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ABSTRACT
There is few research on turbulent flow in a pore of

porous media and fluid force acting on its components be-
cause of the difficulty of measurement in experiments. In this
paper, in order to get fundamental knowledge of them, 2-D
unidirectional flow passing through circular cylinders was in-
vestigated using the Immersed Boundary Method with Phys-
ical Virtual Model, which satisfies with the boundary condi-
tion on the solid surface with Cartesian fluid grid. Results
showed the pressure drop through circular cylinders reason-
ably agreed with experimental formulas. It was clear that the
turbulent transition started from downstream to upstream and
it was showed by the analysis of fluid force acting on each
cylinder.

INTRODUCTION
Porous media flow phenomena can be widely observed in

engineering field. Complexity of apertures of a porous media
cause complicated flow inside and around it, and moreover,
fluid forces which act on respective members of a porous me-
dia considerably vary in time and space. From the viewpoint
of design of porous structures, for example, breakwater, gravel
bed, spur dike and so on, it is important to estimate these
complicated fluid motion and forces accurately. Booij et al.
(1998) measured fluid velocities at some fixed points inside
gravel bed with the laser-Doppler technique in order to clear
the mechanism of sand transport by turbulent flow in gravel
bed. However, it is very difficult to get instantaneous velocity
information at all apertures from physical experiment due to
the limitation of measurement technique.

The purpose of this study is to obtain the knowledge of
fluid motion inside a porous media and of fluid forces act on
members of a porous media by using numerical simulation.
However, general porous media has a complex three dimen-
sional apertures inside it and it is difficult to consider it first.

Therefore, we tried to simulate the flow passing through circu-
lar cylinder array with different Reynolds numbers as the first
attempt to understand the porous media flow. In numerical
simulation of fluid motion, handling of the complex geomet-
ric solid boundaries in fluid is difficult because it is necessary
to fit numerical fluid cell boundaries to solid boundaries. Im-
mersed Boundary Method (IBM) originally presented by Pe-
skin (1977) is simple simulation methods which can easily in-
troduce the solid boundary conditions with normal orthogonal
fluid cell. Recently, the validity and availability of the IBM
have been presented by many researchers (Lima e Silva et al.,
2003, Lee and Mizutani, 2007, Compregher et al., 2009).

In this study, we used this IBM technique for implemen-
tation of complex solid boundaries in numerical simulation.
Furthermore, we could obtain the information of fluid force
on each solid boundaries by using IBM and investigate the
characteristics of fluid force on each cylinder.

MATHEMATICAL MODEL

Fundamental Equations

The main idea of the IBM is to use a regular Eulerian
grid to simulate the fluid flow, together with Lagrangian points
distributed over fluid-solid surface in calculation domain. A
force field is evaluated at the Lagrangian points in order to no-
slip boundary condition, and then distributed over the Eulerian
nodes using a discretized Dirac delta function. Therefore, ad-
ditional virtual force term to implement solid boundary should
be added to the Navier-Stokes equations.

In this study, we assumed the incompressible and vis-
cous fluid, therefore the following momentum and continuity

1



equations were used.

ρ

[
∂~V
∂ t

+(~V ·∇)~V

]
= −∇P+µ∇2~V +~f (1)

∇ ·~V = 0 (2)

where ρ and µ are density and viscosity of fluid respectively.
~f means additional (Eulerian) force source term in order to
guarantee the no-slip boundary condition on the surface of
solid wall. Additional force ~f acts only the fluid nearby the
solid wall and is calculated the following equation.

~f =
∫

~fkδ (~x−~xk)dxk (3)

where δ (~x−~xk) is a Dirac delta function, ~xk is a coordinate
vector of Lagrangian points placed over the immersed bound-
ary and ~fk is a reactional force vector on the solid surface
points. In order to calculate the distributed additional force
~f , discretized Dirac delta function Di j (distribution function)
was used.

Di j =
f1[(xk − xi)/∆x] f1[(yk − y j)/∆y]

∆x∆y
(4)

f1 =


f2(r), i f |r|< 1
1
2 − f2(r), i f 1 < |r|< 2
0, i f 2 < |r|

(5)

f2(r) =
3−2|r|+

√
1+4|r|−4|r|2
8

(6)

where r is a normalized distance between the Lagrangian
point and fluid cell ((xk − xi)/∆x or (yk − y j)/∆x), ∆x is a
fluid cell length. Eq.3 is able to be rewrited to the following
equation by using Eq.4.

~f = ΣDi j~fk∆k2 (7)

where ∆k is the distance between the Lagrangian points.

Physical Virtual Model
A variety of ways to calculate the additional force (La-

grangian force) ~fk were presented (Goldstein et al.,1993, Fad-
lun et al., 2000). In this study, the Physical Virtual Model
(PVM) presented by Silva et al. (2003) was used to calculate
~fk. The feature of PVM is the usage of Navie-Stokes equa-
tion to calculate the fluid force acting on solid surface as fol-
lows. which balances out the momentum equation, over the
Lagrangian points. Therefore, ~fk is evaluated by following
Navier-Stokes equation.

~fk = ρ
∂~Vk

∂ t
+ρ(~Vk ·∇)~Vk −µ∇2~Vk +∇Pk (8)

where ~Vk and Pk is a fluid velocity vector and pressure on La-
grangian solid surface points respectively. Actually, velocity

k
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l2l1

Figure 1. Definition of Lagrangian point k and auxiliary
points l1,l2,l3,l4 for Lagrangian polynomial interpolation

vector on solid surface is zero, but ~Vk is a temporary veloc-
ity estimated from fluid velocity information around it by in-
terpolation procedure and is not necessary zero. In order to
calculate the first and second spatial derivatives of ~Vk and Pk
in Eq. 4, second-order Lagrangian polynomial interpolation
method was used.

∂φk

∂ x
=

(xk − x2)

(x1 − x2)(x1 − xk)
φ1 +

(xk − x1)

(x2 − x1)(x2 − xk)
φ2

+
(xk − x1)+(xk − x2)

(xk − x1)(xk − x2)
φk(9)

∂ 2φk

∂x2 =
2φ1

(x1 − x2)(x1 − xk)
+

2φ2

(x2 − x1)(x2 − xk)

+
2φk

(xk − x1)(xk − x2)
(10)

where φ is generalized the fluid velocity and pressure. xk is a
x-coordinate of Lagrangian points, x1 and x2 are x-coordinates
of auxiliary points which are ∆x, 2∆x distant from xk respec-
tively toward the fluid, as shown in Fig.1. Velocity and pres-
sure information at auxiliary points (for example, φ1 and φ2
in Eq. 5 and Eq. 6) and at Lagragian points (φk) are neces-
sary for Lagrangian polynomial interpolation, and they were
interpolated from neighboring fluid cell data. However, when
φk was calculated, not only fluid cell but also internal solid
cell data was used for interpolation exceptionally. In the same
way, the derivatives in the y direction was obtained. The first
term of Eq.8 was calculated by (~Vkb −~Vk)/∆t using the mov-
ing velocity~Vkb of the Lagrangian points, where ∆t is the com-
putational time step. In this study, we set the condition that
cylinder array are fixed, therefore~Vkb was assumed to be zero.
After the caliculation of Lagrangian force ~fk by using Eq.8
was finished, ~fk was distributed over the neighboring fluid cell
to meet the boundary condition.

Numerical Method
Eq. 1 and Eq. 2 are discretized using the second-order

Adams-Bashforth method in time and the second-order finite
central difference method in space. The fluid velocity and
pressure coupling is solved with SMAC scheme. This scheme
is described as follows:
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ūn
i −un

i
∆t

= − 1
ρ

∂Pn

∂xi
+

3
2
{(ADV n

i +V ISn
i + f n

i )

−(ADV n−1
i +V ISn−1

i + f n−1
i )} (11)

∂ 2φ n

∂xi∂xi
=

ρ
∆t

∂ ūn
i

∂xi
(12)

Pn+1 = Pn +φ n (13)

un+1
i = ūn

i −
ρ
∆t

∂φ n

∂xi
(14)

where,

ADV =
∂ (uiu j)

∂x j
(15)

V IS =
µ
ρ

∂ 2ui

∂x j∂x j
(16)

where ūi is the temporary velocity, φ is the scalar value
to correct pressure and n is the sub-step indices. One cycle of
the numerical procedure is as follows:

1. Calculate the Lagrangian force ~fk acts on solid surface,
using Eq.8.

2. Distribute ~fk to the fluid cell nearby solid surface and
calculate the additional force fi, acts on fluid parcel using
Eq. 10.

3. Calculate the temporary fluid velocity ūi, using Eq.11.
4. Solve the poisson Eq.12 for the pressure correction, us-

ing MICCG method.
5. Update the fluid velocity and pressure using Eqs.13 and

14.

THE FLOW PASSING THROUGH A SINGLE CIR-
CULAR CYLINDER

In order to validate our numerical model, fluid motion
and fluid force around a circular cylinder in unidirectional
flow was calculated for different Reynolds number conditions.
Reynolds number was defined as Re = Uind/ν , where ν is a
kinematic viscocity coefficient. Results were compared with
physical and numerical experiments results in previous stud-
ies.

Calculation Conditions
A single circular cylider was placed at the center of com-

putational domain 30d in length and 30d in width, where d
is the cylinder diameter (Fig.2). Before starting main calcula-
tion, several preliminary experiments were conducted for the
check of boundary condition effect, and we decided this do-
main finally. Constant unidirectional flow condition (Uin : ap-
proaching velocity) was specified at inflow boundary (x = 0)
and Sommerfeld radiation condition was imposed at outflow
boundary (x= 30d). On the lateral boundary boundaries, free-
slip (Neumann) condition was set.

In IBM simulation, uniform length fluid cells were able
to be used, but the accuracy itself was depending on the

d=10

(u=
U

in, v=
0)

x

y

d 
∆y

d, d

d ∆x

o

Figure 2. Analysis domain and boundary conditions in case
that the flow passing through a single circular cylinder

resolution of fluid cells. For example, preliminary simula-
tions with different resolution d/∆x (∆x is a fluid cell length)
showed that the drag coefficient CD(CD = 2FD/(ρU2

ind) was
changed depending on d/∆x, where FD is a gross Lagrangian
force in x-direction. Lima e Silva et al. (2003) decided the ap-
propriate resolution as ∆k/∆x < 0.9, where ∆k is distance be-
tween the Lagrangian points. Based on these knowledge, our
numerical experiments were conducted for different Reynolds
numbers (Re=10∼1000) under the consition that d/∆x = 10
and ∆k/∆x = 0.523 after sensitivity analysis of computational
resolution.

Simulation Results For The Flow Passing
Through A Single Circular Cylinder

Fig.3 shows the distribution of instantaneous fluid ve-
locity vector and dimensionless vorticity ω∗ = (∂v/∂x −
∂ u/∂y)/(Uin/d) of the flow passing through a single cylinder
when Re is 40 and 50 respectively. The flow was symmetric in
Re = 40, but turned to assymmetric and instability flow in Re =
50. This feature was reasonable when comparing to previous
studies results, for example, Williamson (1996) presented the
Karman vortex street could be seen over Re = 47.

The relationship between the Reynolds number Re and
the drag coefficient Cd is shown in Fig.4. It is clear that our
numerical simulations were good agreement with past phys-
ical experiment results presented by Schlichting et al. (???)
and Wieselsberger (1922) and numerical experiment results
(Re = 10∼300) conducted by Silva et al. (2003). And it
means our model had a good performance to simulate the flow
around a single cylinder. However, only one case in Re =
1000, calculated drag coefficient was different to that of phys-
ical experiment results. As the reason of this difference, it is
able to cite the development of three dimensional characteris-
tics of the flow. For example, Williamson (1996) and Maruoka
et al. (1998) pointed out the fact that the fluid force acting on
a cylinder calculated from two-dimensional simulation results
exceeded that of observation value when the Reynolds num-
ber Re is around 1000 for comparing three dimensional simu-
lation results. Our numerical result didn’t deviate from these
previous knowledge.

Next, the relationship between the Strouhal number St =
f d/Uin, which is a dimensionless frequency of vortex shed-
ding f , and the Reynolds number Re is shown in Fig.5. It
looks like the Storouhal number approached to 0.2 with the in-
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Figure 3. Fluid velocity vector and vorticity distribution in
Re = 40 (steady flow) and Re = 50 (unsteady flow)
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Figure 4. Relationship between drag coefficient CD acting
on a cylinder and Reynolds number Re.
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Figure 5. Relationship between Strouhal number St and
Reynolds number Re

creaseing the Reynolds number. Our results were good agree-
ment with previous physical experiment results presented
by Williamson (1996) and numerical experiment results pre-
sented by Lima e Silva et al. (2003).

As discussed above, our numerical model performance
to simulate the flow passing through a single cylinder was
validated for comparing to previous physical and numerical
simulation results.

UNIDIRECTIONAL FLOW PASSING THROUGH
CIRCULAR CYLINDER ARRAY

The simulation results of two-dimensional flow passing
through circular cylinder array settled in pipe were shown in
this section. Our results were compared to previous physi-
cal experimant results with the famous relationship between
macroscopic flow velocity and pressure drop.

Calculation Conditions
The detail of computational domain and boundary condi-

tion are shown in Fig.6. The computational domain was 50d
in length and 8.3d in width, where d is a circular cylinder di-
ameter d=12mm. 50 Circular cylinders were staggered from
x=8.3d to x=14.4d and the distance between their centroids
were D=20mm, and the length of the wake region behind
cylinder array was 27.3d. The porosity of cylinder array ε
was 0.675. A steady two-dimensional poiseuille velocity pro-
file was specified at x = 0 as inflow boundary and Sommerfeld
radiation condition was imposed at x=50d as outflow bound-
ary. Then, no-slip conditions were set at the lateral boundary
boundaries. The resolution was decided d/∆x = 12.0, and this
value was slightly finer than that of the preliminary simulation
of the flow passing around a single cylinder. The Reynolds
number was defined as Re=Ud/ν(1−ε), where U is a cross-
sectional mean velocity. Simulations were conducted for dif-
ferent Reynolds number varied from 5 to 1000.

Simulation Results For The Flow Passing
Through Circular Cylinder Array

First, Fig.7 shows the distribution of instantaneous di-
mensionless vorticity ω∗ of the flow passing through circular
cylinder array for Re = 98, 245 and 490. When the Reynolds
number was small, Re = 98, positive and negative vortici-
ties were distributed symmetrically to dominant flow direc-
tion nearby each cylinder, and their distribution pattern were
almost same in all apertures except the close place to the pipe
wall (the wall effect was so small where about 1D away from
pipe wall). And it is clear that the laminar rotational jet flow
was observed behind cylinder array. Next, for the case Re =
245, vorticitie behind each cylinders became large and spread
to downstream, but symmetric distribution pattern was still
maintained. On the other hand, the laminar flow behind cylin-
der array was broken and turned to unsteady flow. Jet flows
ejected each apertures were mixed after flowing down about
2∼3d, and after that, regular vortex street, such as Karman
vortex, was observed. Then, in enough large Reynolds num-
ber condition, Re = 490, it is interesting that vorticities at the
upstream region (0 < x/d < 5) were still distributed symmetri-
cally and were steady, but vorticities at the downstream region
(5 < x/d < 15) were distributed irregularly and were unsteady.
Moreover, large and small scale vorticities was generated ir-
regularly in the wake region. Our numerical model didn’t in-
clude turbulence model, but results showed complicated and
unsteady flow was generated in apertures for relatively low
Reynolds number condition. This feature indicates the rela-
tion to the knowledge of macroscopic pressure drop law de-
pending on the square of velocity for low Reynolds number.
Furthermore, the knowledge that the unsteady flow was devel-
oped at the downstream region first, and it spread toward to
upstream region was interesting. Next, the accuracy concern
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Figure 6. 50 cylinders in zigzag alignment in calculation do-
main and boundary condition
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Figure 7. Distribution of dimensionless vorticity around cir-
cular cylinders

with the macroscopic pressure drop law was investigated. The
pressure drop ∆P when fluid flow passing through a porous
media was able to estimate using the following famous exper-
imental formula (Ergun, 1952):

∆P
`

= 150
(1− ε)2

ε3
µU
D2

p
+1.75

(1− ε)
ε3

ρU2

Dp
(17)

where ` is the length of porous media, Dp is effective diameter
of components of porous media. Assuming d equaled to Dp,
an experimental pressure drop can be calculated using Eq.17.
Naturally, ∆P was able to be calculated from our numerical
simulation results. In order to compare these two pressure
drops, the another nondimension value, friction factor C f , was
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Figure 8. Dimensionless pressure drop C f and Reynolds
number Re
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Figure 9. Cross-sectional averaged pressure distribution for
the flow passing through cylinder array

calculated using the following equation:

C f =
∆P
`

Dp

ρU2
ε3

(1− ε)
(18)

The relationship between C f and Reynolds number Re is
shown in Fig.8. Here, Blake-Kozeny equation is an ex-
perimental equation for the laminar porous media flow, and
Burke-Plummer equation is an experimental equation for tur-
bulent porous media flow respectively. Our numerical simu-
lation results were good agreement with the estimation value
by Ergun’s experimental equation for Re = 5 ∼ 1000. Fig.9
shows dimensionless cross-sectional average pressure P∗ =
(< P > −Pin)/(ρU2d/2) distribution for Re = 5 and 490,
where Pin is the pressure at the inlet of the cylinder ar-
ray. Monotonically P∗ was decreasing with the fluid passing
through cylinder array in both cases. However, the fluctua-
tion of P∗ was larger in the case of Re = 490 than that of
in the case of Re = 5. Finally, the characteristics of fluid
forces acted on each cylinder was investigated. Fig.10 shows
the time variation of fluid velocity vectors and dimensionless
fluid force vectors F∗(CD,CL) acted on each circular cylin-
der for Re = 490. As shown in these figure, complicated fluid
motion nearby each cylinder caused difference of fluid force
direction and their magnitude, and they were not uniform and
not steady. However, its extent depended on the distance from
the inlet of cylinder array, the direction of fluid forces near
the inlet were not so changed, on the other hand, that of near
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Figure 10. Time variation of fluid motion and force acted on
each circular cylinder for Re = 490

the outlet were varied significantly. This feature indicates the
fact that the rear components of porous media can be moved or
broken more easily than the front parts of it. Fig.11 shows that
time series of the magnitude of fluid forces acted on represen-
tative cylinders placed on centeral axis for different Reynolds
number Re = 98, 245 and 490. Each cylinder coordinate of
centroid was (x/d,y/d) = (0, 0), (5.8, 0), (11.5, 0), (14.4, 0)
in order of distance from inlet of cylinder array respectively.
First, in the case of Re = 98, steady fluid force acted on ev-
ery cylinder, but their magnitude were different. The force
acted on lead cylinder (a) was larger than that of inner cylin-
ders (b) and (d), on the other hand, the force acted on terminal
cylinder (d) was larger than that of lead cylinder. Terminal
cylinder was effected by the wake flow behind cylinder array.
Secondly, in the case of Re = 245, the nondimensional fluid
forces were smaller than that of Re = 98 at every cylinder, and
it was similar that the fluid force acted on lead cylinder was
larger than that of inner cylinders. However, the force acted
on terminal cylinder was smaller than that of lead cylinder,
and slightly fluctuated. Finally, in the case of Re = 490, inner
cylinders also recieved unsteady forces, but the force acted
on lead cylinder was still steady. Unsteadiness of fluid forces
became large with the distance from inlet of cylinder array,
and that of terminal cylinder had clear long-period compo-
nent. Moreover, time average force acted on terminal cylinder
was almost same to that of inner cylinders.

CONCLUSIONS
The numerical simulation model which can easily treat

the flow including complex solid boundary was constructed
using Immersed Boundary Method. In order to validate our
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Figure 11. Time-series of fluid force acted on each circular
cylinder for defferent Reynolds number

model, the flow passing around a single cylinder was simu-
lated and it is cleared that simulated results were good agree-
ment with previous physical and numerical experiments re-
sults for comparing the beginning of the unsteadiness of wake
flow, and the drag coefficient and the Strouhal number vari-
ation for different Reynolds number. Reproducibility of the
relationship between pressure drop and the Reynolds number
was fine and it is clear that the cross-sectioal average pressure
P∗ decreased monotonically during the flow passing through
cylinder array. However, the fluctuation of P∗ became more
larger with the increase of the Reynolds number. Laminar
flow in cylinder array was turned to unsteady flow in rela-
tively low Rynolds number and the unsteady flow was devel-
oped at the downstream region first, then it spread toward to
upstream region. Complicated fluid motion nearby each cylin-
der caused difference of fluid force direction and their magni-
tude, and they were not uniform in cylinder array and they
were not steady especially in downstream region. The direc-
tion of fluid forces near the inlet were not so changed, on the
other hand, that of near the outlet were varied significantly.
The force acted on lead cylinder was larger than that of inner
cylinders, and the force acted on terminal cylinder was larger
than that of lead cylinder in laminar flow regime. Unsteadi-
ness of the fluid force acted on each cylinder became large
with the increase of Reynolds number and with the distance
from the inlet of cylinder array. Moreover, the force acted on
terminal cylinder approached to that of inner cylinders. It is
important to deal with these features cleared from microscopic
numerical simulation to apply to macroscopic analysis in the
next stage.
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