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ABSTRACT

This work is motivated by recent experimental
observations of intermittent dynamics of Lagrangian
acceleration in a high-Reynolds-number “free” tuence.
First, we have shown that those observations ansistent
with the Kolmogorov-Oboukhov theory. Second, irerwith
Kolmogorov-Oboukhov's predictions, we proposed avne
sub-grid scale (SGS) model of residual acceleratigich
was introduced in the framework of an approach heferred
to as LES-SSAM (Subgrid Stochastic Acceleration Bihd
The coarse-grid computation of a high-Reynolds-neimb
stationary homogeneous turbulence provided: (i) -non
Gaussianity in the acceleration distribution wittreched
tails; (i) rapid decorrelation of acceleration t@c
components; (i) “long memory” in correlation @§inorm.

Introduction
The experimental studies of Lagrangian statistidsitbulence

at a high-Reynolds-number [1, 2] showed the strong

intermittency in the fluid-particle (Lagrangian)cateration. It
was reported that Lagrangian acceleration hasilalision
with stretched tails, depending on the Reynolds enmmThe
intermittency was manifested by long range coriatain time
of the magnitude of acceleration, much longer then
direction. The latter was correlated on the Kolnrogts
timescale. Hereafter we shall present the new nigaler
approach targeting on prediction of those effects.

Filtering of the Navier Stokes equation leads tm tw
unclosed sets of equations. The first one govéradfittered
(resolved) velocity field:
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wherea. is the filtered total acceleration:
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The second set of equations governs the subgrld-$8&S)
motion:
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where g’ is the residual total acceleration (on non-resblve
scales):
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Both filteredéi and residuab; accelerations are not closed.

The classical LES approaches are based on thesfitsbf
equations, (1)-(2), with closure models for thddeal-stress

tensor 7, = uu, ‘UTUT Essential is that such models are
customary invariant on the Reynolds number; theyedjard



the intermittency effects on subgrid-scales. In paper, we
propose to address the main issue to the secondfset
equations (3) - (4), i.e. to the residual totaledea@tiong, .
To this end, we introduce a new approach, refewets LES-

SSAM, which gives an approximation to the instastars
non-filtered velocity field by simulation of botherms in

/
_ :(duu]+(du.] . Discussion on this approach can be
dt dt

found in [3].
Model-equation in the LES-SSAM approach

There are three assumptions in LES-SSAM approaitkt, F
we replace the exact non-closed equation (3) byah@ving

expression:
du Y 10p
[[dt]] ook o
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where ai* is the stochastic term, which emulates the non-
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resolved total acceleration. Since, in general, rirclelled
acceleratiora* is not solenoidal, the “pseudo pressugg” is

introduced in (5) in order to maintain the incongsibility of
the velocity field. Index mod denotes modelling.eTéecond
assumption is to use the simple eddy-viscosityuwkosn the
exact non-closed equation (2) for filtered totalederationg, :
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where the eddy-viscosity, is given by the Smagorinsky
model: v, =(C,APS . and §:(2§ij§ij)y2 is a

characteristic filtered strain rate. Summing (5¥ 46) gives
the following expression
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Our third assumption concerns (7) and consistswaf t
points. First, we consider the s s U +(a1~') as the
dt s

total acceleratior, of a surrogate velocity field, (denoted

hereafter by the carat ~). Second, we assumeShat ék.

Then, for such a surrogate incompressible veldidyg, the
third assumption leads to the following SNSE andticwiity
equation:
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The pressuret3 maintains the incompressibility of such a
surrogate velocity field.

Consistency of experimental observations of
intermittency with predictions of the Kolmogorov-
Oboukhov's theory

As in [4], and according to the mentioned above
experimental results in [1, 2], let us represeet thgrangian
acceleration vector

_dv(t)_dav(t)
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(herey(t ) is the Lagrangian velocity of fluid particle) inet

form of a product of two independent stochasticpsses:

(10)

The first one is for modulusg(t), with the timescale
assumed to be comparable To . The second stochastic
process is for unit vector of orientatioe(t); the
components of this vecta (t ) are assumed to be correlated
on the Kolmogorov's timescalgﬂ , and ee =1 One can

show that such assumptions in (10) are consistdtht tve
Kolmogorov-Oboukhov’s prediction [5]. Indeed, cafemiing
for simplicity the motion of particle in one dirémt, sayx,,

we have with (10):
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According to assumptions in (10), the acceleration
modulus does not practically change in the inertaige
I, <<t-ty <<T.; thereby correlation in (11) may be split:
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and using<A2(t)> z<g>3’2u‘1’2; r, = vi(e). it is seen
that (12) gives the Oboukhov’s diffusion equafibh

d <(3;/1) ) 20e)

Stochastic model of non-resolved total acceleration
The subgrid total accelerating* in (8) may be represented by

two independent stochastic processes, one for d@snn
a (t ) another for components of its directigr(t ):

(14)

with the Reynolds number, as parameter in bothhststc
processes; dependence a’f(t) and q(t)on the spatial
point x is omitted for the notation simplicity. The stoshea
process fora*(t) is presumed in accordance with the

Kolmogorov-Oboukhov's 62 theory [4] in which the
acceleration, conditionally averaged on the kinetirergy

dissipation rate€ , is stated aS<aiaj‘g>~g3/2/V1/2b'ij ,

where <q]g> denotes the conditional mean. Using the

Oboukhov’'s log-normality conjecture on the stocitafield
of £ [4], and applying the Ito transformation to thepBo%
Chen’s stochastic equation fgr [5], one can obtain the
following stochastic equation for the norm of aecation:
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where dW(t ) is the increment of standard Brownian

process, i.e<dw> =0, <(dW)2> =dt, and a, :ﬁ is

1/4
v

the Kolmogorov’'s acceleration. The parameters ois th
equation are introduced in the following form:
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where according to DNS in [6]JA=-0863; u= 025. It
should be noted that the stochastic process foatheleration

norm a*(t) is correlated in space, since the coefficients in

(16) depend on the Smagorinsky eddy-viscopjtyalculated
by LES velocity field.

As to the stochastic model for a unit vector of the

acceleration direction, the main emphasis is ortdétselation

on the Kolmogorov's timescale. Using the Kolmogdsov
assumption of local isotropy in a high Reynolds bem
turbulent flow, the orientation of residual accaté@n at each

spatial point can be emulated by Brownian randonk vea
the surface of a unit radius sphere, where theusliidh
coefficient is inversely proportional to the Kolnargv’s time
scale. In the Cartesian coordinate system, the éwng
equation for direction componen@(t) can be derived in

this case in the following form:

de=-27'edt+(d, ~ae )27, aw,  @7)
(dW, dw,; ) =4 ,-F(X;Xj dt: F(0)=1 (18)

WhereWXj represent independent components of Brownian

vector processy, at spatial pointx. FunctionF (&) is the
spatial correlation of Brownian proceyy, . It follows from
(17) that norm of the vectm_s](t) is conservedge =1, and
the temporal correlation aé is an exponential function:
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The numerical solution of (17) requires the timepsmuch
less that the Kolmogorov's timescalgt << 7, which is

inconsistent with LES. Therefore the procedureiofugation
is simplified: on each time-step of ordﬁ”r, the direction is

generated randomly, providing its correlation one th
Kolmogorov's timescale.

The set of equations (8), (9), (14) - (18) formefatl ES-
SSAM approach. The stochastic process for the uakitbtal
acceleration, described by (14) - (18), is coreslah time and
not in space. This approach was applied here to3tbe
stationary box turbulence, with parameters takemf{1, 2].
The code from [7] was used, in which the forcinggadure

from [8] was incorporated.
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Examples of coarse-grid (32 ) computation of isotropic 3D box turbulence
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bottom part: LES-SSAM.

16.8;354; upper part: standard LES with the Smagorinskguale;
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Fig.1 Velocity field and sub-grid viscosity digtdtion on center-plane in stationary isotropic 3&x turbulence at two times,

t(a)/ (

Although LES-SSAM simulates intermittency in tim@danot in space, it is seen that LES-SSAM modeldpces more

intermittent spatial structures at small-scales ttandard LES with the Smagorinsky closure



(a) LES-SSAM
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(b) measurements [1, 2]

(c) LES-Smagorinsky
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Fig.2 Lagrangian velocity incremem V. =V (t +7)-V(t)
probability density function at different time lag
7=0;0.15; 0.3;0.61.2;2.54.9;9.8;20et39ms; on the
top: LES-SSAM,; in the middle: measurements in [1¢2] the
bottom: standard LES with the Smagorinsky closudtetime
lag of order of integral time, the velocity incremeis
normally distributed. However, at smaller time lagssely to
measurements, the velocity increment probabilitynsdg
function displays a growing central peak with sthed tails.
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Fig.3 The Lagrangian acceleration probability dgnsi
function; on the top: LES-SSAM; in the middle:
measurements in [1,2]; on the bottom: standard WiB the
Smagorinsky closure. The acceleration of fluid ipetmay
attain very large values.
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Fig.5: Autocorrelation of the norm of acceleratipf;‘ (T); on

the top part: LES-SSAM, on the bottom part: measergs in
[1,2]. It is seen that although the computed catieh are
somewhat longer than in measurements, the tendéncy
similar: R:i (r) persists during a significant time.
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Fig.6 Autocorrelation of acceleratiqxg (r): on the top part:

LES-SSAM, on the bottom part: measurements in [112k
seen that autocorrelation of acceleration decreaapilly
with progressing of time-lag



