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ABSTRACT
The travelling magnetic field (short: TMF) is a com-

monly used alternating magnetic field, which is applied e.g. to
tailor heat and mass transport during crystal growth processes.
Numerical studies usually assume ideal configurations such as
a perfectly adjusted magnetic field. However, an ideal setup
can be hardly realized in “real processes”. In the present work,
we study the sensitivity of a TMF driven fluid flow within a
cylindrical configuration, when a small offset is introduced
between the container’s axis and that one of the magnetic field.
It will be shown, that already a small misalignment affects the
flow seriously. Especially in supercritical regimes the mean
flow as well as the turbulent structures changes considerably,
whereas the variations in the laminar regime correlate approx-
imately with the magnitude of the axes’ shift.

1 INTRODUCTION
Contactless mixing of electrically conductive liquids

with magnetic fields plays an important role in metallurgi-
cal processes like crystal growth or casting. During the last
years, the flow topology in a closed cylinder, a typical test
configuration, was investigated both experimentally and nu-
merically for different types of single and combined magnetic
fields. One configuration, which is of particular interest, is
the so-called travelling magnetic field. In the laminar regime,
the TMF generates a toroidal flow in the meridional direc-
tions; see e.g. [1, 2]. Further investigations in the turbulent
regime confirmed this property for the mean flow and further
revealed a high degree of turbulence for moderate forcing pa-
rameters [3, 4]. These studies rely on the assumption, that
the cylinder filled with the liquid metal is exactly positioned
in the middle of the magnetic field. However, this assump-
tion can be rarely satisfied in industrial processes and hard
to achieve even in experimental setups. In a combined experi-
mental and numerical study [5] the sensitivity of the fluid flow
was examined when the container is shifted slightly within the
magnetic field as shown in Fig.1. It was shown, that even a
small offset r0 causes a strong flow reorganization in a tur-
bulent regime. However, these studies were restricted to the
mean velocities; information about turbulence characteristics

was not provided. In this paper, we present a follow-up in-
vestigation to get a deeper insight. In addition, we examine a
supplemental laminar test case, which was not considered in
the previous study.
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Figure 1. Positioning of the cylindrical container inside the
magnetic field in the axisymmetric case (left) and in the case,
where the container is shifted by a small offset r0 (right). The
tags 1, 2, and 3 label three different positions on which veloc-
ity profiles are compared below.

2 PHYSICAL MODEL
We consider an electrically conducting fluid in a closed

cylinder with radius R and height H. The flow is driven by
a travelling magnetic field of induction B and angular veloc-
ity ω , that generates the upwards driving Lorentz force (cf.
Fig. 1). Assuming low-frequency / low-induction and low-
interaction conditions, the driving magnetic field decouples
from the fluid flow. The Lorentz force ~fL can be determined
independently as well as the oscillating part of the electro-
magnetic body force can be neglected [6, 7]. Hence, the flow
is governed by the incompressible Navier-Stokes equations in-
cluding a spatially varying body force.
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In the ideal case, where the axes of the magnetic field and
the cylinder are perfectly aligned, the Lorentz force is given
by the simple expression [2]

~fL =
ρν2

R3
F
2

r2 ~ez (1)

where~ez represents the unit vector in axial direction and F the
non-dimensional forcing parameter

F =
σωkB2R5

4ρν2 (2)

with the fluid’s density ρ , kinematic viscosity ν , and electrical
conductivity σ . The wave number k of the magnetic field is
assumed to be large in comparison to the height of the cylinder
(for the case of arbitrary wave lengths cf. [1]).

The presence of a small offset r0 induces an additional
forcing ~fD in form of a vortex (Fig. 2, right), that is compara-
tively small in comparison to the complete body force (Fig. 2,
left). In case of r0 = R/30 the difference to the ideal case ac-
counts for ca. 4 %. Although an axial alignment introduces
a higher complexity, the resulting Lorentz force can still be
computed analytically (see [5] for further details) and reads:
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ρν2
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F
2
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gϕ

 (3)

where the shape functions gz, gr and gϕ are given by
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Figure 2. Axial component of the complete Lorentz force ~f
(left) and the difference ~fD from the ideal case (right) for an
misalignment of r0 = R/30 and an aspect ratio of H/2R = 1.

with the non-dimensional amplitudes of the current density
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ĵ2ϕ = cosϕ

∞

∑
n=1

cnbn

2
sinh

(
λn

z
R

)[
J0

(
λn

r
R

)
+ J2

(
λn

r
R

)]

and the coefficients
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,
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Here, Jk and Ik are the Bessel functions and the modified
Bessel functions of the k-th kind and λn the roots of J′1.

For the following numerical study two different forcing
parameters are considered F = 105 and F = 106. These values
correspond to a slightly subcritical and an eight-times super-
critical forcing with regard to the threshold Fc = 120,400 [2].

3 NUMERICAL METHOD
As described in the previous section, the flow is governed

by the incompressible Navier-Stokes equations

∂t~u+~u ·∇~u =− 1
ρ

∇p+ν∇
2~u+

1
ρ
~fL , ∇ ·~u = 0 , (4)

where ~u and p represent the velocity and the pressure field,
respectively. No-slip conditions are applied at the walls. The
equations are evaluated in cylindrical coordinates. This al-
lows the application of an efficient spectral element / Fourier
method [8], which employs quadrilateral nodal elements in
the meridional semi-planes coupled with trigonometric expan-
sions in the azimuth. Time integration is based on the second-
order splitting method reported in [9, 10].

For the subcritical test case, i, e. F = 105, the computa-
tional domain is discretized using 20× 10 spectral elements
with polynomial order P of 7 and 24 Fourier modes, cor-
responding to 48 meridional semi-planes. In viscous units,
the grid resolution varies from δ+ < 0.2 near the walls to
δ+ < 1.8 in the core region and ensures fully-resolved (di-
rect) numerical simulations (DNS).

In case of F= 106, large-eddy simulations (LES) are per-
formed. As subgrid scale model the spectral vanishing viscos-
ity (SVV) technique is used. This technique was introduced
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as a concept for stabilizing Fourier spectral approximations
of hyperbolic conservation laws [11]. The idea behind SVV
is to define a spectral viscosity that reaches a maximum at
high wave numbers, but vanishes completely for wave num-
bers below a resolution-dependent threshold. Details about
the implementation of SVV for axisymmetric configurations
are discussed in [12]. In that reference, it is further shown that
an LES discretization with 10× 5 spectral elements (P = 7)
and 24 Fourier modes provides a very good agreement with
DNS results in case of F = 106 and r0 = 0, i. e. perfect align-
ment. Here, the resolution varies from δ+ < 0.3 near the walls
to δ+ < 4.5 in the core region. The optimal SVV parameter-
ization, which was determined in that study, is used in the
following to examine the influence of an axial misalignment
to the fluid properties.

4 RESULTS
For the following investigations, a cylinder with aspect

ratio H/2R = 1 with R = 30mm is considered, which corre-
sponds to the experimental setup in [5]. Furthermore, the fluid
properties of the eutectic alloy gallium-indium-tin (GaInSn)
are assumed. This metal has a melting point of 10 °C and,
consequently, it is liquid at room temperature. This charac-
teristics allows an easy manageability in experiments and was
therefore chosen in [5]. The viscosity, electrical conductiv-
ity, and density of GaInSn are given by ν = 3.4 · 10−7 m2/s,
σ = 3.3 ·106 S/m, and ρ = 6361kg/m2, respectively.

First, we investigate the laminar test case with F = 105.
The offset r0 varies between 0 and 1 mm. Thus, the overall de-
viation of the Lorentz force from the ideal case is at maximum
4 percent (cf. Fig. 2). Figure 3 presents the evolution of the
axial velocity profiles in dependence of the offset r0 along the
tag lines 1, 2, and 3. Additionally, the mean flow is illustrated
for r0 = 0 and 1 mm in Fig. 4. In the ideal case, the torodial
flow is symmetric with regard to the cylinder’s axis. When a
small displacement is introduced, the upward facing near wall
jet at the right side, where the TMF is stronger, becomes more
dominant (Fig. 4). Along the corresponding tag line 3, the
velocity increases over a wide range (Fig. 3). On the other
side of the cylinder, the size of the jet decreases. However,
the velocities still have the same order of magnitude as in the
unshifted configuration.

Figures 5 and 6 presents the flow characteristics for the
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Figure 3. F = 105: Profiles of the mean axial velocity U at
the tags 1, 2, and 3 in dependence of the offset (r0 = 0, 0.5
and 1 mm).

Figure 4. F = 105: Mean flow in the frontal section plane
(spanned by the tags 1 till 3, cf. Fig. 1) for the axisymmetric
case (left) and for an offset of r0 = 1mm (right). The colour
indicates the axial velocity component; contours vary from -3
till 3 mm/s step 0.5 mm/s.

Figure 5. F= 106: Mean flow in the frontal section plane for
the axissymmetric case (left) and for an offset of r0 = 1mm
(right). Contours of the axial velocity vary from -8 till 8 mm/s
step 1 mm/s.

turbulent regime at F = 106. As above, displacements with
up to r0 = 1mm are examined. Since the Lorentz force scales
linearly with r0 and independently of the forcing parameter
F, the difference from ideal force is at maximum 4 percent
in this test case, too. However, the effect to the fluid flow is
remarkable. The left upward velocity jet of mean flow van-
ishes almost completely, only two relicts in the corners are
left over (Fig. 5), so that the typical torus structure does not
exist anymore. Not only that the symmetry of the mean flow is
broken, but also the maximum of the axial velocity is reduced
by about 30 % compared to the ideal configuration (Fig. 5). A
closer look the development of the velocity profiles in Fig. 6
reveals that this change of the flow patterns does not proceed
lineary with increasing r0. The difference between the pro-
files for r0 = 0.5 and 1 mm is comparably small in contrast
to the changes from 0 to 0.25 mm or from 0.25 to 0.5 mm.
Besides the mean flow, the turbulence characteristics changes
significantly. Fig. 7 shows a typical vortex distribution for the
ideal, perfectly aligned configuration as well as for the simu-
lation with an offset of r0 = 1mm. In both cases, the vortices
are visualized with the λ2 criterium according to [13] using
the same λ2 value. In the ideal case, the vortices cover the
whole domain and show a rather random orientation. How-
ever, the evolution over a time-span reveals a preference to
axial orientation in the centre [4]. In the misaligned configu-
ration, two facts are evident. First, a large horizontal vortex
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Figure 6. F = 106: Profiles of the mean axial velocity U at
the tags 1, 2, and 3 in dependence of the offset (r0 = 0, 0.25,
0.5 and 1 mm).

Figure 7. Typical vortex distribution in the axisymmetric
(left) and the misaligned configuration with r0 = 1mm (right).

arises and dominates most of the time the vortex distribution
(Fig. 7, right). This structure correlates with the relict of the
near-wall jet in the left corner of Fig. 5 (right). Secondly, the
amount and the size of the vortices in the rest of the cylinder
decreases, when both axes are misaligned. The maximal tur-
bulent kinetic energy decreases by ca. 15 percent in case of
r0 = 1mm.

5 CONCLUSIONS
The study presented in this paper showed that a flow

driven by a travelling magnetic field is quite sensitive to small
displacements of the container within the magnetic field. In
the laminar test case, an offset between the axes of the cylin-
der and the magnetic field mainly generates a squeeze of the
torus structure, but the velocity magnitudes remain compa-
rable to the perfectly aligned configuration. In contrast, the
flow structures change remarkably in a turbulent regime. The
torus-like mean flow is destroyed even for small offsets and
the velocity’s magnitudes diminish up to 30 percent. Further-
more, the overall turbulence degree decreases and a single az-
imuthally orientated vortex prevails the flow in the lower part
of the cylinder. In summary, one can conclude that the appli-
cation of the travelling magnetic field in experimental setups
and even more in industrial processes needs an enhanced care
in order to cope with the described sensitivity of the flow.
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