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ABSTRACT
Turbulent shear flows on shallow continental shelves are

of great importance because tides and wind driven flows on
the shelf are drivers of the transfer of momentum, heat, and
mass (gas) across the air-sea interface. These turbulent flows
play an important role in vertical mixing and transport of sed-
iment and bioactive material. Large Eddy Simulation is used
to quantify the effects of pressure gradient and wind shear on
the distinctive structures of the flow.

1 Introduction
Turbulence generated by currents, tides and wind driven

flows on shallow continental shelves is of importance because
of the transfer of momentum, heat, and mass (gas) across the
air-sea interface. Understanding the turbulence dynamics of
this class of flows presents complications because of the pres-
ence of a free surface, the necessity of including the flow inter-
action with a solid, no-slip bottom and also because the flow
can be driven by an imposed pressure gradient for example a
tidal current, and/or a wind stress at the free surface or a com-
bination of both. In addition, the presence of a wave field can
modify the flow substantially.

The intent of the LES discussed in this paper is to sim-
ulate the turbulent flow on shallow shelves having turbulence
scales of O(100) m in the horizontal and depths in the range of
10 to 50 m. On these scales the turbulent flow is homogenous
in the horizontal. The purpose of our calculations is to elu-
cidate the structure of the turbulence dynamics as driven by
pressure gradient driven (tidal) flow and surface stress driven
flow without and with waves.

2 Governing Equations
Constant density flow is assumed because we assume

that turbulent mixing is strong enough to remove stratifica-

tion. The equations are solved in non-dimensional form. Let
( )∗ denote a dimensional quantity and( ) a non-dimensional
quantity. The velocity scale isu∗τT

≡
√

τ∗T/ρ∗ with τ∗T the
total stress on the bottom, the length scaleδ ∗ = H∗/2, with
H∗ the water depth. The non-dimensional vertical coordinate
is−1≤ x3 ≤+1 with this scaling. The velocity scale used in
the non-dimensionalization isu∗τT

so the Reynolds number in
the non-dimensional equations isReτT .

The Craik-Leibovich (hereafter C-L) equations are derived by
applying a time filter to the Navier-Stokes equations (Craik &
Leibovich, 1977). Application of a homogeneous, low-pass
spatial filter to the non-dimensional C-L equations gives

∂ ūi

∂xi
= 0

∂ ūi

∂ t
+ ū j

∂ ūi

∂x j
= −∂ Π̄

∂xi
+

1
ReτT

∂ 2ūi

∂x2
j

+
∂τi j

∂x j
+

1

La2
t

εi jkUs
j ω̄k +F i

(1)
where an over-bar denotes application of the low-pass spatial
filter andūi andω̄i are thei-th components, in the Cartesian
coordinate system(x1,x2,x3), of the non-dimensional space
and time filtered velocity and vorticity, respectively,εi jk is the
totally antisymmetric third rank tensor, and̄Fi is thei-th non-
dimensional component of the imposed pressure gradient per
unit mass. The non-dimensional, modified, space and time
filtered pressure is defined as

Π̄ = p̄+
1
2
(

1

La4
t
Us

i Us
i +

2

La2
t

ūiU
s
i ). (2)

wherep̄ is the non-dimensional pressure.
The fourth (next to last last) term on the right hand side

of the second equation in (1) is the non-dimensionalized C-L
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vortex force defined as the Stokes drift velocity crossed with
the filtered vorticity. The non-dimensional Stokes drift veloc-
ity is defined as

Us
1 =

cosh(2κx3)
2 sinh2(κH)

and Us
2 = Us

3 = 0, (3)

where κ is the wavenumber of the dominant filtered-out
surface gravity wave. Here we only consider the dominant
wave, defined as that of the peak of the wave spectrum, but
equation (3) could be generalized to a wave spectrum by
integrating the product of the spectral density function and
(3) over the wave number spectrum.

The turbulent Langmuir number isLat = (u∗τP
/u∗s)

1/2.
The characteristic Stokes drift velocity,u∗s, is defined as
u∗s = ω∗κ∗a∗2, whereω∗ is the frequency,κ∗ = 2π/λ ∗ is the
wavenumber withλ ∗ the wavelength anda∗ is the amplitude
of the dominant surface gravity wave. In the LES with the
C-L force reported hereLat = 0.7 andλ ∗ = 6H∗.

The subgrid-scale (SGS) stressτi j in (1), generated by spa-
tial filtering the C-L equations, is defined asτi j = ūi ū j −uiu j .
The termuiu j gives rise to a closure problem and thus must
be parameterized. The deviatoric part ofτi j (i.e. τd

i j ≡
τi j −δi j τkk/3) is parameterized using the dynamic Smagorin-
sky closure and the dilatational part (i.e.δi j τkk/3) is added
to the modified pressure,̄Π. The details of the implementa-
tion of the dynamic Smagorinsky closure are given in Tejada-
Martinez & Grosch (2007) (hereafter TMG07) who also im-
plemented a different closure, the dynamic mixed closure of
Morinishi & Vasilev (2001), and studied the effects of varying
the SGS and the grid resolution on the results (see Appendix
C of TMG07) and found that their results were relatively in-
sensitive to model used in computing the SGS. It should be
noted that, in contrast to previous LES of flows with LC such
as those of McWilliams,et al. (1997), Li, et al. (2005) and
others, the viscous stress term (inversely proportional toRe)
has been retained. The viscous stress term has been retained
because the present simulations resolve bottom and surface
viscous boundary layers where this term plays an important
role in the governing dynamics.

2.1 Boundary and Forcing Conditions
As in TMG07, we impose periodicity in the horizontal

(x1 andx2) directions. Periodicity inx1 andx2 implies that
the flow is spatially homogeneous over these directions. A
no-slip boundary condition and a zero normal flow (in the
x3 direction) condition are both imposed at the bottom, thus
ui(x1,x2,−1) = 0 i = 1,2,3. Consistent with wave (phase)
averaging of the equations there is no deformation of the free
surface, thus a zero normal flow condition is imposed at the
surface, that isu3(x1,x2,1) = 0.

The remaining conditions are the forcing conditionsi.e.
the imposed pressure gradient and the imposed wind stress
on the surface. We consider, first, the case in which the
flow is driven by an imposed pressure gradient without
any surface stress. In this case, without loss of generality,

we can have the pressure gradient parallel to thex1 axis
so F1 6= 0 and F2 ≡ 0. In order to determineF1 we
integrate thex1 component of the momentum equation
from x3 = −1 to x3 = 1. This gives, in dimensionless

variables,
(

∂u1
∂x3

)
x3=1

−
(

∂u1
∂x3

)
x3=−1

= −2 ReτP F1. In this

case, with the stress on the surface zero,
(

∂u1
∂x3

)
x3=1

≡ 0 and,

with the non-dimensionalization,
(

∂u1
∂x3

)
x3=−1

= ReτP thus

F1 = 1
2 . In addition, because the stress on the surface is zero,(

∂u2
∂x3

)
x3=1

≡ 0.

Next consider the case in which there is an imposed surface
shear stress. Without loss of generality we take the wind
stress,τ∗W 6= 0, to be parallel to thex∗1 axis. There may also
be an imposed pressure gradient at some angle to thex∗1 axis
which has components∂P∗o/∂x∗i for i = 1,2. The correspond-
ing stresses associated with the pressure gradient are

τ
∗
Pi

=
(

∂P∗o
∂x∗i

)
H∗; i = 1,2.

Thus the stress in thex∗1 direction is τ∗W + τ∗P1
and that in

the x∗2 direction is τ∗P2
. The magnitude of thetotal stress,

that due to the wind stress and the pressure gradient, isτ∗T =√
(τ∗W + τ∗P1

)2 +(τ∗P2
)2. It then follows that the relationship of

the ”friction velocities” is

(u∗τT
)2 =

√
((u∗τW

)2 +(u∗τP1
)2)2 +((u∗τP2

)2)2, (4)

and that of the ”stress Reynolds numbers” is

(ReτT )2 =
√

((ReτW )2 +(ReτP1
)2)2 +((ReτP2

)2)2. (5)

We setReτT = 395 and chose the other terms so that 5 is sat-
isfied. We consider cases in which (a) the wind stress is dom-
inant (ReτW = 390 andReτP2

= 180) , (b) the pressure gradi-
ent stress is dominant (ReτW = ReτP2

= 279) and (c) the wind
stress and pressure gradient stresses are equal (ReτW = 180
andReτP2

= 390).

2.2 Numerical Method
The numerical method used to solve the governing equa-

tions combines 2nd order fractional time stepping with a hy-
brid spatial discretization. The spatial discretization is spec-
tral in thex1 andx2 directions with 5th and 6th order compact
differencing and grid stretching in thex3 direction. The SGS
stress is represented by the the dynamic Smagorinsky closure
(Smagorinsky, 1963; Lilly, 1992). The details of the method
used to solve the governing equations, including the tempo-
ral and spatial discretization, the grid stretching, the finite-
difference stencils, the SGS stress and the parallel implemen-
tation, is described in detail in Appendices E and F of TMG07
and also in Tejada-Martinez,et al. (2009).
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Figure 1. Mean velocity profiles for flows without wave
forcing : (a) Streamwise component, (b) Crosstream compo-
nent. Wind stress dominant in blue, equal wind and pressure
gradient stresses in red and Pressure gradient stress dominant
in green.

3 Results
3.1 Mean profiles and flow visualizations

Figure 1 and 2 show streamwise and cross-stream
component mean velocity profiles normalized by the velocity
magnitude at midheight for respectively flows without wave
forcing and with wave forcing. Without any wave forcing,
only the balance of momentum between the pressure gradient
flow and the wind driven flow changes. The relative shape
of each mean profile stays identical wether the stress is
dominant or not.

With wave forcing, we observe major changes in the mean
profiles both on streamwise and cross-stram components,
all due to the CL forcing. U1 has a negative slope of the
mean profile in the middle of the water column for the wind
dominant and pressure gradient dominant cases and is almost
constant for the equal stresses case, meaning a more homo-
geneous flow than without wave forcing. TheU2 component
shows very different behaviors : with wind dominant, the
mean profile is closer to a laminar pressure gradient driven
flow profile than a turbulent one. With equal stresses, the
maximumU2 velocity is located at mid height and the flow is
slightly slower at the top of the water column. With a pressure
gradient dominant, theU2 profile is less modified by CL forc-
ing and closer to an unforced pressure gradient mean profile.
The maximumU2 velocity is still located at mid height but
the surface velocity is now almost equal to the mid height one.

Figure 3 showsu′1/ < u1 > on (x1,x2) plane atx3 = 0 (mid
height). Mean flow is in the direction of increasingx1. The tilt
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Figure 2. Mean velocity profiles for flows with wave forc-
ing : (a) Streamwise component, (b) Crosstream component.
Wind stress dominant in blue, equal wind and pressure gra-
dient stresses in red and pressure gradient stress dominant in
green.

of the streaks in the cross-stream direction is due to the cross-
stream pressure gradient. The magnitude of the tilt is depen-
dant on the balance between the wind stress and the pressure
gradient. The addition of the wave forcing results in a single
cell structure, panels (b), (d) and (f), in place of a two cell
structure, panels (a) and (c) or no coherent structure at all,
panel (e).

3.2 Resolved Reynolds stresses
The normal and shear stresses are shown in figure 4

for cases without wave forcing and figure 5 for cases with
wave forcing. For cases with wind dominant,〈u′1u′1〉 is the
dominant normal stress both with and without waves. With
an increased contribution of the pressure gradient,〈u′1u′1〉
decreases in the entire water column while〈u′2u′2〉 increases
near bottom. The result is a reduction of TKE near the surface
while it remains unchanged near the bottom.

Shear stresses are much weaker than normal stresses. Due to
the cross flow〈u′1u′2〉 becomes non negligible on the bottom

thanks to the growth of〈u′2u′2〉 and is the strongest when
the contribution of wind stress and pressure gradient on
the bottom stress are equal.〈u′1u′3〉 is stronger than〈u′2u′3〉
and symmetrical while wind stress is dominant and slowly
decreases as the pressure gradient contribution increases.
〈u′2u′3〉 increases only in the bottom of the boundary layer
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Figure 3. InstantaneousU1 velocity fluctuationon thex1x2

plane at mid height. (a) Wind dominant, (b)Wind dominant
with waves , (c) Equal stresses , (d) Equal stresses with waves
, (e) Pressure gradient dominant , (f) Pressure gradient domi-
nant with waves
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Figure 4. Resolved normal and shear stresses and TKE for
flows without wave forcing. The terms are normalized by
(u∗τT

)2. The symbols for the normal stresses are:◦, 〈u′1u′1〉;
×〈u′2u′2〉; +, 〈u′3u′3〉; −, TKE. The symbols for the shear
stresses are:∗, 〈u′1u′2〉; �,〈u′1u′3〉; �, 〈u′2u′3〉.

while the pressure gradient contribution to the bottom stress
increases.

In every case, the CL forcing increases〈u′1u′1〉 stress. As a
consequence for a pressure dominant flow with wave forcing,
〈u′1u′3〉 remains high close to the bottom of the water column

since both〈u′1u′1〉 and〈u′2u′2〉 are non negligible.
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Figure 5. Resolved normal and shear stresses and TKE for
flows with wave forcing. The terms are normalized by(u∗τT

)2.
The symbols for the normal stresses are:◦, 〈u′1u′1〉; ×〈u′2u′2〉;
+, 〈u′3u′3〉; , TKE. The symbols for the shear stresses are:∗,
〈u′1u′2〉; �,〈u′1u′3〉; �, 〈u′2u′3〉.

3.3 Invariants of the Reynolds Stress
Anisotropy Tensor

The Reynolds stress anisotropy tensor,bi j , is (Lumley,
1978; Pope, 2001)

bi j =
〈u′ju′j 〉

2
− 1

3
δi j . (6)

This is a real, symmetric second order tensor (matrix) with a
zero trace. Hence, it has three real eigenvalues of which one
or two, but not three, must be negative. The three eigenvalues
are invariants ofbi j . Three other invariants ofbi j are

I = bii = trace(bi j ) = 0; II = bi j b ji ; III = bi j b jkbki. (7)

The ”triangle” of Figure 6 in the(II 1/2, III 1/3) plane is
the Lumley triangle (Lumley, 1978; Pope, 2001) and all
realizable states of turbulent flow must lie within it. The
trajectory begins at the first grid point above the bottom
(at x+

3 = 1) in the viscous sublayer. This point is just
below the curve of two-component turbulence and in the
vicinity of the one-component vertex because, very close
to a solid boundary, the magnitudes of〈u′1u′1〉 and 〈u′2u′2〉
are much larger than that of〈u′3u′3〉. Moving away from the
bottom boundary the trajectories in all cases move parallel
to the two-component side towards the one-component
vertex as〈u′1u′1〉 increases relative to the other two. A
short distance above the bottom (x+

3 ≈ 7) at the top of the
viscous sublayer reverse direction and move away from
the one-component vertex. This structure of the trajectory
is characteristic of all turbulent shear flows very close to
a solid boundary. Above the near wall region, the invari-
ant trajectory is sensitive to the structure of the particular flow.

The wind dominant and equal stress cases, both with no
wave, have a trajectory that is characteristic of a flow with
boundary layers at both the surface and the bottom with
substansial symmetry of the normal stresses about mid-depth.
Because of the symmetry, the trajectory in the upper half
is almost identical to the one in the lower half. The wind
dominant and equal stress cases both with wave have a
different trajectory. After reversing direction at the top of
the viscous sublayer, the trajectory moves parallel to and just
below the two-component side of the triangle towards the
two-component isotropic vertex. This occurs because the
C-L vortex drives〈u′2u′2〉 comparable to〈u′1u′1〉 in the upper
third of the water column. In the center of the water column
〈u′2u′2〉 is smaller than the other two terms so the trajectory
crosses the triangle and is parallel to the axi-symmetric side
in the region of mid-depth and then moves back across the
triangle below mid-depth. In the upper third of water column
the trajectory is three-component for a distance, switches to
axi-symmetric and then to two-component as〈u′3u′3〉 → 0 at
the upper surface with the other two stresses becoming larger.

The pressure dominant trajectory with no wave forcing is
similar to the one of wind stress dominant until mid-height
of the water column where the trajectory moves towards a
disk shaped turbulence before coming back to a dominantly
one component turbulence. This occurs because around
mid height, though dominant on the bottom,〈u′2u′2〉 is of

the same order of magnitude as〈u′1u′1〉, hence the two
component turbulence. However, since it is predominantly
created by the pressure gradient stress〈u′2u′2〉 is close to 0

at the surface where the wind stress and〈u′1u′1〉 despite their
small magnitude are dominant inducing a predominantly one
component turbulence.
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Figure 6. Trajectory as a function of the distance from the
bottom of the invariants ofbi j in the (II 1/2, III 1/3) plane for
the three cases of for wind stress dominant flows without
waves (color) and with waves (black).� :-1 ¡ x3 < −0.5,
+ : −0.5 < x3 < 0.5 , � :0.5 ¡ x3 < 1

The pressure dominant trajectory with wave forcing is sim-
ilar to the one without wave forcing until the upper part of
the boundary layer where it remains close to the 2 component
vertex. This can be explained by the increase of〈u′2u′2〉 to the

same order of magnitude as〈u′1u′1〉 by CL forcing.

4 Conclusion
Though the dynamics of a surface stress driven and a

pressure gradient driven flow are different, without wave forc-

ing, the balance between their stress does not impact signifi-
cantly the flow structure. In contrast, CL vortex force has a
significant impact, homogeneizing the flow and forcing a neg-
ative slope onU1 mean profile near the middle of the water
column andU2 in its upper part. This has important conse-
quences for turbulence parametrization since numerous mod-
els use a turbulent eddy viscosity concept where the Reynolds
stress anisotropy tensorai j is modeled asai j =−2νtSi j . In its

simplest form, it reduces to respectively
〈
ū′1ū′3

〉
=−νt

∂u1
∂x3

and〈
ū′1ū′2

〉
=−νt

∂u1
∂x2

. With ∂u1
∂x3

and ∂u1
∂x2

negative andνt positive,
this simple parametrization gives positive Reynolds stresses
where negative stresses are oberved. Finally, the trajectory of
the invariant of the Reynolds stress anisotropy tensor has been
seen to be a sensitive indicator of the structure of turbulence.
When wave-current driven Langmuir circulation is observed,
the turbulence as a much more three-component structure than
when it is not.
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