities f , g, h. The quantitySij appearing in equation (11) denotes the strain deforma-tion Sij = 12 � �ui�xj + �uj�xi � (14)Modeling of the sub�lter-sale stress transport equation inpresene of rotationContrary to the prodution term Pij whih is exat, theredistribution, di�usion and dissipation terms need to bemodeled in the wave number range [�; �d℄. The present for-malism (Chaouat and Shiestel, 2007) shows learly the for-mal analogy between the statistial and �ltered approahesand their ompatibility. As a onsequene, the losure ap-proximations used for the statistial partially averaged equa-tions are assumed to prevail also in the ase of large eddynumerial simulations. As it was emphasized in seond-moment losures, the pressure-strain orrelation term �ijplays a pivotal role by redistributing the turbulent energyamong the stress omponents allowing a more realisti de-sription of the ow anisotropy than eddy visosity models,and also a better aount of history and nonloal e�ets.It requires a spei� modeling to aount for the rotation.This term de�ned in equation (11) an be redued to thepressure-strain sub�lter utuating orrelations in a �rst ap-proximation �ij = 2�(p; Sij)=� � 2p0S0ij=� (15)In system rotation, it is simple matter to show that thesub�lter-sale utuating pressure p0 is solution of the Pois-son equation that reads1� �2p0�2xi =� �2�2xj �u0iu0j � (�ij )sfs��2� ��ui�xj + �ikj
k��u0j�xi(16)Like in RANS statistial modeling, when integrating thisequation in spae in absene of boundaries, using the Green'sfuntion solution and then multiplying by the utuatingstrain S0ij , it is found that �ij an be deomposed into aslow part �1ij and a rapid part �2ij as follows�1ij(x)= 12�ZD �2�xm�xk �u0ku0m � (�km)sfs� (x0)S0ij(x) d3x0r(17)�2ij(x)= 1� ZD h� ��uk�xm + �kpm
p� �u0m�xk i(x0)S0ij(x)d3x0r(18)where r = jx� x0j. These equations learly show that theslow term �1ij haraterizes the return to isotropy due to theation of turbulene on itself whereas the rapid term �2ijdesribes the return to isotropy by ation of the absolute�ltered veloity gradient involving the rotation de�ned by�a�uk�xl = ��uk�xl + �kpl
p (19)In the present ase, these terms �1ij and �2ij are modeledassuming that the usual statistial Reynolds stress model(Chaouat, 2005) must be reovered in the limit of vanishinguto� wave number � (� ! 0). Considering that the smallsales return more rapidly to isotropy than the large salesbefore asading into smaller sales by non-linear intera-tions, �1ij reads�1ij = �sfs1 �sfsksfs �(�ij )sfs � 23ksfs Æij� (20)

where sfs1 is an inreasing funtion of the parameter �.The seond term �2ij is modeled taking into aount the ab-solute �ltered veloity gradient leading to the result (Laun-der et al., 1987)�2ij = �2 �P 1ij + 12P 2ij � 13P 1mm Æij� (21)where the oeÆient 2 remains the same as in statistialmodeling. The di�usion term Jij appearing in equation (8)due to the utuating veloities and pressure together withthe moleular di�usion, is modeled assuming a gradient lawhypothesisJij = ��xk �� �(�ij )sfs�xk + s ksfs�sfs (�kl)sfs �(�ij )sfs�xl � (22)where s is a numerial oeÆient set to 0.22. Closures ofequation (8) require to model the sub�lter tensorial dissi-pation rate (�ij)sfs whih is approahed by 2=3�Æij . Themodeling of the dissipation-rate �sfs is made in the presentase by means of its transport equation. This allows to ob-tain an aurate estimate of the sub�lter dissipation rateeven in situation of non-equilibrium ows when the grid-sizeis no longer a good estimate of the harateristi turbu-lene length-sale. As a result of the theory developed inthe spetral spae (Chaouat and Shiestel, 2007), the u-tuating modeled transport equation for the sub�lter-saledissipation-rate �sfs readsD�sfsDt = sfs�1 �sfsksfsP � sfs�2 �2sfsksfs + J� (23)where P = P 1mm=2. The oeÆient sfs�1 is onstantwhereas the oeÆient sfs�2 appearing in equation (23) isnow a funtion of the ratio to the sub�lter energy to the totalenergy 
ksfs� =k as follows (Chaouat and Shiestel, 2007)sfs�2 = �1 + 
ksfs�k (�2 � �1) (24)and where the oeÆients �1 and �2 appearing in thisequation denote the usual onstants used in the statisti-al dissipation rate transport equation. The theory showsthat the oeÆients of the prodution term remain thesame for both RANS and LES dissipation-rate equationssfs�1 = �1 = 3=2. In the present ase, the values retainedare �1 = 1:50 and �2 = 1:90. Equation (23) using the rela-tion (24) onstitutes the main feature of the PITM approahwhere only the part of the spetrum for � > � is modeled.The ratio ksfs=k appearing in equation (24) is evaluated bymeans of an aurate energy spetrum E(�) leading to theresult (Chaouat and Shiestel, 2009)sfs�2(�) = �1 + �2 � �1[1 + �� �3 ℄2=9 (25)Equation (25) indiates that the funtion sfs�2 ats likea dynamial parameter whih ontrols the spetral distri-bution of turbulene and veri�es the limiting behaviorslim �!0 sfs�2(�) = �2 , implying that the model be-haves like a RANS/RSM whereas lim �!1sfs�2(�) = �1means that the omputation swithes to DNS (or under re-solved DNS if the grid-size is not enough re�ned). Thetheoretial value of the oeÆient �� in equation (25) is��T = (2=3CK )9=2 where CK is the Kolmogorov onstant.In pratie, this value is optimized for CK = 1:3 aording toprevious ow simulations. The di�usion term J� appearingon the left hand side of equation (23) is modeled assuminga well-known gradient law hypothesisJ� = ��xj �� ��sfs�xj + � ksfs�sfs (�jm)sfs ��sfs�xm � (26)



where the oeÆient � is set to 0.18.Invariane of the sub�lter-sale pressure-strain orrelationtermIn this setion, we examine the transformation of theexat and modeled pressure-strain terms �ij under an ar-bitrary time-dependent rotation and a translation of thespatial frame of referene and shift of the origin of time tgiven by x� = Q(t)x+ b(t); t� = t+  (27)where  is a onstant oeÆient, b is a time-dependent ve-tor and Q is any time-dependent proper orthogonal tensorverifying the well known relation_QkmQlm = � _QlmQkm = �mkl
m (28)The approah developed in RANS methodology (Speziale,1979; Speziale, 1980) is transposed to the PITM method.We ompute �rst the mean veloity as well as the utu-ating veloity under the hange of frame of referene givenby equation (27). As a result, the instantaneous veloitytransforms as u�i = Qimum + _Qimxm + _bi (29)whereas the �ltered veloity �ui is then obtained by applyingthe general de�nition (2) leading to the resultu�i = Qim�um + _Qim�xm + _bi (30)for the partiular ase of isotropi �lters. The subgrid utu-ating veloity is then obtained by subtrating equation (30)from equation (29) u0�i = Qimu0m (31)showing that it is frame-indi�erent. The mean and utu-ating pressures remain frame-indi�erent as a onsequene ofthe priniple of material frame-indi�erene. By using thehain rule of di�erentiation,��x�i = �xm�x�i ��xm = Qim ��xm ; (32)the mean strain transforms asS�ij = QimQjnSmn (33)As a result (Chaouat, 2011), the exat pressure-strain term��ij remains invariant under a hange of frame sine it obeysthe tensor transformation rule as follows��ij = �(p�; S�ij) = QimQjn�mn (34)Now, we examine the transformation of the modeledpressure-strain term �ij . It an be expressed as a funtionof the anisotropy tensor aij = ((�ij )sfs � 2=3ksfsÆij)=ksfs,the mean strain term Sij and the absolute vortiity tensorWij de�ned byW ij = 12 ��a�ui�xj � �a�uj�xi � = !ij + �mji
m (35)where !ij denotes the relative vortiity. This term ��ij =�(a�ij ; S�ij ;W �ij) is determined by omputing a�ij , S�ij andW �ij , respetively. Applying the tensor rule (30), one anshow (Chaouat, 2011) that (�ij)sfs transforms as(��ij )sfs = QimQjp(�mp)sfs +Qim _Qjp [umxp � �umxp℄+Qjm _Qip [xmup � xm�up℄ + _Qim _Qjp [xmxp � xmxp℄ (36)

Equation (36) indiates that the sub�lter stress (��ij )sfs de-pends on the motion of the frame of referene through therotation but is frame indi�erent through the translation.This result is di�erent from what would be guessed fromphysial intuition. But one an argue that the additionalterms appearing in the right hand side of equation (36) aresmall in omparison with the �rst term so that in a �rstapproximation, (��ij )sfs an be redued to(��ij)sfs � QimQjp(�mp)sfs (37)By using equation (32), it an be shown that the absolute�ltered vortiity tensor W�ij transforms asW �ij = QimQjpWmp (38)thanks to equation (28). Taking into aount equations (33),(37) and (38), we �nally �nd that the modeled pressure-strain orrelation term �ij transforms as�� = �(QaQT ;QSQT ;QWQT ) � Q�(a;S;W )QT(39)In a mathematial sens, equation (39) means that �ij is anisotropi tensor funtion of its arguments (Speziale et al.,1991). Consequently, the modeled pressure-strain orrela-tion term transforms like the exat pressure-strain orrela-tion term, provided however that the approximation (37) isoneded in PITM methodology.NUMERICAL METHOD AND CONDITIONS OF COMPU-TATIONSNumerial methodThe numerial simulations are performed using a re-searh ode (Chaouat, 2010b) whih is based on a �nitevolume tehnique. The governing equations are integratedin time by a Runge-Kutta sheme of fourth-order aurayand the onvetive uxes at the interfaes are omputed by aquasi-entered numerial sheme of seond-order auray inspae. In pratie, with the aim to avoid the model to reah apurely RANS or LES limiting behavior during the transitionphase, a dynamial proedure (Fadai-Ghotbi et al., 2010b)has been ativated during the omputations. The omputa-tional domain is of dimension 3Æ� 2Æ� Æ in the streamwise,spanwise and normal diretions, respetively x1, x2, x3 andthe rotation vetor is oriented along the spanwise diretionas seen in �gure 1. The present simulations are performed ona oarse mesh 24�48�64 and on a mediummesh 84�64�64at the Reynolds number R� = u� Æ=2� = 386, based on thefrition veloity u� and the hannel half width Æ=2 or, equiv-alently, at the Reynolds number Rm = umÆ=� � 14000based on the bulk veloity um. The grid spaing �+i inthe periodi diretions are �+1 � 96:5, �+2 � 32:2 and�+1 � 27:5, �+2 � 24:1, respetively for the oarse andmedium meshes.RESULTS AND DISCUSSIONDi�erent values of the rotation number Rom = 
Æ=umvarying from moderate and high rotation regimes Rom =0:17 and 0:50 are onsidered in this work. Note that inthe literature, rotating ows are sometimes haraterizedby the Rossby number de�ned by Rgm = 3um=Æ
 whihis diretly related to the rotation number Rgm = 3=Rom.The PITM results inluding the veloities and stresses areompared with the data of highly resolved LES simulations(Lamballais et al., 1998) using the spetral-dynami modelderived from the eddy-damped quasi normal Markovian sta-tistial theory (EDQNM). Figures 2 and 3 show the mean



dimensionless veloity pro�les normalized by the bulk velo-ity hu1i =um versus the global oordinates for both rotationregimes and for the oarse and medium meshes. As ex-peted, the mean veloity presents an asymmetri haraterwhih is more pronouned as the rotation regime inreasesfrom Rom = 0:17 to 0.50. Even for the oarse grid res-olution, one an see that both PITM simulations provideveloity pro�les in good agreement with the referene data.In partiular, one an notie that the mean veloity pro�leexhibits a linear region of onstant shear stress. The ompu-tations indiate that the slope of the mean veloity gradient� hu1i =�x3 is approximately equal to 2
2, and orrespondsto a nearly-zero mean spanwise absolute vortiity vetor, i.e.,hW2i = h!2i + 2
2 � 0. Figure 4 displays the sub�lter, re-solved and Reynolds turbulent shear stresses for the PITMsimulations performed at Rom = 0:50. It an be shownthat the sub�lter stress model behaves more or less like theRANS/RSM model in the near wall region, although thegrid is very re�ned in the normal diretion to the wall, andlike LES in the ore ow. Obviously, the sharing out of theturbulent energy between the modeled and resolved energiesis modi�ed aording to the grid spaing but not the totalenergy whih agrees well with the referene data. More pre-isely, the SFS part of the shear stress is larger for the oarsemesh than the one observed for the medium mesh whereasthe reverse situation ours for the resolved part of the shearstress. Figure 5 shows the streamwise, spanwise and normalturbulent stresses for the PITM2 simulation performed atRom = 0:50 on the medium grid. Overall, a relatively goodagreement is observed with the referene data. It an benoted that the ow anisotropy is well reprodued thanks tothe pressure-strain orrelation term that redistributes theenergy among the di�erent stress omponents. This termappearing only in seond-moment losures demonstrates theusefulness of the present sufbilter stress model providing amore realisti ow predition than visosity-based sub�lter-sale models. Figure 6 shows the isosurfaes of instantaneousvortiity modulus, illustrating the dynamial elements of theow in wall turbulene. Although the grid is very oarse,the omputation sueeds in reproduing qualitatively thesestrutures even if the grid resolution is not really suÆient inthe streamwise and spanwise diretions to get quantitativeresults obtained by DNS or highly resolved LESCONCLUSIONThe partially integrated transport modeling (PITM)method has been reonsidered for devising a sub�lter-salestress model to aount for rotation in the framework of se-ond moment losures (SMC). As a result, it has been foundthat the present PITM simulations performed on both oarseand medium meshes have reprodued fairly well the meanfeatures of turbulent rotating hannel ows at moderate andhigh rotation regimes, allowing a drasti saving of omputa-tional ost in omparison with highly resolved LES.REFERENCESBefeno, I. and Shiestel, R., 2007, \Non-EquilibriumMixing of Turbulene Sales using a Continuous HybridRANS/LES Approah", Turbulene and Combustion, Vol.78, pp. 129-151.Chaouat, B., and Shiestel, R., 2005, \A New PartiallyIntegrated Transport Model for Subgrid-Sale Stresses andDissipation Rate for Turbulent Developing Flows", Physisof Fluids, Vol. 17, (065106).Chaouat, B., and Shiestel, R., 2007, \From Single-Sale Turbulene Models to Multiple-Sale and Subgrid-
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(b)Figure 2. Mean veloity pro�le hu1i =um in global oordi-nate. (a) PITM1 (24 � 48 � 64): Æ; (b) PITM2 (84 � 64 �64): Æ; Highly resolved LES (Lamballais et al., 1998): | .Rm = 14000, Rom = 0:17.
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Figure 5: Turbulent Reynolds stresses h�iii1=2 =um. PITM2(84�64�64); M: i=1; C: i=2; B: i=3. Highly resolved LES(Lamballais et al., 1998): N:i=1, J :i=2, I :i=3. Rm =14000, Rom = 0:5 .
Figure 6: Isosurfaes of vortiity modulus ! = 3um=Æ atRm = 14000 and Rom = 0:17. PITM1 (24 � 48� 64)
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(b)Figure 3. Mean veloity pro�le hu1i =um in global oordi-nate. (a) PITM1 (24 � 48 � 64): Æ; (b) PITM2 (84 � 64 �64): Æ; Highly resolved LES (Lamballais et al., 1998): | .Rm = 14000, Rom = 0:5.
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(b)Figure 4. Turbulent shear stress h�13i =u2m. (a) PITM1(24 � 48 � 64); (b) PITM2 (84 � 64 � 64); �ij=u2m: Æ;(�ij)sfs=u2m: M; (�ij )les=u2m: O. Highly resolved LES (Lam-ballais et al., 1998): | . Rm = 14000, Rom = 0:5.


