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ABSTRACT
The present contribution focuses on the modelling of the

buoyancy production term in the transport equation for the
dissipation of turbulent kinetic energy. The natural convec-
tion test case of Versteegh & Nieuwstadt (1999) is considered,
which consists in a DNS of a differentially-heated, vertical-
channel flow. Consistently with the underlying physics, it is
found beneficial, contrary to the usual practise, to separately
model the buoyancy and dynamic parts of the production of
dissipation, in order to account for the increase of dynamic
production and the variations of the thermal-to-mechanical
time-scale ratio in the near-wall region.

INTRODUCTION
Many industrial applications, in particular in the field of

energy production and including heat transfer phenomena, are
still treated with eddy-viscosity models and the Simple Gra-
dient Diffusion Hypothesis (SGDH) for the modelling of tur-
bulent heat fluxes, although the applications span the range
of forced convection, mixed and natural convection regimes.
In the last few years, the Elliptic Blending Reynolds-Stress
Model (EB-RSM, Manceau & Hanjalić, 2002) gave very sat-
isfactory results in several configurations, in particularin
isothermal and forced convection applications (Thielenet al.,
2005), with, in particular, a correct reproduction of the tur-
bulence anisotropy in the near-wall region. More recently,
Shin et al. (2008), Lecocqet al. (2008) and Dehouxet al.
(2010, 2011) extended the concept of elliptic blending (EB)
to estimate the turbulent heat fluxes. It was shown in De-
houxet al. (2011) that the length scale which has to be consid-
ered in the elliptic equation for the turbulent heat fluxes isal-
most twice the one used for the Reynolds stresses. Moreover,
the elliptic blending combined with a Generalized Gradient

Diffusion Hypothesis (GGDH) or an Algebraic Flux Model
(AFM) considerably improved the prediction of the stream-
wise heat flux in mixed convection regime (fully developed
vertical channel flows with buoyancy effects, DNS data of
Kasagi & Nishimura, 1997). Although, in simplified, 1D sit-
uations, this term does not have a direct impact on the mean
temperature, which is driven by the wall-normal heat flux, it
can play a major role in the buoyancy production terms and
the dissipation transport equation, depending on the situation.
Therefore, although the use of the elliptic blending concept
for predicting the turbulent heat fluxes is promising, the case
of natural convection is more problematic, and, to a large ex-
tent, remains an open issue. Figure 1 shows the velocity pro-
files of the EB-RSM with several heat flux models. It can be
seen that all the models dramatically over-estimate the mean
velocity, which motivates the present work.

FLOW CONFIGURATION
The widely used test case of Versteegh & Nieuwstadt

(1999) is considered first, which consists in a Direct Numeri-
cal Simulation of a vertical channel differentially heatedwith-
out an imposed pressure gradient. The Rayleigh and Prandtl
numbers are equal to 5.106 and 0.71, respectively. It is worth
noting that the velocity has not been made non-dimensional
herein using the bulk velocity as in Dolet al. (1997), in or-
der to avoid an artificial correction of the results. The over-
estimation of the velocity is due to the poor prediction of both
the Reynolds shear stress and the mean temperature (and thus
the buoyancy force in the momentum equations). Several pa-
pers focus on the improvement of the prediction of the tur-
bulent heat fluxes and the temperature variance in this case
(Dol et al., 1997, among others) but, to the authors knowl-
edge, none of them deals with the treatment of the buoyancy
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Figure 1. Mean velocity with several heat flux models and a
standard time scale in the buoyancy term ofε.

term in the turbulent dissipation equation. The main objec-
tive of the present work is thus to improve the modelling of
the buoyancy production term in the dissipation equation and,
with a particular focus on the time scale.

MODELLING OF THE BUOYANCY PRODUC-
TION TERM IN THE DISSIPATION EQUATION

Production terms
On the one hand, the exact transport equation for the tur-

bulent dissipation is
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wherePε = Pε1 + Pε2 + Pε3 + Pε4 denotes dynamic produc-
tion, Gε buoyancy production,Dε diffusion andYε viscous
destruction.

On the other hand, the widely-used model equation forε
is of the form
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where T is the dynamic time scale,CS = 0.21, σε = 1.15,
Cε2 = 1.83. Since the EB-RSM is a near-wall model, the
productions termsPε1, Pε2 andPε3 cannot be neglected, such
that, the coefficientC

′

ε1 is made variable (Manceau, 2005)

C
′

ε1 = Cε1

[
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√

k
Ri jnin j

]

, (3)

with Ak
1 = 0.023,Cε1 = 1.44, ni = ∇α/‖∇α‖ the unit wall

normal vector andα the elliptic blending factor, solution of
the elliptic equation

α −L2∇2α = 1 , (4)

with the boundary conditionα = 0 at the wall. The correlation

length scale is given byL = CL max

(
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ε ,Cη
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)

with CL = 0.133 andCη = 80.
In Eq. (3), the ratiok/Ri jnin j goes to infinity at the wall,

which can lead to numerical instabilities in complex flows.
Therefore, an alternative way of to writingC

′

ε1 is used herein,
introducing the non-equilibrium parameterP

ε ,

C
′

ε1 = Cε1
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, (5)

with AP
1 = 0.1 andCL = 0.122.

It is usual (see, for instance, Gunarjo, 2003; Kenjereš
et al., 2005) to use the same constant and time scale in the
models for the termsPε and Gε in Eq. 1, which leads to a
model of the formPε +Gε = (Pk +Gk)/T , as in Eq. 2. Since
Gε is due to buoyancy, whilePε is a purely dynamic term, the
variable coefficientC′

ε1, designed to reproduce the effect of
the termsPε1, Pε2 andPε3 is the near-wall region, should not
be applied toGε , such that the model is recast as

Pε +Gε = Cε1

[

1+A1

(

1−α3
) P

ε

]
P
T

+Cε1
G
T

. (6)

Time scales
Moreover, the time scales forPε and Gε can be con-

sidered the same only in case of a constant thermal-to-
mechanical time-scale ratio, as is usually assumed far from
the walls, but this simplification is not justified in general, in
particular in near-wall regions.

For the dynamic production termPε , the choice of
turnover timek/ε is standard, and, as suggested by Durbin
(1991), this scale is bounded in the near-wall region by the

Kolmogorov time scale asTd = max

(
k
ε
,CT

√
ν
ε

)

, withCT =

6.
For buoyancy production, the thermal time scaleTθ =

θ ′2
/εθ can be used instead of the dynamic time scaleTd .
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Since the transport equation forεθ is not solved, the thermal
time scale is obtained from

Tθ = RTd , (7)

whereR is the so-called thermal-to-mechanical time-scale ra-
tio. The model for the production terms in the dissipation
equation thus becomes

Pε +Gε = Cε1

[

1+AP
1

(

1−α3
) P

ε

]
P
Td

+Cε1
G

RTd

For large turbulent Peclet numbers, which can be con-
sidered valid far from the wall, for fluids with not too small
Prandtl numbers, assuming a constant thermal-to-mechanical
time-scale ratioR is a usual practise Hanjalić (2002). For flu-
ids with a Prandtl number close to unity,R = 0.5 is widely
admitted. ThisR will be calledRh in the following (the super-
scripth denoting homogeneous or quasi-homogeneous).

However, this assumption fails in the near-wall region,
where, in particular,R tends to the Prandtl number. In order to
account for this limit, in the framework of the elliptic blending
approach,R can be modelled as (Dehouxet al., 2010, 2011)

R = (1−α3
θ )Pr +Rhα3

θ . (8)

This time scale ratio is denoted byR(αθ ) in the remainder of
the paper.

PRESENTATION OF THE COMPUTATIONS
EDF in-house open-source (http://www.code-

saturne.org) CFD toolCode Saturne is used for the
present computations. Code Saturne is an unstructured,
collocated finite volume solver for cells of any shape. The
Reynolds-averaged or filtered Navier-Stokes equations are
solved for turbulent incompressible flows using a SIMPLEC
algorithm for pressure-velocity coupling (for details, see
Archambeauet al., 2004). The EB-RSM, implemented as a
near-wall extension of the SSG (Spezialeet al., 1991) model,
is used for all the computations. As concerns Regarding
the turbulent heat fluxes, the EB-AFM (Elliptic Blending-
Algebraic Flux Model, already introduced in Lecocqet al.,
2008; Dehouxet al., 2010, 2011) is used,
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θ It is worth

pointing out that, far from the wall, the model tends to the
original AFM proposed by Hanjalićet al. (1996).

The equation for the temperature variance
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is solved, using

εθ =
θ ′2

R(αθ )

ε
k

, (10)

where the thermal-to-mechanical time-scale ratioR(αθ ) is
given by Eq. 8.

Table 1 gives an overview of the variants used to model
the coefficients and the time scale entering the model for the
dynamic and buoyancy production terms in the dissipation
equation, under the general form

Pε +Gε = CPP+CGG . (11)

Case 1 is the original formulation. In case 2, the ratio
√

k/Ri jnin j is replaced byP/ε in C
′

ε1, as explained above
(see Eq. 5). In cases 3 to 6, theCε1 coefficient is kept constant
in the buoyancy production term (Eq. 6), and the modelling
of the time scale is varied: for case 3, the standard dynamic
time scaleTd is used; for cases 4 to 6 a thermal time scale
Tθ is introduced, with different thermal-to-mechanical time-
scale ratios. Note that the dynamic production term in case 5
is the same as in case 1, in order to test the validity of the time
scaleR(αθ )Td with the original formulation of the dynamic
production.

Table 1. The different constants and time scales used in the
production term inε equation (Pε = CPP, Gε = CGG, β k =

Ak
1

(
1−α3

)√
k

Ri jnin j
, β P = AP

1

(
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)
P
ε )

CP CG

Case 1 Cε1
Td

(
1+ β k

) Cε1
Td

(
1+ β k

)

Case 2 Cε1
Td

(
1+ β P

) Cε1
Td

(
1+ β P

)

Case 3 Cε1
Td

(
1+ β P

) Cε1
Td

Case 4 Cε1
Td

(
1+ β P

) Cε1
RhTd

Case 5 Cε1
Td

(
1+ β k

) Cε1
R(αθ )Td

Case 6 Cε1
Td

(
1+ β P

) Cε1
R(αθ )Td

RESULTS

Influence of the variable Cε1 coefficient
The comparison of case 2 and 3 with the baseline case

(case 1) provides information about the influence of the vari-
able coefficient in front of the production terms. The differ-
ence between case 1 and case 2 simply lies in the form of the
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β function introduced to replicate the increase of production
in the near-wall region due toPε1, Pε2 and Pε3. In case 3,
this function is simply set to zero, based on the remark that
buoyancy production should not be directly affected by the
increase of dynamic production. In Fig. 2, which shows the
mean velocity in logarithmic scale, it can be seen that all these
options lead to a strong over-estimation of the mean velocity,
by more than 100%, similarly to was observed in the compar-
isons shown in Fig. 1, such that the incorrect introduction of
a nonzeroβ function in the buoyancy term is not sufficient to
explain the misprediction.

Fig. 3 gives the dissipation as a function of the distance
to the wall in logarithmic scale. Although case 1 gives reason-
able results for this variable, cases 2 and 3 show a completely
unphysical dissipation level. Consequently, cases 2 and 3
show poor predictions of the other variables, since dissipation
enters many terms of the model: for instance, dissipation and
redistribution terms in the Reynolds stress equations involve
ε, such that, as can be seen in Fig. 8, the shear stress is mispre-
dicted in both the near-wall and central regions of the channel.
The normal stresses are also affected by this over-estimation,
which do not have a direct influence on the mean velocity, but
on the time and length scales used in the transport equations
for all the turbulent variables, via the kinetic energy (Fig. 7).
The streamwise heat flux is also strongly over-estimated and
the wall-normal heat flux is underestimated by a factor of 2
(Fig. 5), which is related to the underestimation of the mean
temperature gradient at the wall (thus the Nusselt number).

It clearly appears from the comparison of case 1 and case
2 that the inclusion of theβ term representing the role in the
near-wall region ofPε1, Pε2 and Pε3 plays in the wrong di-
rection, but the influence of the term is very limited and does
not explain the wrong behaviour of the model. The use of the
functionβ k (case 1) leads to less wrong results, in particular
concerning mean temperature (Fig. 4) and dissipation profiles
(Fig. 3), but a large over-estimation of mean velocity (Fig.2)
and turbulent energy (Fig. 7) remains.

It will be seen in the following section that the poor be-
haviour of the models can be related to the use of the dynamic
time scale in the buoyancy production term.

Influence of the time scale
The dynamic time scale, used in the buoyancy production

Gε for case 3, is replaced by a thermal time scaleTθ = θ ′2
/εθ

for cases 4 and 6. Since the equation forεθ is not solved,
the relationTθ = RTd is applied, whereR is the thermal-to-
mechanical time-scale ratio, such that the issue is now the
modelling ofR.

In case 4,R is simply considered a constant, with the
valueRh = 0.5, widely accepted as the asymptotic limit in ho-
mogeneous situations, for fluids of Prandtl number close to
unity, such that the modification is simply equivalent to an in-
crease of the coefficient in front of the buoyancy production
term. The effect on the predictions of the model is spectac-
ular. In particular, the dissipation rate (Fig. 3) is drastically
reduced compared to case 3. The mean velocity and temper-
ature are clearly improved and all the second order moments
have the correct order of magnitude. In particular, the predic-
tion of the temperature variance (Fig. 6) is very satisfactory,
but, has shown by the comparison with case 1, this quantity

is not of fundamental importance for the global predictionsof
the model.

The comparison between case 6 and case 4 provides in-
formation about the importance of the reproduction of the in-
crease (from 0.5 far from the wall toPr = 0.71 at the wall)
of the thermal-to-mechanical time-scale ratio in the near-wall
region. In case 6, the ratio, denoted byR(αθ ) is modelled by
Eq. (8). Consistent with the previous observation about the
role played by the value of the coefficient in front of the buoy-
ancy production term, it is seen that the variation ofR in the
near-wall region has a significant impact on the predictions.
Globally, the mean quantities are improved (mean velocity,
Fig. 2, and mean temperature, Fig. 4), and consequently the
quantities of engineering interest (friction coefficient and Nus-
selt number), although the turbulent energy, normal stresses
and temperature variance are not improved everywhere (they
are slightly improved in the near-wall region, but not far from
the wall). It appears that a fine tuning of the coefficients used
in case 6 could lead to a better reproduction of this flow, but
such a calibration must be performed based on several flow
configurations and is left to future work.

Finally, the comparison is made between cases 5 and 6 in
order to check that, similar to the case of forced convection,
the two formulations of theβ function are exchangeable. It
appears that the particular form of the function has an influ-
ence on the results, but, again, a fine tuning of the coefficients
could make the predictions close to each other. Therefore,
since the formulationβ P is numerically more robust, this ver-
sion is recommended for future work.

CONCLUSION
Modelling the buoyancy production term in the turbulent

dissipation equation was investigated for the natural convec-
tion regime. It was shown that introducing in the buoyancy
production term the near-wall correction usually introduced
for the dynamic production term is detrimental, consistent
with the exact transport equation for the dissipation. More-
over, it has been shown that using the thermal time scale in-
stead of the dynamic time scale yields a major improvement
on the results for both first and second moments.
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tion to elliptic relaxation modelling of turbulent naturaland
mixed convection.Int. J. Heat Fluid Fl. 26 (4), 569–586.

Lecocq, Y., Manceau, R., Bournaud, S. & Brizzi, L.-E. 2008
Modelling of the turbulent heat fluxes in natural, forced and
mixed convection regimes. InProc. 7th ERCOFTAC Int.
Symp. on Eng. Turb. Modelling and Measurements, Limas-
sol, Cyprus.

Manceau, R. 2005 An improved version of the Elliptic Blend-
ing Model. Application to non-rotating and rotating chan-
nel flows. InProc. 4th Int. Symp. Turb. Shear Flow Phe-
nomena, Williamsburg, VA, USA.
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Figure 2. Mean velocity
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Figure 3. Dissipation rate
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Figure 5. Turbulent heat fluxes
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Figure 6. Temperature variance
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Figure 7. Turbulent kinetic energy
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Figure 8. Reynolds stresses
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