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ABSTRACT
The near-wall streaks of a turbulent boundary layer are

investigated using a modified version of a Low-Order Model
(LOM) (Lockerby et al., 2005; Carpenter et al., 2007), which
is based on the linearised Navier-Stokes equations (LNSE).
The sensitivity of the LOM to the form of the source/forcing
term that generates the streaks is explored. The response of
the LNSE is gauged by a spatial energy-related norm, and the
results are summarized on response maps containing the max-
imum temporal values of the response for different spanwise
modes, evaluated at different wall-normal positions. All re-
sults are qualitatively similar, regardless of the form of vor-
ticity source employed, and agree well with existing literature
on streak characteristics; however, close quantitative agree-
ment between the responses of the different forms of source
term is not found. Finally, an alternative and more convenient
approach is proposed that simplifies the interpretation and use
of the LOM.

INTRODUCTION
There is substantial evidence that the formation of near-

wall turbulent streaks is governed by an essentially linear pro-
cess, even in fully nonlinear turbulent flows (see for exam-
ple, Kim & Lim (2000), Joshi et al. (1997), Cortelezzi et al.
(1998)). This suggests that the generation and early evolu-
tion of the near-wall streaks might be predicted using lin-
ear Navier-Stokes equations (LNSE), by introducing an initial
condition or nonlinear source term (assuming this can be cho-
sen appropriately). Even though such an approach does not
model full turbulence, it offers researchers the possibility of
studying near-wall streaks in isolation, providing a cleaned-
up view of the streak generation and growth processes. An-
other distinct advantage that such linear streak models offer
over full direct numerical simulation (DNS) is their numerical
efficiency; extremely high-Reynolds number simulations can

be performed with relative ease.
Most of the linear streak models that have been proposed

come from two main methodologies: the optimal perturbation
(OP) approach (e.g. Butler & Farrell, 1993; Chernyshenko
& Baig, 2005; Hwang & Cossu, 2010); and low-order mod-
els (LOM), sometimes referred to as reduced-order models
(Lockerby et al., 2005; Carpenter et al., 2007; Togneri &
Davies, 2011). Although the same LNSE are solved in both
cases (with some small differences), they employ rather dif-
ferent approaches to find and impose the initial perturbations
that generate the streaks. In OP, the initial condition is cho-
sen (out of all possible initial conditions) that most effectively
amplifies streak energy, or some other appropriate measure
of streak intensity. In LOM, a parameterised forcing term
(representing the nonlinear source) is applied to the LNSE to
generate the initial perturbation; the forcing parameters gen-
erating greatest disturbance amplification are those adopted.
This is low-order compared to OP in the sense that, instead of
optimising over all possible initial conditions, only a limited
family of functions parameterised with a reduced number of
variables is considered. The advantage of OP is accuracy, the
advantage of LOM is computational efficiency. It is the latter
approach that is the primary focus of this paper.

The starting point of the present work, is the LOM em-
ployed by Lockerby et al. (2005) and Carpenter et al. (2007),
whereby the generation of turbulent streaks is produced by
introducing a Lorentz-type body force to the LNSE; a coarse-
grained optimisation over a small set of forcing parameters
is then performed to find a near-optimal streak. This ap-
proach to generating streaks is particularly convenient as it is
relatively easy, and computationally efficient, to incorporate
the streak disturbance into an otherwise conventional com-
putational fluid dynamics simulation. Given this advantage,
this approach has been successfully employed in a variety of
flow-control applications, such as: ‘closed-loop’ streak con-
trol using microjet actuators, Lockerby et al. (2005); ‘open-
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loop’ streak control using a spanwise-oscillating wall, Togneri
(2010); and passive streak control using compliant surfaces,
Carpenter et al. (2007). Despite its convenience and efficiency
over full DNS and other linear streak models, the method as
it currently stands has a number of less satisfactory aspects.
The functional form of the forcing required to generate the
streaks has a number of parameters which are either set em-
pirically, or in a seemingly arbitrary way. This can give the
impression that tuning of the free parameters is required to
generate streaks, and that the body force is intended to repre-
sent some specific physical distribution. In fact, it is not well
known how these parameters and the particular forcing form
affect the streaks generated from such models.

The primary purpose of this paper is to investigate the
sensitivity of LOM streak generation to a broad range of dif-
ferent forcing forms and with different parameters. Are the
streak responses quantitatively and/or qualitatively similar?
How much does the result of such models depend on the ar-
tificial force that creates the perturbation? This is critical to
understand in order to gauge how much we can rely on their
results. The secondary purpose of this paper is to propose
an alternative approach, which is not only more generic and
more numerically convenient, but does not require adjustable
or empirically-fitted parameters at all.

The paper is presented as follows: first we overview the
numerical methodology and discuss the approach for measur-
ing/gauging the streak strength; secondly we look at streak
generation using a variety of forcing forms and parameters;
in the third section the results of the alternative forcing forms
are presented and discussed; the results of the previous section
motivates a fourth part in which we propose a spatio-temporal
impulse perturbation as a less arbitrary and more convenient
alternative to the vorticity forcing in LOM.

NUMERICAL METHODOLOGY
A velocity-vorticity formulation of the Navier-Stokes

equations, particularly suitable for modelling wall-bounded
incompressible viscous flows, has been adopted. Originally
developed and presented by Davies & Carpenter (2001) and
expanded by Davies (2005), this formulation is easily adapted
to a low-order streak model, as in Lockerby et al. (2005). Only
a very brief summary is given here; for a detailed exposition
the reader is referred to Davies (2005) and Lockerby et al.
(2005).

In this formulation, the flow field is decomposed into
a mean base flow Ub = (Ub,Vb,Wb), and a disturbance field
u = (u,v,w), the total velocity is expressed as simply: U =
Ub + u. In the same manner the total vorticity field can be
expressed as Ω = Ωb +ω , with Ωb = (Ωb,x,Ωb,y,Ωb,z) and
ω = (ωx,ωy,ωz). The components for the perturbation fields
are defined in the x-streamwise, y-spanwise and z-wall-normal
directions, respectively. In the present work we assume a par-
allel flow assumption, and a homogeneous turbulent mean ve-
locity profile is selected as the underlying mean-base flow:
{Ub = U(z),Ωb = Ωb,y(z)}. Linearisation of the vorticity
transport equations is then performed by omitting products of
perturbations that arise in the terms for convection.

Numerically, a hybrid discretization is used: finite dif-
ference in the streamwise direction; spectral in the spanwise
direction, (Fourier modes); and spectral in the wall-normal

direction, (Chebyshev polynomials). The code has been vali-
dated extensively over a range of problems in linear stability;
again the reader is referred to Davies (2005) for a full discus-
sion.

The results presented in this paper have been obtained
using a computational grid with 128 collocation points in the
wall-normal direction, 2000 discrete points in the streamwise
direction, and a total of 24 spanwise Fourier modes.

Measure and Quantification of Growth
In order to quantify the temporal and spatial response of

the LNS equations we use a ‘measure’ based on amplifica-
tion of streamwise kinetic energy, with respect to an initial
state. In a similar fashion to that proposed by Chernyshenko
& Baig (2005), kinetic energy is evaluated at particular wall-
normal locations (herein referred to as visualisation planes).
The time-dependent measure µ , is as follows:

µ(t) =
∫

ΩS

u2
zv
(t) dΩS (1)

with ΩS representing the 2D-domain at a visualization plane
zv. This particular measure allows us to investigate the re-
sponse as a function of the wall-normal position and, since
streak characteristics are known to vary with wall-normal po-
sition, is more appropriate than a measure evaluated over the
whole domain.

MECHANISMS OF STREAKS GENERATION -
LOW ORDER MODEL

The low-order model approach of Lockerby et al. (2005)
generates streaks using an artificial body forcing term, Fx,
which is introduced into the streamwise vorticity transport
equation1. Note that in this approach the wall-normal vortic-
ity is also indirectly forced in order to maintain solenoidality
of the total vorticity field.

To ensure a finite excitation, the forcing used must have a
finite duration. In previous uses of LOM this duration was set
empirically (based on the length of time taken to create streaks
artificially in experiment). This is reminiscent of the empiri-
cal mechanism employed by Butler & Farrell (1993) in their
optimal perturbation study, who specified a restricted growth
period in order to obtain reasonable streak scale predictions.
In the present work we aim to remove the arbitrariness and
empiric nature of such approaches. We have therefore made
the force effectively instantaneous, noting that in fact an ex-
tended duration is not required to generate streaks at all. In
all the simulations of this paper the forcing term is applied for
no more than two time steps, as an approximation to a delta
function in time.

Aiming to further extend the work in Lockerby et al.
(2005), Carpenter et al. (2007) and Togneri & Davies (2011),
and to investigate the sensitivity of the streak response, we
have numerically experimented with a broad set of forc-
ing terms covering particular domains in space with differ-
ent topological features. Some of the forces that have been

1even though this is referred to as a body forcing, strictly speaking
this is a spatially-distributed streamwise vorticity source.
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considered are, namely: i) a concentrated-Gaussian vortic-
ity source; ii) a constant vorticity patch; iii) a wall-normal-
linear and streamwise-Gaussian vorticity source; iv) a wall-
normal-constant, streamwise-quadratic vorticity source; and
v) a wall-normal-sinusoidal, streamwise-Gaussian vorticity
source These forces are formulated mathematically in equa-
tions (2) to (6), in the order mentioned, respectively:

F1,x = Ge(−a(x−x f )
2−b(z−z f )

2)eiβy ;{x > 0;z > 0} (2)

F2,x = Geiβy ;{xmin ≤ x≤ xmax;zmin ≤ z≤ zmax} (3)

F3,x = G
z

zmax
e(−a(x−x f )

2)eiβy ;{z≤ zmax} (4)

F4,x = G
x2

x2
max

eiβy ;{x≤ xmax ;zmin ≤ z≤ zmax} (5)

F5,x = G sin
(

πz
z f

)
e(−a(x−x f )

2)eiβy ;{z≤ zmax} (6)

where G is the intensity or strength of the distribution, a and b
are parameters defining the spread of the corresponding Gaus-
sian function, x f and z f are the coordinates of the spatial cen-
troid for each distribution in the streamwise and wall-normal
directions, respectively, and {xmin,xmax} and {zmin,zmax} de-
fine, where appropriate, the extents of the domain for each dis-
tribution used. The results reported here have been obtained
for values of xmin and xmax adjusted to ensure the centroid
of each forcing distribution was located at a streamwise lo-
cation in inner units, x+f = 178.53 from the origin of the do-
main (this value has no particular significance, except that it
is a comfortable distance away from the upstream and down-
stream boundaries). All the results presented here correspond
to forcing functions located at z+f = 10, except where stated.

NUMERICAL EXPERIMENTS AND RESULTS
A series of simulations have been performed to explore

the sensitivity of the streak response to changes in the form
of the body forcing. The results presented in this section
represent a small set of all the forcing types and flow con-
ditions considered in this study, but for which results have
been broadly similar to those presented; space precludes a
full account of these simulations. Here we report results for
Reδ ∗ = 4500 (note, variation in Reynolds number does not
significantly affect the streak spanwise spacing, when non-
dimensionalised with inner units).

For each of the six forces considered (equation (2) to (6))
over a range of spanwise modes, all responses have exhibited
development of streak disturbances in u velocity perturbation
(the signature being transient growth: algebraic growth fol-
lowed by viscous decay). A representative example of this be-
haviour is shown in Figure 1 for source type F1,x and measure
µ evaluated at five different wall-normal planes. We conclude
from this general behaviour, that the generation of streaks is
largely insensitive to the form of force adopted; in respect to
the validity of LOM it suggests that the exact form of forc-
ing chosen is not particularly important for the generation of
streaks.

However, the same conclusion cannot be drawn on the
streaks’ structural properties (e.g. spanwise spacing). There

exists a range of streak structure scales, which is why the
LOM must perform a coarse-grained optimisation, so that the
‘most likely’ or ‘most representative’ streak can be selected.
The question that naturally follows is how does the choice
of forcing type affect the structural properties of the ‘near-
optimal’ streak? Is this, too, largely independent on the par-
ticular forcing type?

For each of the six forcing types we consider a range
of spanwise modes. The spanwise wavelength (λ+ = 2π/β )
can thus be thought of as the free optimisation parameter for
each of the forces, which are otherwise topographically quite
different. Figures 2(a) to 2(f) show results as contour plots,
herein named response maps, for the six forcing configura-
tions. These response maps summarise the general signature
of the system in terms of the maximum value in time for the
selected measure µ , for different spanwise wavelengths (the
free parameter) with µ evaluated at different wall-normal lo-
cations. These maps, then, show the position of the near-
optimal response of the LNSE (if it exists) in terms of the
forcing spanwise wavelength λ+, and the wall-normal visual-
ization plane z+v .

Figure 1. Transient growth of streamwise kinetic energy at
different wall-normal locations z+v for body force at z+f =10
and λ+ = 100. Plots have been normalised using the global
maximum.

What is immediately striking from Figures 2(a) to 2(f)
is the qualitative similarity between all of the response maps.
Considering the diversity of forcing form, this is perhaps sur-
prising. Looking more closely, we can see that the optimum
values correspond to spanwise wavelengths of λ+ = 75−120,
which is in consonance with the experimentally observed val-
ues of spanwise streak spacing. Furthermore, the location in
the wall-normal direction at which this maximum response
occurs lies at z+f ≈ 10− 15 (which is affected, but not com-
pletely determined, by the wall-normal forcing location). This
is also in broad agreement with the experimental literature on
streaks (e.g. Smith & Metzler (1983)). Finally, we also see
in every response map, the optimal spanwise wavelength for
a given wall-normal visualization plane increases with dis-
tance away from the wall. This is also a well-known streak
behaviour: streaks farther from the wall are typically more
separated (Tomkins & Adrian, 2005).
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(a) Distribution 1 centred at z+f = 5 (b) Distribution 1 centred at z+f = 15 (c) Distribution 2 centred at z+f = 10

(d) Distribution 3 centred at z+f = 10 (e) Distribution 4 centred at z+f = 10 (f) Distribution 5 centred at z+f = 10

Figure 2. Response maps for maxt(µ) for fields (a) F1,x at z+f = 5, (b) F1,x at z+f = 15, (c) F2,x at z+f = 10, (d) F3,x at z+f = 10, (e)
F4,x at z+f = 10, and (f) F5,x at z+f = 10

It appears, then, that it is not at all necessary for the free
parameters of an LOM to be finely tuned in order to achieve
good qualitative comparison with the experimental literature
on streaks; in fact it would appear that almost any near-wall
streamwise-vorticity forcing will generate a reasonable re-
sponse. For example, the response maps in Figures 2(c) and
2(e), corresponding to elongated patches of vorticity in the x-
streamwise direction, show no significant difference from the
other response maps, for which the distributions are very con-
centrated in x-streamwise direction.

Having said that, exact quantitative agreement of the
streak optimum is not shown between forcing types; in our
wider search, not reported here, we were unable to find a mea-
sure that provided close quantitative agreement between all
forcing forms. In fact, the magnitudes of the measure for the
different forcing types were in most cases very different (for
this reason we have deliberately omitted a numerical scale in
presentation of the response maps). It is also clear from Fig-
ures 2(a) and 2(f) that results of these particular forcing distri-
butions deviate slightly from the common pattern exhibited by
other cases. All together, this suggests that if precise quanti-
tative information is required from such models, an empirical
calibration for a particular forcing type and measure would be
needed.

Figures 3(a) to 3(c) show response maps from F1,x cen-
tred at various normal distances from the wall (z+f =5,10,15).
Again, the responses are similar, though clearly the wall-
normal location of the forcing does have an effect on the exact
scale of the optimum streak. In order to understand the fun-
damental difference between the forcing in each case, spectral
distributions along the wall-normal direction (at x f ) were ob-
tained. As our intention is to examine the domain correspond-
ing only to the boundary layer, then a DST-I discrete Fourier
transform was selected, in order to account for the differences
in boundary conditions at the wall and at the boundary layer
edge. DST-I spectra using 512 points are shown in Figures
4(a) to 4(c) for F1,x with centroid at z+f = 5,10,15. What is
shown by the spectra, and what is perhaps obvious on reflec-

tion, is that a structurally identical forcing function (a dou-
ble delta function), applied at different wall-normal positions,
is responsible for weighting certain modes more than others
along the wall-normal direction. The forcing farthest from the
wall (z+f =15) forces more of the lower value (spatially larger)
modes, and is thus probably why this response has an optimal
at a larger spanwise spacing.

This raises some interesting questions regarding the
LOM approach. For example, is it necessary to perturb the
‘correct’ scales in the wall-normal direction in order to obtain
a correct prediction of the relevant characteristics of streaks?
For quantitative prediction the answer is probably yes; for
qualitative prediction, possibly not. Irrespective of the use
of such a model (for qualitative or quantitative prediction) a
standardised and non-arbitrary approach is far preferable, and
this is what is currently missing in the LOM method.

The question is now: in a standardised LOM, what dis-
tribution of wall-normal modes of the vorticity forcing should
be chosen? Incidentally, the same should be asked of the span-
wise modes, because the relative weighting of these will also
affect the optimal response; LOM currently equally forces
the spanwise modes. To be consistent with this, we propose
that all wall-normal modes of the vorticity forcing should be
equally weighted. This can be generated by a small-scale
near-wall forcing: i.e. an approximation to an impulse at the
wall. In the limit (as the forcing approaches a wall impulse)
this modified LOM has no input parameters, except for the
impulse’s location in the streamwise and spanwise directions,
reflecting that no specific scales are being forced more than
others. Furthermore, the equal weighting of spanwise modes
now has a clearer and more explicit interpretation; i.e., it can
be thought of as arising from an impulsive forcing in the span-
wise direction.

However, a remaining ambiguity in the LOM exists. This
is because the form of the vorticity forcing does not corre-
spond directly to the cross flow perturbations it is used to
generate. It is therefore very difficult to normalise the results
consistently. For example, as mentioned above, the spanwise
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modes of the vortical forcing are weighted evenly with respect
to each other, when assessing the optimal streak. However,
this does not imply that initially the spanwise modes of each
of the velocity perturbations are also weighted equally. To
remove this uncertainty, and in light of the fact that we have
demonstrated that forcing need not be applied for an extended
duration to generate streaks, we propose replacing the vorti-
cal forcing with a fixed initial condition on the velocity field.
This impulse response approach is investigated in the follow-
ing section.

SPATIO-TEMPORAL IMPULSE: AN ALTERNA-
TIVE APPROACH TO LOM

An initial condition is prescribed to the LNSE to simulate
an approximate impulse response. The initial crossflow veloc-
ity field is prescribed such that it is approximately impulsive
(Gaussian) in the wall-normal direction for the wall-normal
velocity, impulsive in the spanwise-direction for the spanwise
velocity, and so that continuity is preserved:

u = 0 (7)

v = 2Gb(z− z f )δ (y− y f )e(−a(x−x f )
2−b(z−z f )

2) (8)

w = Gδ
′(y− y f )e(−a(x−x f )

2−b(z−z f )
2) (9)

where the parameter z f is made very small (i.e. approaching
the wall). The location parameters x f and y f have no material
significance, as the response is translationally invariant in the
x and y directions. To approximate the impulse the parameters
a and b are made as large as the fineness of the discretisation
will allow; above a certain value they do not affect the form
of the response. Both the delta function δ and its spanwise
derivative δ ′ can be approximated without a Gaussian func-
tion, using the spanwise fourier decomposition in the current
numerical method. Note, here, unlike in the previous section,
for presentation purposes spanwise modes are combined in
order to get the total form and energy of the response. This
does not mean, though, that an optimum spacing cannot be
extracted from the impulse response; all that is required is
that the spanwise modes are instead considered separately, as
before.

The temporal energy evolution for this initial condition
(at a wall-normal plane z+ = 10)) is shown in Figure 5. The
same transient growth is observed as was shown in Figure 1
for the standard LOM approach. However, a combination of
modes is presented here (a full three-dimensional representa-
tion of the response) which, on average, have less persistence
than the mode shown in Figure 1 (corresponding to λ+=100).
The solid line and dashed line correspond to initial conditions
centred at z+f = 1 and z+f =0.5, respectively. The response is
nearly identical, demonstrating that given the initial condition
is sufficiently close to the wall, the response is independent of
the exact location.

Figure 6 shows a series of plan-view contours of stream-
wise velocity perturbation at progressive points in the evolu-
tion. The development of the long streaky nature of the distur-
bance is evident. Note that the colour contours are different in
value; the energy of the disturbance in Figure 6(c) is much less
than in figure 6(b). Although difficult to see from the figure,

Figure 5. The impulse response: normalised time evolution
of µ evaluated at z+ = 10 for impulse initial conditions. Solid
line: z+f = 1.0; Dashed line: z+f = 0.5.

the spanwise scale of this response changes in time, reflect-
ing the difference in persistence of the spanwise modes (the
larger scales last longer, as might be expected). An average
over time of the dominant spanwise mode is approximately
100 wall units; again, as with the LOM results of the previous
section, this is in general agreement with experimental find-
ings. Note, in the figures, the distance between the positive
and negative streak disturbances corresponds to half the span-
wise spacing.

Figure 6. Plan view contours (taken at z+ = 10) of stream-
wise velocity perturbation at times (a) t+ ≈ 0.5, (b) t+ ≈ 70
and (c) t+ ≈ 120.

SUMMARY
For the characteristics investigated, streaks generated us-

ing a low-order model are generally insensitive to the form
of the source or body force term in the LNSE: the optimum
streak scales generated are all within a range of what might be
expected experimentally. However, the exact quantitative fea-
tures do depend on the form of that force, and thus there are
limits to an uncalibrated application of such an approach. A
more convenient alternative to LOM, and one which does not
have the arbitrariness of a parameterised forcing, is offered
by a spatio-temporal impulse perturbation at the wall of the
boundary layer.
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(a) (b) (c)

Figure 3. Response maps using measure maxt(µ) for F1,x located at (a) z+f = 5, (b) z+f = 10 and (c) z+f = 15

(a) (b) (c)

Figure 4. Wall-normal spectras using DST-I with 512 points for F1,x located at (a) z+f = 5, (b) z+f = 10 and (c) z+f = 15
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