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ABSTRACT
The suboptimal control theory is applied for achieving

dissimilar control of enhancing heat transfer, while keeping
the skin friction not increased considerably in a fully devel-
oped channel flow. The Fréchet differentials clearly show that
the responses of velocity and temperature fields to wall blow-
ing/suction are quite different due to the fact that the velocity
is a divergence-free vector while the temperature is a conser-
vative scalar. This essential difference allows us to achieve
dissimilar control even in flows where the averaged momen-
tum and energy transport equations have the identical form. It
is also found that the resultant optimized mode of control in-
put exhibits a streamwise traveling wave-like property. By ex-
ploring the phase relationship between the traveling wave-like
control input and the velocity and thermal fields, we reveal
that such control input contributes to dissimilar heat transfer
enhancement via two different mechanisms.

INTRODUCTION
Enhancement of heat and mass transfer in various

thermal-fluids systems should be of growing importance not
only for energy saving, but also for economy and the environ-
ment. When doing this, the wall skin friction, against which
fluid is driven by pumping power, should be reduced, since
the work done is eventually dissipated by the fluid viscos-
ity. This dissimilar enhancement/reduction control, however,
is difficult to achieve owing to the similarity between the mo-
mentum and energy transport processes. Recently, Kasagi et
al. (2011) reexamined the transport equations and the wall
boundary conditions for the velocity and thermal fields, and
summarized possible strategies for achieving dissimilar con-
trol. Among these strategies, dissimilar control based on the
inherent difference between divergence-free vector and con-
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Figure 1. Computational domain and coordinate system.

servative scalar has also been demonstrated. By exploiting
this inherent difference, Hasegawa and Kasagi (2010) showed
that significant dissimilar control is actually possible even un-
der an ideal condition, where the averaged momentum and
heat transport equations have the identical form. They have
also found that the control input derived from the suboptimal
control theory exhibits a traveling wave-like property. In the
present study, we extend the previous work in order to clarify
the features of this unique control and the mechanism of dis-
similarity. We aim to eventually obtain general knowledge for
dissimilar control for practical applications.

MATHEMATICAL FORMULATION
Numerical Scheme and Test Condition

We consider a fully developed turbulent channel flow un-
der a constant mass flow rate. The coordinate system and ther-
mal conditions are shown in Fig. 1. The fluid properties are
assumed constant and the temperature is a passive scalar with-
out any buoyancy effect. The governing equations for the flow
and thermal fields are the following Navier-Stokes, continuity
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and energy transport equations:

∂ui

∂ t
+

∂ (u jui)
∂x j

= − ∂ p
∂xi

+
1

Re
∂ u2

i
∂x j∂x j

, (1)

∂ui

∂xi
= 0, (2)

∂θ
∂ t

+
∂ (u jθ)

∂x j
= Q+

1
PrRe

∂θ 2

∂x j∂x j
. (3)

Throughout this paper, all quantities are normalized by the
bulk velocity U∗

b , the channel half depth δ ∗ and the bulk
temperature Θ∗

b defined below. The asterisk denotes a di-
mensional quantity. The Reynolds number is set to be Re =
U∗

b δ ∗/ν∗ = 2280, which corresponds to the friction Reynolds
number of Reτ = u∗τ δ ∗/ν∗ = 150 in uncontrolled flow, where
u∗τ and ν∗ are the friction velocity and the fluid kinematic vis-
cosity, respectively. Uniform heat generation Q is assumed
to be equal to the mean pressure gradient. In addition, the
Prandtl number Pr is unity throughout this study, so that the
resultant averaged transport equations for the streamwise ve-
locity u and the temperature θ have the identical form as:

−∂ p
∂x

=
d
dy

(
u′v′− 1

Re
du
dy

)
, (4)

Q = −∂ p
∂x

=
d
dy

(
θ ′v′− 1

Re
dθ
dy

)
, (5)

where the over-bar represents averaging in the homogeneous
directions, i.e., the x and z directions and also time t. In the
present study, we consider local wall blowing/suction with no
net mass flux as a control input. As for the tangential velocity
components and the temperature, we impose the no-slip and
constant-temperature conditions at the top and bottom walls,
i.e., y = −1 and 1, respectively. The resultant Dirichlet-type
boundary conditions are given as:

ui = φBδi2, θ = 0 at y = −1, (6)

ui = φT δi2, θ = 0 at y = 1, (7)

where φB and φT are control inputs (given velocity) at the bot-
tom and top walls, respectively. Note that the wall bound-
ary conditions for the streamwise velocity component and the
temperature remain similar even in the controlled flow, i.e.,
u = θ = 0 at the walls.

Equations (1)-(3) are solved by a pseudo-spectral
method, where Fourier expansion is employed in the x and
z directions, while Chebyshev polynomials in the y direc-
tion. The number of modes employed in each direction is
(k1,k2,k3) = (64,65,64). Details of numerical scheme and
its verification can be found in Hasegawa and Kasagi (2011).

Control Performance Indices
The bulk mean velocity U∗

b is generally defined based on
the total mass flow rate as:

U∗
b =

1
2δ ∗

∫ δ ∗

−δ ∗
u∗dy. (8)

Similarly, the bulk temperature Θ∗
b in the present study is de-

fined as:

Θ∗
b =

1
2δ ∗

∫ δ ∗

−δ ∗
θ∗dy. (9)

Conventionally, the bulk temperature, which is often referred
to as the mixing-cup temperature, has been defined based on
the streamwise-velocity-weighted temperature so that it can
be related to the streamwise enthalpy flux. However, this def-
inition leads to a quantitative difference between the friction
coefficient C f and the Stanton number St defined below even
though the velocity and temperature profiles are similar. The
similar form of Eq. (9) to that of Eq.(8) assures 2St/C f = 1.0
as long as the profiles of u and θ are similar. We also note that
the present definition of Θ∗

b is generally underestimated than
the conventional one by about 6%. However, this hardly influ-
ences the present results, since the increase rate of St, which
is a major concern in the present study, is not significantly
changed due to the present definition.

The definitions of C f and St are given by:

C f =
τ∗w

1
2 ρU∗

b
2 , (10)

St =
q∗w

ρ∗C∗
pU∗

b Θ∗
b
, (11)

where τ∗w and q∗w are the wall friction and the wall heat flux,
while ρ∗ and C∗

p are the fluid density and the thermal capacity
of fluid, respectively.

Recently, Fukagata et al. (2002) have derived mathemati-
cal relationship between C f and different dynamical contribu-
tions in wall-bounded flows. It is simplified to the following
equation in a fully developed turbulent channel flows:

C f =
6

Re
+3

∫ 1

−1
y(u′v′) dy. (12)

The first term on the RHS of Eq. (12) corresponds to the lam-
inar drag, while the second the additional friction due to tur-
bulence. The Reynolds shear stress u′v′, which is weighted
by y in the second term on the RHS of Eq. (12), implies that
the Reynolds shear stress near the wall contributes more to the
skin friction drag than that in the central region of the channel.
Similarly, we can also derive the following relationship for St:

2St =
6

Re
+3

∫ 1

−1
y(θ ′v′) dy, (13)

which has the same form as that of C f in Eq. (12), indicat-
ing that dissimilarity between u′v′ and θ ′v′ is mandatory to
achieve dissimilar control. The analogy factor A is defined as:

A =
2Stm
C f

. (14)

Then, the main objective of this study is to demonstrate a pos-
sibility to increase A from unity by modifying turbulence.
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APPLICATION OF SUBOPTIMAL CONTROL
Derivation of Differential States

Following Lee et al. (1998), we discretize the Navier-
Stokes and energy equations so that the diffusion and pressure
gradient terms are treated implicitly, while the advection terms
explicitly. This results in the following equations representing
the short-time dynamics of the system:

un+1
i +

∆t
2

∂ pn+1

∂x
− ∆t

2Re
∂ 2un+1

i
∂x j∂x j

= Rn, (15)

∂ un+1
i

∂xi
= 0, (16)

θ n+1 − ∆t
2Re

∂ 2θ n+1

∂x j∂x j
= Qn, (17)

where Rn and Qn represent the advection terms, while the su-
perscript a time step. The Fréchet differentials qi and η of the
velocity and thermal fields with respect to the perturbation φ̃
of control input can be derived as:

q̂1(y) =
ik1

k · sinh(2k)

[̂̃φ T cosh{k(y+1)}− ̂̃φ B cosh{k(y−1)}

−
{̂̃φ T cosh(2k)− ̂̃φ B

}
exp

{
−

√
2Re
∆t

(1− y)
}

−
{̂̃φ T − ̂̃φ B cosh(2k)

}
exp

{
−

√
2Re
∆t

(y+1)
}]

,(18)

q̂2(y) =
1

sinh(2k)

[̂̃φ T sinh{k(y+1)}− ̂̃φ B sinh{k(y−1)}
]
,

(19)

η̂(y) = 0. (20)

Here, a variable with a hat represents a Fourier coefficient and

k =
√

k2
1 + k2

3, where k1 and k3 are wavenumbers in the x and
z directions, respectively. When wall blowing/suction is ap-
plied, the pressure field instantaneously reacts to it and redis-
tributes the kinetic energy of the wall-normal velocity fluc-
tuation to the tangential components. This is caused by the
continuity constraint on the velocity field. In the case of the
scalar field, however, there exists no pressure-gradient term
in Eqs. (17), and therefore η vanishes (see, Eq. (20)). This
fact shows an essential difference between the responses of
the velocity and scalar fields to the control input and suggests
a possibility of dissimilar control.

Defining Cost Function
We define the cost function J as follows:

J =
1

S∆t

∫
S

∫ t+∆t

t

1
2
(φ 2

T +φ 2
B)dtdS

+
1

V ∆t

∫
V

∫ t+∆t

t
β (yu′1u′2)− γ(yθ ′u′2) dtdV, (21)

where the temporal integration is made over a short duration
of computational time step ∆t. The spatial integration is also

made over the wall surface (S) for the first term, whilst over
the whole flow domain (V ) for the second and third terms.
Our goal is to deduce the optimal spatio-temporal distribution
of control input φ to minimize J.

The first term on the RHS of Eq. (21) represents the cost
of actuation. In accordance with Eqs. (12) and (13), we add
the weighted Reynolds stress and weighted turbulent heat flux,
which appear in the second integral, in order to evaluate fric-
tion drag and heat transfer, respectively. The coefficients of β
and γ correspond to the relative costs of friction drag and heat
transfer to the control input, respectively. We give a negative
sign to γ so as to seek the least control input that maximizes
the heat transfer while reducing the friction drag.

Derivation of Control Input
By applying a Fréchet differential to the cost func-

tion (21) and substituting Eqs. (18)−(20), minimizing J re-
quires the following control inputs at bottom and top walls:

φ̂B = β
∫ 1

−1
y
{

sinh{k(y−1)}
sinh(2k)

û1(y)−
ik1 cosh{k(y−1)}

k · sinh(2k)
û2(y)

}
dy

− γ
∫ 1

−1
y
{

sinh{k(y−1)}
sinh(2k)

θ̂(y)
}

dy, (22)

φ̂T = β
∫ 1

−1
y
{

ik1 cosh{k(y+1)}
k · sinh(2k)

û2(y)−
sinh{k(y+1)}

sinh(2k)
û1(y)

}
dy

+ γ
∫ 1

−1
y
{

sinh{k(y+1)}
sinh(2k)

θ̂(y)
}

dy. (23)

Detailed derivations of the Fréchet differentials (18)−(20)
and the control inputs can be found in Hasegawa and Kasagi
(2011).

CONTROL PERFORMANCE
In the present study, the magnitudes of the control inputs

relative to the bulk mean velocity Ub at the two walls are kept
constant as φrms/Ub = 0.05 by rescaling Eqs. (22) and (23) at
every time step, so that only the ratio of β and γ is of con-
cern. The friction factor and the Stanton number normalized
by those in the uncontrolled flow, and also the resultant anal-
ogy factor are plotted as a function of β/γ in Fig. 2. With
decreasing β/γ , C f and St commonly increase. However, St
increases more rapidly than C f . As a result, A is enhanced
from unity significantly. In the present study, we focus on the
case at β/γ = 1.0 since the largest A is achieved. In this case,
St is increased by roughly three times from the uncontrolled
value, while C f remains doubled, so that A = 1.5 is obtained.

The averaged streamwise velocity u and temperature θ
profiles are shown in Fig. 3. In uncontrolled flow, u and θ
agrees quite well, so that A remains almost unity. When the
dissimilar control is applied, both gradients of the mean ve-
locity and temperature at the wall are larger than those in
the uncontrolled flow. This results in the increase of friction
drag and heat transfer. With the distance from the wall, both
the mean velocity and temperature once become smaller than
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Figure 3. Averaged streamwise velocity u and temperature
θ in uncontrolled and controlled flows

those in the uncontrolled flow at 0.1δ −0.5δ , and then much
larger in the central region. This modification is more pro-
nounced in the temperature profile. As will be discussed later,
they are attributed to the traveling wave-like control input.

DISSIMILAR MECHANISMS
Properties of Control Input

Kasagi et al. (2011) and Hasegawa and Kasagi (2010)
show that the optimized control input in the present control
exhibits a streamwise traveling wave-like property, which is
almost uniform in the z direction. In order to examine the
phase relationship between the traveling wave-like control in-
put and the velocity and thermal fields, we extract the coherent
part of the control input by applying a conditional averaging
technique. First, the instantaneous control input at the bot-
tom wall is averaged in the spanwise direction and the loca-
tion xp where the spanwise-averaged wall blowing becomes
maximum is identified. Then, the control input at each wall
is averaged with respect to xp over a sufficiently long period
after the velocity and thermal fields reach the fully developed
state. As a result, the instantaneous control inputs φ at the two
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Figure 4. Distributions of conditionally averaged control in-
puts 〈φ〉 at top and bottom walls

walls can be described as:

φ(x,z, t) = 〈φ〉(x− xp(t))+φ ′′(x− xp(t),z, t), (24)

where the angle bracket represents the conditional averaging,
while the double prime the deviation from it.

The conditionally-averaged control inputs 〈φB〉 and 〈φT 〉
at the bottom and top walls are shown in Fig. 4. Surprisingly,
〈φB〉 and 〈φT 〉 are almost symmetric, indicating that the con-
trol is in a varicose-mode. The control input is characterized
by strong blowing from a narrow spanwise band and weaker
suction upstream of the blowing region. This coherent com-
ponent accounts for 65% of the root-mean-square value of
the instantaneous control input. In addition, xp travels down-
stream at an almost constant phase speed of 0.3Ub (not shown
here). Since statistical quantities in controlled flow are gen-
erally symmetric, we hereafter will show results only in the
lower half of the computational domain, i.e., −1 < y < 0.

Dynamical Contributions to Dissimilarity
In accordance with the decomposition of the control in-

put φ defined by Eq. (24), the instantaneous velocity and tem-
perature in the controlled flow can also be expressed as:

c(x,y,z, t) = 〈c〉(x− xp,y)+ c′′(x− xp,y,z, t)

= c(y)+ c̃(x− xp,y)+ c′′(x− xp,y,z, t), (25)

where c denotes an arbitrary quantity such as velocity com-
ponents, pressure and temperature. A conditionally-averaged
quantity with angle brackets is further decomposed into mean
and coherent components represented by an over-bar and a
tilde, respectively.

By applying the decomposition defined by Eq. (25) to
Eqs. (12) and (13), dissimilarity between 2St and C f can be
expressed as:

2St−C f = 3
∫ 1

−1
y
{(

θ̃ ṽ− ũṽ
)

+
(

θ ′′v′′−u′′v′′
)}

dy. (26)

This indicates that the dissimilarity is attributed to coherent
and random contributions appearing as the fist and second
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Figure 5. Differences between weighted turbulent heat flux
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terms on the right-hand-side. The profiles of the two in-
tegrands, i.e., y(θ̃ ṽ− ũṽ) and y(θ ′′v′′ − u′′v′′) are shown in
Fig. 5. It is found that y(θ̃ ṽ− ũṽ) has a strong peak near the
wall, while y(θ ′′v′′−u′′v′′) has two peaks in the vicinity of the
wall, y ≈ −0.95, and also far away from the wall, y ≈ −0.6.
Hereafter, we refer to the two contributions from y(θ̃ ṽ− ũṽ)
and y(θ ′′v′′−u′′v′′) as direct and indirect effects, respectively.

Direct Effect
The conditionally-averaged wall-normal velocity ṽ and

pressure 〈p〉 are plotted in Figs. 6 a) and b). Note that the
mean pressure gradient is subtracted from 〈p〉. The wall-
normal velocity ṽ reaches its maximum around 0.25δ away
from the wall above the wall blowing. The wall blowing gen-
erates significant positive and negative pressure fluctuations
in its upstream and downstream regions, respectively.

The induced pressure fluctuation causes significant dis-
similarity between ũ and θ̃ as shown in Fig. 6 c). Upstream
of the abrupt wall blowing, ũ is generally smaller than θ̃ , i.e.,
θ̃ − ũ < 0, due to adverse pressure gradient induced by the
wall blowing. In contrast, above the wall blowing region,
strong favorable pressure gradient causes θ̃ − ũ > 0 in the
downstream region. Consequently, a region with large posi-
tive y(θ̃ ṽ− ũṽ) is confirmed just above the abrupt wall blow-
ing in Fig. 6 d). This is a primary reason for the prominent
peak of y(θ̃ ṽ− ũṽ) near the wall observed in Fig. 5.

Indirect Effect
Since the mean velocity and temperature profiles in the

controlled flow are no longer similar (see, Fig. 3), the dissim-
ilarity between u′′v′′ and θ ′′v′′ should be discussed through
comparison between the eddy diffusivities for momentum E ′′

v
and heat E ′′

c , rather than u′′v′′ and θ ′′v′′ themselves. We define
these quantities in the controlled flow as follows:

E ′′
v =

−u′′v′′(
du
dy

) , E ′′
c =

−θ ′′v′′(
dθ
dy

) . (27)
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Figure 6. Distributions of coherent components a) wall-
normal velocity component ṽ, b) pressure 〈p〉, c) differ-
ence between temperature and streamwise velocity compo-
nent θ̃ − ũ, d) difference in weighted turbulent heat flux and
Reynolds stress y(θ̃ ṽ− ũṽ).

Then, θ ′′v′′−u′′v′′ is expressed as:

θ ′′v′′−u′′v′′ = (Pr′′−1
t S−1)u′′v′′. (28)

Here, S = (dθ/dy)/(du/dy) is the ratio of the mean temper-
ature and velocity gradients. The turbulent Prandtl number
is defined as Pr′′t = E ′′

v /E ′′
c . The above equation indicates

that the dissimilarity between θ ′′v′′ and u′′v′′ is caused by en-
hancement of either Pr′′−1

t or S.
Distributions of Pr′′−1

t and S are plotted in Figs. 7 and 8,
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respectively. The data in uncontrolled flow are also shown for
comparison. It is found that Pr′′−1

t increases in the near-wall
region, while it is almost unchanged or even slightly decreased
far from the wall at y > −0.6. In contrast, S exceeds unity in
the very vicinity of the wall, whereas it first decreases rapidly
with increasing the distance from the wall, and then becomes
larger than the value of the uncontrolled flow again further
away from the wall. Note that the limiting value of S at the
wall should be identical to A. From Figs. 7 and 8, we conclude
that the two peaks of y(θ ′′v′′ − u′′v′′) observed in Fig. 5 are
caused by different mechanisms, namely, the first peak near
the wall is attributed to the increase in Pr′′−1

t , whereas the
second peak away from the wall to the increase in S.

Recently, Hasegawa and Kasagi (2011) conduct addi-
tional computation, where only the coherent component of
the control input is applied. In this calculation, the increase
of S away from the wall is still observed, whereas the peak
of Pr′′−1

t near the wall disappears. These results suggest that
the former is caused by the coherent traveling wave-like input
〈φ〉, whereas the latter is attributed to the random component
φ ′′ of the control input.

CONCLUSIONS
Focusing on the inherent difference between the

divergence-free vector and conservative scalar quantities, we
demonstrate dissimilar control of momentum and heat transfer
in a fully developed channel flow under the most difficult case,
where the averaged transport equations and the wall bound-
ary conditions for the streamwise velocity component and the
temperature are identical.

The obtained control input exhibits a traveling wave-like
property characterized by localized wall blowing from a nar-
row spanwise band associated with weak suction more evenly
distributed in the upstream of the blowing. This wave travels
in the downstream direction at an almost constant speed, i.e.,
about 30% of the bulk mean velocity. In addition, the control
inputs at two opposing walls are applied in a varicose-mode.

The traveling wave-like control input contributes to dis-
similar heat transfer enhancement through two distinct mech-
anisms, i.e., direct and indirect effects. The former is caused
by the direct modification of the coherent velocity and ther-
mal fields, which results in dissimilarity between the coher-
ent components of the weighted Reynolds shear stress and
the weighted turbulent heat flux. Meanwhile, the traveling
wave-like control input modifies the ratio of the mean ve-
locity and temperature gradients. This causes dissimilarity
between the random components of the weighted Reynolds
shear stress and the weighted turbulent heat flux away from
the wall, although the turbulent Prandtl number remains al-
most unchanged. The present results show that both the direct
and indirect effects contribute to dissimilar heat transfer en-
hancement to a similar degree.
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