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ABSTRACT 
 

This work is motivated by recent experimental 
observations of intermittent dynamics of Lagrangian 
acceleration in a high-Reynolds-number “free” turbulence. 
First, we have shown that those observations are consistent 
with the Kolmogorov-Oboukhov theory. Second, in lines with 
Kolmogorov-Oboukhov’s predictions, we proposed a new 
sub-grid scale (SGS) model of residual acceleration, which 
was introduced in the framework of an approach here referred 
to as LES-SSAM (Subgrid Stochastic Acceleration Model). 
The coarse-grid computation of a high-Reynolds-number 
stationary homogeneous turbulence provided: (i) non-
Gaussianity in the acceleration distribution with stretched 
tails; (ii) rapid decorrelation of acceleration vector 
components; (iii) “long memory” in correlation of its norm. 

 
 
Introduction 

The experimental studies of Lagrangian statistics in turbulence 
at a high-Reynolds-number [1, 2] showed the strong 
intermittency in the fluid-particle (Lagrangian) acceleration. It 
was reported that Lagrangian acceleration has distribution 
with stretched tails, depending on the Reynolds number. The 
intermittency was manifested by long range correlation in time 
of the magnitude of acceleration, much longer than its 
direction. The latter was correlated on the Kolmogorov’s 
timescale. Hereafter we shall present the new numerical 
approach targeting on prediction of those effects. 

Filtering of the Navier Stokes equation leads to two 
unclosed sets of equations. The first one governs the filtered 
(resolved) velocity field:  

 

kk

i

i

i
i xx

u

x

P

td

ud
a

∂∂
∂+

∂
∂−=








≡

21 ν
ρ

 (1)  

 

0=
∂
∂

k

k

x

u   

 
where 

ia  is the filtered total acceleration:  
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The second set of equations governs the subgrid-scale (SGS) 
motion:  
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where 

ia′  is the residual total acceleration (on non-resolved 

scales):  
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Both filtered 

ia and residual 
ia′  accelerations are not closed. 

The classical LES approaches are based on the first set of 
equations, (1)-(2), with closure models for the residual-stress 

tensor 
kikiik uuuu −=τ . Essential is that such models are 

customary invariant on the Reynolds number; they disregard 



2 

 

the intermittency effects on subgrid-scales. In our paper, we 
propose to address the main issue to the second set of 
equations (3) - (4), i.e. to the residual total acceleration 

ia′ .  

To this end, we introduce a new approach, referred to as LES-
SSAM, which gives an approximation to the instantaneous 
non-filtered velocity field by simulation of both terms in   
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. Discussion on this approach can be 

found in [3].  
 
Model-equation in the LES-SSAM approach 
There are three assumptions in LES-SSAM approach. First, 
we replace the exact non-closed equation (3) by the following 
expression: 
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where *

ia  is the stochastic term, which emulates the non-

resolved total acceleration. Since, in general, the modelled 
acceleration *

ia  is not solenoidal, the “pseudo pressure” *p  is 

introduced in (5) in order to maintain the incompressibility of 
the velocity field. Index mod denotes modelling. The second 
assumption is to use the simple eddy-viscosity closure in the 
exact non-closed equation (2) for filtered total acceleration 

ia : 
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where the eddy-viscosity 

tν  is given by the Smagorinsky 

model: ( ) SCSt
2∆=ν , and ( ) 2

1

2 ijij SSS =  is a 

characteristic filtered strain rate. Summing (5) and (6) gives 
the following expression  
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Our third assumption concerns (7) and consists of two 

points.  First, we consider the sum ( ) 
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total acceleration 
iâ  of a surrogate velocity field 

iû  (denoted 

hereafter by the carat ^). Second, we assume that 
ikik SS ˆ≈ . 

Then, for such a surrogate incompressible velocity field, the 
third assumption leads to the following SNSE and continuity 
equation: 
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The pressure P̂  maintains the incompressibility of such a 
surrogate velocity field. 

 
Consistency of experimental observations of 
intermittency with predictions of the Kolmogorov-
Oboukhov‘s theory  

As in [4], and according to the mentioned above 
experimental results in [1, 2], let us represent the Lagrangian 
acceleration vector    
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(here ( )tv  is the Lagrangian velocity of fluid particle) in the 

form of a product of two independent stochastic processes:  
 

( ) ( ) ( )tett iΑΑ i =   (10) 

 
The first one is for modulus ( )tΑ , with the timescale 

assumed to be comparable to 
LT . The second stochastic 

process is for unit vector of orientation ( )te ; the 

components of this vector ( )tei
 are assumed to be correlated 

on the Kolmogorov’s timescale ητ  , and 1=kk ee . One can 

show that such assumptions in (10) are consistent with the 
Kolmogorov-Oboukhov’s prediction [5]. Indeed, considering 
for simplicity the motion of particle in one direction, say 

1x , 

we have with (10):  
 

( )
( ) ( ) ( ) ( ) τττ detet

td

d t

t
∫=

∆

0

11

2
1

AA2
v

 (11) 

 
According to assumptions in (10), the acceleration 

modulus does not practically change in the inertial range 

LTtt <<−<< 0ητ ; thereby correlation in (11) may be split:  
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and using ( ) 2/12/32A −≈ νεt ; εντη /= , it is seen 

that (12)  gives the Oboukhov’s diffusion equation [5]:  
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Stochastic model of non-resolved total acceleration  
The subgrid total acceleration *

ia  in (8) may be represented by 

two independent stochastic processes, one for its norm 

( )ta* , another for components of its direction ( )tei
:  
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with the Reynolds number, as parameter in both stochastic 
processes; dependence of ( )ta*  and ( )tei

on the spatial 

point x  is omitted for the notation simplicity. The stochastic 
process for ( )ta*  is presumed in accordance with the 

Kolmogorov-Oboukhov’s 62 theory [4] in which the 
acceleration, conditionally averaged on the kinetic energy 

dissipation rate ε , is stated as: 
jijiaa δνεε 2/12/3 /~ , 

where ε⋅  denotes the conditional mean. Using the 

Oboukhov’s log-normality conjecture on the stochastic field 
of ε  [4], and applying the Ito transformation to the Pope & 
Chen’s stochastic equation for ε  [5], one can obtain the 
following stochastic equation for the norm of acceleration:  
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where ( )tWd  is the increment of standard Brownian 

process, i.e. 0=Wd , ( ) tdWd =2 , and 
4/1

4/3

ν
ε

η =a  is 

the Kolmogorov’s acceleration. The parameters of this 
equation are introduced in the following form:  
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where according to DNS in [6]: 863.0−≈A  ; 25.0≈µ . It 

should be noted that the stochastic process for the acceleration 
norm ( )ta*  is correlated in space, since the coefficients in 

(16) depend on the Smagorinsky eddy-viscosity 
tν  calculated 

by LES velocity field.  
As to the stochastic model for a unit vector of the 

acceleration direction, the main emphasis is on its correlation 
on the Kolmogorov’s timescale. Using the Kolmogorov’s 
assumption of local isotropy in a high Reynolds number 
turbulent flow, the orientation of residual acceleration at each 

spatial point can be emulated by Brownian random walk on 
the surface of a unit radius sphere, where the diffusion 
coefficient is inversely proportional to the Kolmogorov’s time 
scale. In the Cartesian coordinate system, the Langevin 
equation for direction components ( )tei

 can be derived in 

this case in the following form:  
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where 

jWx
 represent independent components of Brownian 

vector process 
xW  at spatial point x . Function )(ξF  is the 

spatial correlation of Brownian process 
xW . It follows from 

(17) that norm of the vector ( )tei
 is conserved: 1=iiee , and 

the temporal correlation of 
ie  is an exponential function:  
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The numerical solution of (17) requires the time step much 
less that the Kolmogorov’s timescale, 

ητ<<∆ t , which is 

inconsistent with LES. Therefore the procedure of simulation 
is simplified: on each time-step of order 

ητ , the direction is 

generated randomly, providing its correlation on the 
Kolmogorov’s timescale.  
The set of equations (8), (9), (14) - (18) formulates LES-
SSAM approach. The stochastic process for the residual total 
acceleration, described by (14) - (18), is correlated in time and 
not in space. This approach was applied here to the 3D 
stationary box turbulence, with parameters taken from [1, 2]. 
The code from [7] was used, in which the forcing procedure 
from [8] was incorporated. 
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Examples of coarse-grid (32 3) computation of isotropic 3D box turbulence 
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Fig.1  Velocity field and sub-grid viscosity distribution on center-plane in stationary isotropic 3D box turbulence at two times, 

4.35;8.162 =ut σε ; upper part: standard LES with the Smagorinsky closure; bottom part: LES-SSAM.  

Although LES-SSAM simulates intermittency in time and not in space, it is seen that LES-SSAM model produces more 
intermittent spatial structures at small-scales than standard LES with the Smagorinsky closure 
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                                     (a) LES-SSAM        
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(b) measurements [1, 2] 

 
(c) LES-Smagorinsky 
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Fig.2 Lagrangian velocity increment ( ) ( )tVtVV iii −+=∆ ττ  

probability density function at different time lag 
ms 39et  20  9.8;  4.9; 2.5;  1.2; 0.6;  0.3;  0.15; 0; =τ ; on the 

top: LES-SSAM; in the middle: measurements in [1,2]; on the 
bottom: standard LES with the Smagorinsky closure. At time 
lag of order of integral time, the velocity increment is 
normally distributed. However, at smaller time lags, closely to 
measurements, the velocity increment probability density 
function displays a growing central peak with stretched tails. 
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(b)  measurements [1, 2] 

 
                                                    

(c) LES-Smagorinsky 
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Fig.3 The Lagrangian acceleration probability density 
function; on the top: LES-SSAM; in the middle: 
measurements in [1,2]; on the bottom: standard LES with the 
Smagorinsky closure. The acceleration of fluid particle may 
attain very large values. 
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Fig.5: Autocorrelation of the norm of acceleration ( )τaR ; on 

the top part: LES-SSAM, on the bottom part: measurements in 
[1,2]. It is seen that although the computed correlation are 
somewhat longer than in measurements, the tendency is 
similar: ( )τL

aR  persists during a significant time. 
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Fig.6 Autocorrelation of acceleration ( )τ

iaR ; on the top part: 

LES-SSAM, on the bottom part: measurements in [1,2]. It is 
seen that autocorrelation of acceleration decreases rapidly 
with progressing of time-lag τ  
 
 
 
 
 


