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ABSTRACT
Multiple-time-scale models have been recently studied

by the authors with focus on predicting non-equilibrium flows.
Two two-time-scale linear-eddy-viscosity models have been
further developed, improved and tested over a wide range of
test cases, including simple flows, such as channel flows and
zero pressure gradient boundary layers, and more complex
flows such as homogeneous shear flows, adverse-pressure-
gradient, favourable-pressure-gradient and oscillatory bound-
ary layers, normally strained flows, fully developed ramp up
and oscillatory pipe flows and steady backward facing step
flows. The two new models performed reasonably well in all
test cases, specially when taking into account the inherent lim-
itations of linear-eddy-viscosity schemes.

INTRODUCTION
Non-equilibrium flows are often characterized by the oc-

currence of sudden changes in the flow such as sudden ex-
pansion and/or contraction, sudden changes in the pressure,
or rapid time variation of the flow. These flows are quite com-
mon in industry and therefore there is a strong interest in their
reliable prediction.

It is well known that there is a lag in the response of the
turbulence to changes in the mean flow. The energy transfer
is best described by the energy cascade process across the tur-
bulent kinetic energy spectrum which is thus characterized by
a range of time and length scales. Therefore single-time-scale
turbulence models, which comprise most of the Reynolds Av-
eraged Navier Stokes (RANS) models, and which assume that
a single length or time scale is able to characterize a flow, are
less likely to predict such non-equilibrium flows correctly.

Two-time-scale turbulence models have thus arisen as an
attempt to take into account some features of the turbulent
kinetic energy spectrum within the RANS modelling frame-
work, and thus to improve the prediction of non-equilibrium
flows.

Two-time-scale turbulence models based on the idea of
Hanjalic et al. (1980) split the turbulent kinetic energy spec-
trum into three zones: production, transfer and dissipation

zones. The variable kP denotes the kinetic energy contained in
the large-scale turbulent eddies in the production zone which
is transfered at a rate εP to the transfer zone where the smaller
turbulent eddies contain energy denoted by the variable kT .
The turbulent kinetic energy is then transfered to the dissipa-
tion zone at a rate εT where it is immediately dissipated into
heat and therefore none of the total turbulent kinetic energy
is stored in this zone. The turbulent kinetic energy dissipation
rate ε , usually used in single-time-scale models, is then equiv-
alent to εT . If using this decomposition within a linear eddy
viscosity modelling approach, transport equations for each of
the partition variables (kP, kT , εP and εT ) must be solved.

In this work two two-time-scale models based on the
above framework will be presented. They are a result of fur-
ther improvement in the work presented by Klein et al. (2010)
in order to comply with some physical constraints associated
with different parts of the turbulent kinetic energy spectrum.

TURBULENCE MODELLING
The two two-time-scale models developed are based on

linear eddy-viscosity formulations, however the eddy viscos-
ity was set to vary with the mean dimensionless strain rate
η = k

εT
max(S,W ), as is sometimes done in non-linear-eddy-

viscosity approaches. In the above η expression, S = Si jSi j
2 ,

W = Wi jWi j
2 , Si j =

(
∂Ui
∂x j

+ ∂U j
∂xi

)
and Wi j =

(
∂Ui
∂x j
− ∂U j

∂xi

)
. The

main difference between the two models proposed is the eddy-
viscosity formulation, where the use of different time scales
was explored. As a consequence of this difference, slightly
different terms are included in the modelled transport equa-
tions for the turbulent quantities.

The transport equations for the partition variables, equa-
tions 1 to 4, are presented below and will be used as reference
to comment on the new models developed.
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The coefficients and functions applied in the models
were defined through asymptotic analysis of homogeneous
shear flows, decaying grid turbulence and local equilibrium
boundary layers. A further constraint applied in this latter
flow was to ensure that the ratio kP

kT
should be greater than

3, in order to ensure that the ratio of length and time scales
between the production and transfer zones was greater than
unity, as one might physically expect to be the case.

NT1 Model
The NT1 model was developed by using the same gen-

eral expression for the eddy-viscosity as that proposed by
Hanjalic et al. (1980), νt = cµ

kkP
εP

. However, instead of a
constant, cµ = min[0.115,0.023 + 0.25exp(−0.3η)] so that
it varies with the dimensionless shear. The coefficient 0.115
represents the value cµ is expected to assume in equilibrium
boundary layers. The time-scale used in this formulation of νt
is based on the large eddies kP

εP
.

The last term in equation 3 was identified to cause in-
stabilities in the homogeneous shear flows. Moreover, it was
found that the model would return best results in these flows
when C′P1 = 0. It was also found to be beneficial to make
the coefficient CP1, also in equation 3, to vary as a func-
tion of the ratio kP

kT
in order to improve prediction of homo-

geneous low shear cases. Its final form adopted is CP1 =
1.4912+2.5min(0, kP

kT
−3.6)/( kP

kT
+3.6), where 3.6 is the ex-

pected value for the ratio kP
kT

in equilibrium boundary layers.
The remaining coefficients were kept as constants, even

CT 1 which varies with εP
εT

in Hanjalic et al. (1980), and are
presented in Table 1.

NT2 Model
The NT2 model was developed in order to test the eddy-

viscosity as a function of the total time scale, just as used in
single-time-scale models: νt = cµ

k2

εT
. Again, cµ was taken to

vary with η and assumed the form: cµ = min(0.09,0.0117 +
0.22exp(−0.31η). The value expected for cµ in equilibrium
boundary layers is the same as that used in single-time-scale
models.

Again, CP1 in equation 3 was made to vary with the
ratio kP

kT
, assuming the form CP1 = 1.5697 + 2.5min(0, kP

kT
−

3.7)/( kP
kT

+ 3.7), where 3.7 is the expected value for the ratio
kP
kT

in equilibrium boundary layers. However, in this model, a
small contribution of the term which includes the coefficient
C′P1 in equation 3 was found beneficial to improve prediction
in the homogeneous low shear cases. This small contribution
did not cause the instabilities found in the model of Hanjalic
et al. (1980).

The coefficient CT 1 was kept as a function of the ratio εP
εT

as in Hanjalic et al. (1980) which effectively implies a differ-
ent source term in equation 4 which then becomes:
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Both NT1 and NT2 models use a constant for the coef-
ficient CP2, which comes directly from decaying grid turbu-
lence analysis, just as is done in single-time-scale models. It
may be noted that neither the NT1 or the NT2 model follows
exactly the general form of the model proposed by Hanjalic
et al. (1980), but modifications were proposed in order to im-
prove prediction of homogeneous shear flows and at the same
time to comply with the asymptotic analysis of the various
flows noted above.

Table 1. Constant coefficients for the NT1 and NT2 models

Coefficient NT1 model NT2 model

CP2 1.8 1.8

C′P1 0 -0.005

σεP 1.4202 1.6664

CT 1 1.6 1.0

CT 2 1.7 1.1

σεT 1.2181 1.1922

σk 1.0 1.0

TEST CASES
These most recent versions of the two two-scale-models,

outlined above, have been tested over a wide variety of flows.
Simple flows such as channel flows and zero pressure

gradient boundary layers were tested in order to ensure that
the models provide reasonable results even in such simple
cases. Results showing the performance of the new models
in these cases will not be presented here since they are not the
main focus of prediction.

More complex test cases such as homogeneous
shear flows, adverse-pressure-gradient, favourable-pressure-
gradient and oscillatory boundary layers, normally strained
flows, fully developed ramp up and oscillatory pipe flows and
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steady backward facing step flows were also used to assess the
performance of the new models. A sample of the results ob-
tained in these test cases will be shown here within the results.

In order to simulate the test cases mentioned above,
the in-house finite volume fully collocated grid CFD code
STREAM, described in Lien & Leschziner (1994), was used.
Besides DNS data and/or experiments, the performance of
the new models will be compared with three other turbu-
lence models: the linear-eddy-viscosity standard k−ε model,
the Reynolds stresses transport model SSG of Speziale et al.
(1991) and the two-time-scale model of Hanjalic et al. (1980)
which will be referred to as the HLS model.

All five models tested here are high Reynolds number
formulations which means they need to be used together with
wall functions. The wall function used here is the log-law
based formulation proposed by Chieng & Launder (1980).
Adaptations were made in order to use it with the two-time-
scale models: the regular wall function treatment was applied
to kP and εT , and, consistent with the assumption of local
equilibrium boundary layer conditions, εP was set equal to εT
and the ratio kP

kT
at the near wall cell was set as 2 for the two-

time-scale model of Hanjalic et al. (1980) and as 3.6 and 3.7
for the NT1 and NT2 schemes respectively, since these are
the values predicted by these models in such an equilibrium
boundary layer.

RESULTS
The performance of the new NT1 and NT2 linear-eddy-

viscosity two-time-scale models will be assessed in a range of
challenging cases below.

Homogeneous Shear Flows
Homogeneous shear flows, consisting of a constant ve-

locity gradient being applied to quasi-isotropic developing
flows, have been tested over a range of dimensionless shear
values, k

ε

dU
dy , from about 1 to 30. Most RANS turbulence

models perform reasonably well in low shear cases, however,
as this parameter is increased, they are not able to follow the
development of turbulent quantities. In Figures 1, 2 and 3
the performance of the new models in predicting the evolu-
tion in time of the turbulent kinetic energy can be seen for
low, moderate and high shear cases respectively. It is notice-
able that the new models perform quite satisfactorily, bringing
clear improvements over the k− ε and the HLS models, even
compared to the much more complex SSG model. Although
only the prediction of the turbulent kinetic energy is being pre-
sented here, the development of the eddy dissipation rate and
the Reynolds shear stress also show similar results.

Adverse Pressure Gradient Boundary Layers
This case consists of a boundary layer where the

freestream pressure increases in the streamwise direction.
Consequently, the freestream velocity decreases and therefore
this case is also known as decelerating flow. The pressure
can increase either due to the geometry of the flow or by an
imposed pressure gradient. Three different adverse pressure
gradient boundary layers have been tested in this work, the
highest Reynolds number case from Marusic & Perry (1995)
being chosen to be shown here. In Figure 4 one can see the

Figure 1. Prediction of the turbulent kinetic energy in the
lowest shear case of Rogers & Moin (1987)

Figure 2. Prediction of the turbulent kinetic energy in the
moderate shear case of Matsumoto et al. (1991)

Figure 3. Prediction of the turbulent kinetic energy in the
high shear case of Lee et al. (1990)

prediction of the Reynolds shear stress at the last measure-
ment position where the pressure gradient is stronger than in
any other position downstream. Again, one can see very rea-
sonable prediction from the new two-time-scale models. The
performance of the new models are not so close to the ex-
perimental data when predicting the the mean velocity and
turbulent kinetic energy profiles, however none of the models
herein considered were able to provide clearly better results,
since all models fail to follow the subtle changes downstream
presented by the experimental data.

Favourable Pressure Grad. Boundary Layers
This case consists of a boundary layer where the

freestream pressure decreases in the streamwise direction.
Consequently, the freestream velocity increases and therefore
this case is also known as accelerating flow. However, in this
case, the flow reaches a self-similar state. The DNS of Spalart
(1986) was used to assess the performance of the models. In
Figure 5 one can see the prediction of the turbulent kinetic en-
ergy in the lowest acceleration case. The NT1 and NT2 mod-
els perform reasonable well and this comment can be extended
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Figure 4. Prediction of the turbulent shear stress at the last
measurement position in the highest Reynolds number case of
Marusic & Perry (1995).

Figure 5. Prediction of the turbulent kinetic energy in the
lowest acceleration (K = 1.5×10−6) case of Spalart (1986).

to the prediction of the velocity profile and the other turbulent
quantities. Although not shown here, the new models also
perform well for the two other acceleration cases reported by
Spalart (1986) with acceleration parameter K = 2.5× 10−6

and K = 2.75×10−6, K being defined as ν

U2
∞

dU∞

dx where U∞ is
the freestream velocity.

Normally Strained
This case consists of applying normal straining to a flow,

causing sudden expansion and contraction to occur in perpen-
dicular directions. Two cases were chosen in order to show
the capabilities in improving prediction of the new models.
The first case is the laterally distorting tunnel case of Tucker
& Reynolds (1968) where the straining starts at x1/L = 0.14
and is interrupted at x1/L = 0.71, where L is the length of the
test section, and the second case is the pure plane strain in an
elliptical distorting duct of Gence & Mathieu (1979). Both
cases were set by fixing the normal straining and simulating
the centreline of the flow. The prediction of the turbulent ki-
netic energy for the first and second cases are presented in
Figures 6 and 7 respectively. The NT1 and NT2 models per-
form as well as the SSG model and clearly better than the k−ε

and HLS models.

Fully Developed Oscillatory Pipe Flow
Both oscillatory boundary layer and fully developed os-

cillatory pipe flows have been used as test cases. The for-
mer was well predicted by all models, thus not representing

Figure 6. Prediction of the turbulent kinetic energy in the
normally strained case of Tucker & Reynolds (1968)

Figure 7. Prediction of the turbulent kinetic energy in the
pure plane strained case of Gence & Mathieu (1979)

a challenging case and therefore is not presented here. Os-
cillatory pipe flows were shown to be more sensitive to the
imposed oscillation frequency. At low frequencies, the flow
experiences a series of steady state situations while at high
frequencies, frozen turbulence is observed and the oscilla-
tory effects are mostly confined in the viscous sublayer. It
is then in the intermediate frequency range where more non-
equilibrium features are found and where the performance of
the turbulence models vary more. The T3RE14A20 case of
He & Jackson (2009), which falls into this intermediate fre-
quency range, was thus used to assess the performance of the
two new models. The prediction of the amplitude and phase
shift of oscillation of the Reynolds shear stress is presented in
Figures 8 and 9. One may notice that although the new NT1
and NT2 models do not provide the best agreement with the
experimental data, they do provide reasonable predictions and
this was also found to be the case over a range of oscillation
frequencies.

Fully Developed Ramp Up Pipe Flow
This case consists of a fully developed pipe flow where

the bulk velocity is linearly increased in time, thus charac-
terizing a ramp function. Non-equilibrium effects are here
present because the turbulence shows a lag in its response to
the increase in the mean velocity. The experiments of He &
Jackson (2000) were used to assess the performance of the
models in this test case. One can see in Figures 10 and 11,
showing the streamwise development of turbulent kinetic en-
ergy and shear stress, that both new models perform reason-
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Figure 8. Prediction of the amplitude of oscillation of the
Reynolds shear stress in the T3RE14A20 case of He & Jack-
son (2009)

Figure 9. Prediction of the phase shift of oscillation of the
Reynolds shear stress in the T3RE14A20 case of He & Jack-
son (2009)

Figure 10. Prediction of the turbulent kinetic energy in the
fully developed ramp up pipe flow of He & Jackson (2000) at
y/R = 0.47

ably well and that they do present improvements compared to
the HLS model regarding the prediction of the moment when
the turbulence responds to the change in mean velocity.

Backward Facing Step Flow
In a backward facing step flow, the flow faces a sudden

expansion due to a step in the original channel and therefore
non-equilibrium features are present. The sudden step gen-
erates curved streamlines and recirculation zones which are
confined between the step and the reattachment point, which
thus becomes a key parameter in such flows. The experiment

Figure 11. Prediction of the Reynolds shear stress in the
fully developed ramp up pipe flow of He & Jackson (2000)
at y/R = 0.47

studied here is the steady case of Chun & Sung (1996) which
was characterized as a 2-D flow with an expansion ratio of
1.5. The prediction of the reattachment point by each turbu-
lence model is presented in Table 2 and the velocity profile
just before the step and in five positions downstream of the
step is presented in Figure 12, where H is the step height.

Starting by commenting on the prediction of the reattach-
ment points, one can see in Table 2 that none of the models
captured correctly the reattachment point, the three existing
models tending to underpredict it and the two new models
tending to overpredict it. The term associated with the co-
efficient C′P1 in equation 3 was identified as being responsible
for the big underprediction of the reattachment point by the
HLS model together with the imbalance of this model’s coef-
ficients with regard to the asymptotic analysis of equilibrium
boundary layers. The deviation between predicted and mea-
sured reattachment lengths for the new NT1 and NT2 models
is similar to those of the other models used for comparison,
even much more complex models such as the SSG.

With regard to the prediction of the velocity profiles, Fig-
ure 12, the standard k− ε model apparently provides the best
agreement with the experimental data. The reason is that the
k− ε predicts an earlier reattachment, which gives the model
enough time to recover its regular channel profile. On the
other hand, the SSG model, which also underpredicted the
reattachment length, returns velocity profiles similar to those
of the new NT1 and NT2 models. It is more straightforward
to understand the profiles presented by the new models since
they overpredicted the reattachment point, however the pro-
files provided by the SSG model may be explained by a rather
slow recovery to the fully-developed channel flow profiles.
The profiles produced by the HLS model are consistent with
this model’s strong underprediction of the reattachment point.

CONCLUDING REMARKS
Two two-time-scale models were presented and their per-

formance in a wide variety of non-equilibrium flows has been
assessed. The models returned overall good prediction in all
flows, specially in the homogeneous shear flows and normally
strained flows, despite the inherent limitations of the linear
eddy-viscosity approximation.

Adjustments in the models are still required and are in
progress in other to improve prediction in the oscillatory pipe
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Figure 12. Prediction of the velocity profile in the steady backward facing step case of Chun & Sung (1996)

Table 2. Prediction of the reattachment point in the steady
backward facing step case

Model/Case Reattachment point (x/H) % Error

Experiments 7.8 -

k− ε 6.6 −15.8

HLS 4.2 −46.4

SSG 7.0 −10.7

NT1 8.9 14.0

NT2 9.5 21.8

flows and backward facing step flows. The unsteady back-
ward facing step cases of Chun & Sung (1996) are also being
studied in order to provide a broader view of the performance
of the new models.
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