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ABSTRACT
The stirring and mixing of a passive scalar by fractal gen-

erated turbulence in the presence of a mean scalar gradient is
studied in three dimensions by DNS (Direct Numerical Simu-
lation). Passive scalar behaviour is of preliminary importance
in turbulent mixing and can also provide an opportunity to
understand turbulence itself. Recent experiments in wind tun-
nels [1,2] have shown that it is possible to tune fractal objects
(see figure 1) as very efficient turbulence generators of po-
tential use for static inline mixers. In this numerical work,
turbulent mixing in regular and fractal grid turbulence is in-
vestigated with a Prandtl number of 0.1. The results show that
it is possible to improve turbulent stirring and heat transfer
mixing by using a fractal square grid instead of a regular grid,
even with the same blockage ratio and the same input velocity.

Introduction
Recently, [1, 2] used different multiscale grids to gen-

erate turbulence in a wind tunnel and have shown that com-
plex multiscale boundary/initial conditions can drastically in-
fluence the behaviour of a turbulent flow, especially when a
fractal square grid (see figure 1) is placed at the entry of a
wind tunnel test section. Fractal geometry is a concept where
a given pattern (cross, square or I as in figure 1) is repeated
and split into parts, each being a reduced-copy of the whole.
Multiscale (fractal) objects can be designed to be immersed
in any fluid flow where there is a need to control and de-
sign the turbulence generated by the object. The experiments
have shown that, unlike regular objects (where the turbulence
is generated by only one scale), a slight modification of one
of the multiscale object’s parameters can deeply modify the
turbulence generated by the fluid’s impact on the object. Mul-
tiscale objects offer the opportunity to discover new complex
flow effects/interactions that can help understand how to con-
trol and/or manage complex fluid flows. Furthermore, such

multiscale objects can be designed as energy-efficient mixers
with high turbulent intensities and a small pressure drop. [3]
have shown that fractal grids can be designed as stirring ele-
ments for inline static mixers and, as such, that they compare
favourably with commercially available state-of-the-art stir-
ring elements.

Figure 1. Scaled diagrams of a fractal cross grid (left), a
fractal square grid (middle) and a fractal I grid (right).

The organisation of this paper is as follows. In the fol-
lowing section, we present the DNS methodology, a brief de-
scription of the grids and the numerical parameters of each
simulation. Some visualisations are presented and discussed
in section 2. Then, in order to better understand the underlying
properties of each flow, some statistical results are presented
in the penultimate section, followed by a conclusion in the last
section.

1 Flow parameters and numerical modelling
1.1 Numerical Methods

To solve the incompressible Navier-Stokes equations and
the transport equation for the passive scalar, we use a numeri-
cal code (called Incompact3d) based on sixth-order compact
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Figure 2. Scaled diagram of the regular grid (top) and the
fractal square grid (bottom).

schemes for spatial discretization and a third order Adams-
Bashforth scheme for time advancement. To treat the in-
compressibility condition, a fractional step method requires
to solve a Poisson equation. This equation is fully solved in
spectral space, via the use of relevant 3D Fast Fourier Trans-
forms. The pressure mesh is staggered from the velocity mesh
by half a mesh, to avoid spurious pressure oscillations. With
the help of the concept of modified wave number, the diver-
gence free condition is ensured up to machine accuracy. More
details about the present code and its validations, especially
the original treatment of the pressure in the spectral space, can
be found in [4]. The modelling of the grids is performed by an
Immersed Boundary Method, following a procedure proposed
by [5]. The present method is a direct forcing approach that
ensures the no-slip boundary condition at the grid walls. It
mimics the effects of a solid surface on the fluid with an extra
forcing in the Navier-Stokes equations.

Because of the size of the simulations, the parallel ver-
sion of Incompact3d has been used for this numerical work.
Based on a highly scalable 2D decomposition library and a

distributed FFT interface, it is possible to use the code on
thousands of computational cores. More details about this ef-
ficient parallel strategy can be found in [6].

1.2 Governing equations
The governing equations are the forced Navier-Stokes

equations and the transport equation for the passive scalar:

∂u
∂ t

=−∇p− 1
2
[∇(u⊗u)+(u.∇)u]+ν∇2u+ f (1)

∇.u = 0 (2)

∂θ
∂ t

+u.∇θ +S =
1

Retmin Pr
∇2θ (3)

where p(x, t) is the pressure field (for a fluid with a constant
density ρ = 1), u the velocity field, θ the passive scalar fied,
S = vSθ with Sθ = 1/16 being a constant scalar gradient and v
the lateral velocity, and Pr the Prandl number (equal to 0.1). In
this work, the forcing field f(x, t) is used through an immersed
boundary method in order to take into account the grid inside
the computational domain. Note that the passive scalar con-
figuration, in particular S, is based on the works of [7, 8].

1.3 Numerical Parameters
For the fractal square grid, the computational domain

Lx ×Ly ×Lz = 1152tmin ×144tmin ×144tmin is discretized on
a Cartesian mesh of nx × ny × nz = 2881× 360× 360 mesh
nodes, about 374 million mesh nodes in total. It is split in
8100 computational cores. For the regular grid, the computa-
tional domain Lx×Ly×Lz = 1152tmin×72tmin×72tmin is dis-
cretized on a Cartesian mesh of nx ×ny ×nz = 2881×180×
180 mesh nodes, about 93 million mesh nodes in total. It is
split in 7200 computational cores. Unlike the regular grid,
the fractal grid does not have a well-defined mesh size. [1]
introduced an effective mesh size Me f f =

4T 2

P
√

1−σ where
P is the grid’s fractal perimeter’s length, T the lateral size of
the wind tunnel and σ the blockage ratio. When applied to
a regular grid, Me f f equals the actual mesh size of the grid.
For each grid, the simulation is performed with a Reynolds
number ReMe f f = 2000 (based on the effective mesh size of
the two grids Me f f and the streamwise upstream velocity U∞,
it corresponds to a velocity of about 1.5m/s in a wind tun-
nel). The time step ∆t = 0.01tmin/U∞ is low enough to have a
CFL condition of about 0.75. The streamwise position of the
grid (14Me f f from the inflow boundary of the computational
domain) has been carefully chosen to avoid any spurious in-
teractions between the modelling of the grid and the inflow
boundary condition. Note that the simulations are performed
with the same Reynolds number (based on Me f f , equal to
2000, same blockage ratio (σ = 50.7%) and same effective
mesh size (Me f f = 6.5tmin) for the fractal square grid and the
regular grid. In the calculations presented here, boundary con-
ditions are inflow/outflow in the direction x of the mean flow
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Figure 3. Instantaneous streamwise velocity field obtained for the regular grid in the (x− y) plane: behind a bar (top) and in the
middle between two bars (bottom). Values above 1.5U∞ are in red while negative values are in blue.

Figure 4. Instantaneous streamwise velocity field obtained for the fractal square grid at different lateral location in the (x− y)
plane. Values above 1.5U∞ are in red while negative values are in blue.

(velocity boundary conditions of Dirichlet type) and periodic
in directions y and z. The inflow condition is a uniform profile
(U∞ = 1)with no turbulence.

2 Results: instantaneous visualisations
Figures 3 and 4 illustrate our two turbulent flows by

showing snapshots of instantaneous streamwise velocity fields
at different (x−y) planes. A non-homogeneous turbulent field
is obtained close to the grids, but in the case of the regular
grid, the turbulence does homogenise relatively close to the
grid. Instead, the turbulence remains non-homogeneous for a
long distance downstream of the fractal grid. For the fractal
square grid, there is a clear presence of wakes of four different
sizes, corresponding to the four fractal iterations of the grid.
These snapshots suggest that the levels of turbulence gener-
ated by the fractal grids seems to be more important than for
the regular grid, except very close to the grid. It is important
to recall that the two grids have the same blockage ratio and
that the same input velocity is used in the two configurations.

Figures 5 and 6 show snapshots of instantaneous passive

scalar fields at different (x− y) planes. Note that in the two
figures the color levels are the same. The passive scalar fluc-
tuations are created by the turbulence generated by the grids
and the uniform scalar gradient Sθ (no passive scalar fluctu-
ations are imposed at the inlet of the computational domain).
As expected, a uniform passive scalar field is obtained behind
the regular grid, with relatively small levels of fluctuations.
In contrast, we can observe high levels of fluctuations for the
passive scalar generated behind the fractal square grid, with
much bigger structures in the second half of the computational
domain.

3 Results: statistics
Figure 7 (top) shows the streamwise evolution of the

normalised rms (u′2)1/2/U∞ of the turbulent fluctuations ob-
tained by averaging in time. As expected from previously re-
ported wind tunnel measurements and simulations [1, 9–11],
the turbulent flow generated by the fractal grid exhibits two
regions on the centreline of the flow: starting immediately af-
ter the grid, a protracted production region where the turbu-
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Figure 5. Instantaneous passive scalar field obtained for the regular grid in the (x− y) plane: behind a bar (top) and in the middle
between two bars (bottom). Values above 1.5 are in red while values bellow −1.5 are in blue.

Figure 6. Instantaneous passive scalar field obtained for the fractal square grid at different lateral location in the (x− y) plane..
Values above 1.5 are in red while values bellow −1.5 are in blue.

lence continuously intensifies reaching a turbulence intensity
peak at a far point where the second region starts and in which
the turbulence decays. This has been observed in wind tunnel
experiments [1, 9] for low blockage fractal square grids and
along various straight lines in the streamwise direction.

Figure 7 (bottom) shows the streamwise evolution of the
normalised rms (u′2)1/2/U∞ of the turbulent fluctuations nor-
malised by its peak value as a function of x/x∗. Introduced
by [9], x∗ is defined as

x∗ =
L2

o
t0

(4)

where L0 is the lateral lenght of the biggest square and t0 the
lateral thickness of the biggest square of the grid. Note that
for the fractal grid, Lo = Ly/2 and to = 8.5tmin (with tmin =
1) and for the regular grid, L0 = Me f f and t0 = 2tmin. As
suggested by [9], x∗ can be seen as a characteristic length scale
of interactions between the wake of the largest grid bars. One
can clearly see that it is possible to collapse the data for both
grids up to x/x∗ ≈ 0.5, through not at higher value of x/x∗.

Another interesting result arises from comparing the
streamwise evolutions of the turbulence by doing a spatial av-
erage of (u′2)1/2/U∞ in the (y− z) plane. We found that at
the end of the computational domain, we have about 7.5% of
turbulence for the fractal grid while we have only about 2.5%
for the regular grid.

Figure 8 shows the streamwise profiles along the cen-
treline of the flow of the turbulent Reynolds number Reλ =

u′λ/ν based on the Taylor microscale λ = u′2/< (∂u/∂x)2 >
and the turbulent intensity u

′
. The fractal square grid gener-

ates a Reynolds number Reλ more than four times bigger than
the regular grid despite the same ReMe f f and the same block-
age ratio, in good agreement with the experimental results
of [1]. This confirms that the fractal square grids are able to
generate much more turbulence that a regular grid [11]. Fur-
thermore, after the peak Reλ is roughly constant for the regu-
lar grid whereas it is decreasing for the fractal square grid.

Figure 9 shows the streamwise profiles of the passive
scalar variance and the passive scalar flux along the centreline
of the flow in one case and averaged in the (y− z) plane in the
other. One of the main interesting results here is that we can
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Figure 7. Streamwise evolution of the normalised rms
(u′2)1/2/U∞) of the turbulent fluctuations (top) normalised by
its value at xpeak as a function of x/(x?σ) (bottom).

observe a continuous increase for the passive scalar variance,
much more pronounced for the fractal square grid. At the end
of the computational domain, the variance is more than ten
times bigger for the fractal grid. One can assume that this is
due to the source term Sθ which has been greatly enhanced by
the fractal-generated turbulence and is much stronger that the
passive scalar dissipation. Indeed, [7] predicted that the level
of the passive scalar fluctuations would increase indefinitely
with streamwise distance if the dissipation is neglected for a
similar passive scalar configuration. Furthermore, we notice
a linear increase of the passive scalar variance, in agreement
with the experiments of [12, 13] where the authors found that
the variance should grow linearly with streamwise distance in
decaying turbulent grid flow.

Another key result here is that, after x/Me f f ≈ 40, the
scalar flux is almost constant for both grids. Like for the vari-
ance, the flux is more than ten times bigger for the fractal
square grid. This significant production of scalar flux, com-
bined with the high level of turbulence, strongly affects the
passive scalar variance, and explains why it is very large for
the fractal square grid.

4 Conclusion
Two spatially evolving turbulent flows generated by a

regular and a fractal square grid have been investigated by
means of DNS. In this work we have focused on the prop-
erties of stirring of a scalar by a turbulent velocity field in
the presence of an imposed mean scalar gradient. One im-
portant result is that the fractal square grid is able to generate
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Figure 8. Streamwise evolution of the turbulent Reynolds
number based on the Taylor microscale for the two grids on
the centreline of the flow.

much higher turbulent intensities than a regular grid for the
same Reynolds number ReMe f f and the same blockage ratio,
except very close to the grid. For the fractal square grid, we
have been able to recover the two different regions already
observed in the experiments of [1, 9] for lower blockage ra-
tios: a production region where the flow is non-homogeneous
and at the end of which the turbulence peaks followed by a
decay region. The main most novel result is that the passive
scalar flux is enhanced by an order of magnitude by the fractal
square grid.

Further DNS will be required to investigate in more de-
tail the influence of Sθ . In particular, it could be interesting
to tune Sθ with respect to the dissipation so that we can study
the passive scalar variance decrease in the streamwise direc-
tion. We will then be able to make comparisons with previous
works [13, 14] where the properties of a passive scalar field
with decaying variance were studied. Another future direction
of investigation concerns the influence of the Prandl number.
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