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ABSTRACT
With implicit large-eddy simulation (ILES) the trunca-

tion error of the discretization scheme acts as subgrid-scale
(SGS) model for the computation of turbulent flows. Al-
though ILES is comparably simple, numerical robust and easy
to implement, a considerable challenge is the design of nu-
merical discretization schemes resulting in a physically con-
sistent SGS model. In this work, we consider the implicit SGS
model of the adaptive central-upwind weighted-essentially-
non-oscillatory scheme (WENO-CU6) (Hu, XY, Wang, Q. &
Adams, NA, J. Comput. Phys., 229 (2010) 8952-8965.) by
incorporating a physically-motivated scale-separation formu-
lation. Scale separation is accomplished by a simple mod-
ification of the WENO weights. The resulting modified
scheme maintains the shock-capturing capabilities of the orig-
inal WENO-CU6 scheme while it is also able to reproduce
the Kolmogorov range of the kinetic-energy spectrum for tur-
bulence at the limit of infinite Reynolds number indepen-
dently of grid resolution. For quasi-isentropic compressible
turbulence the the pseudo-sound regime of the dilatational
kinetic-energy spectrum and the non-Gaussian probability-
density function of the longitudinal velocity derivative are re-
produced.

Introduction
Unlike standard large eddy simulation (LES) (for a re-

view of LES for incompressible and compressible turbulence
refer e.g. to (Sagaut 2006, Garnier et al. 2009), implicit LES
(ILES) does not require an explicitly computed sub-grid scale
(SGS) closure, but rather employs an inherent, usually non-
linear, regularization mechanism due to the nonlinear trunca-
tion error of the convective-flux discretization scheme as im-
plicit SGS model. As finite-volume discretizations imply a
top-hat filtered solution, regularized finite-volume reconstruc-
tion schemes were among the first ILES approaches, such as
the flux-corrected transport (FCT) method (Boris et al. 1992),

the piecewise parabolic method (PPM) (Colella et al. 1984).
Although ILES is attractive due to its relative simplicity, nu-
merical robustness and easy implementation, it often exhibits
inferior performance to explicit LES (Garnier et al. 1999) if
the discretization scheme is not constructed properly. Some
schemes, such as PPM, FCT, MUSCL (Kim et al. 2005) and
WENO (Balsara et al. 2000) methods, work reasonably well
for ILES by being able to recover a Kolmogorov-range for
high-Reynolds-number turbulence up to kmax/2, where kmax

is the Nyquist wavenumber of the underlying grid (Grinstein
et al. 2006, Grinstein et al. 2007, Thornber et al. 2007). These
promising results have led to further efforts on the physically-
consistent design of discretization schemes for ILES. Physical
consistency implies the correct and resolution-independent re-
production of the subgrid-scale (SGS) energy transfer mech-
anism of isotropic turbulence. Based on this notion the adap-
tive local deconvolution method (ALDM) has been developed
(Adams at al. 2004, Hickel et al. 2006) and successfully ap-
plied to a wide range of incompressible turbulent flows, e.g.
Meyer et al. (2010) and Hickel et al. (2007). Approaches for
decreasing excessive model dissipation for the solenoidal ve-
locity field include the low-Mach number switch of Thornber
et al. (2008), and the dilatation switch and shock sensor of
Kawai et al. (2010).

In this work we propose a simple modification of an
existing high-order WENO scheme which leads to a phys-
ically consistent implicit SGS model while preserving the
shock-capturing properties of the underlying WENO scheme.
Basis of this ILES scheme is a scale separation built into
the nonlinear WENO weights that allows to differentiate be-
tween stencils providing contributions from resolved scales
and from non-resolved scales. It avoids the need for explicit
discretization-scheme switches (hybrid schemes) or flow sen-
sors and operates directly on the reconstruction or deconvo-
lution procedure. We point out that physical consistency is
recovered for both, the solenoidal and the dilatational compo-
nents of the velocity field, without requiring an explicit differ-
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entiation between these components.

Scale-separation method
For presentation of the scale-separation method we con-

sider for simplicity a generic one-dimensional convective
equation

∂u
∂ t

+
∂ f (u)

∂x
= 0. (1)

By applying a top-hat filter around xi = i∆x, where i is an
integer and ∆x is the support of the filter Gi, i.e., ui = Gi ∗u =∫ xi+∆x/2
xi−∆x/2 u(x)dx, we obtain

∂ui

∂ t
+Gi ∗ ∂ f (u)

∂x
=

∂ui

∂ t
+

1
∆x

(
fi+1/2 − fi−1/2

)
= 0, (2)

where fi±1/2 = f (ui±1/2) are the unknown exact fluxes at xi±
∆x/2. This is equivalent to taking a volume average over a
computational cell as in a finite-volume discretization. Eq. (2)
closed by replacing the exact fluxes by the numerical fluxes
f̂ k,r
i±1/2 at the cell faces

∂ui

∂ t
+

1
∆x

(
f̂ k,r
i+1/2 − f̂ k,r

i−1/2

)
= 0 . (3)

A consistent numerical flux is the cell-face value of a poly-
nomial f̂ k,r

i (x) reconstructed from neighboring cell averages
f i−k+r+1, ... f i, ..., f i+r , where k is the order of reconstruc-
tion. We consider the 6th-order non-dissipative symmet-
ric reconstruction f̂ 6,3

i (x) and the four admissible upwind-

and downwind-biased 3rd-order reconstructions f̂ 3,r
i (x), r =

0,1,2,3, which are dissipative or anti-dissipative. A physi-
cally consistent numerical flux is obtained by a proper weight-
ing of these contributions, measured by local smoothness of
the solution. In order to decrease the excess dissipation ob-
served for the original WENO schemes the contribution of the
higher order non-dissipative reconstruction should be empha-
sized for stencils containing resolved scales while dissipative
reconstructions should be emphasized for stencils containing
non-resolved scales. For this purpose the weighting strategy
of the underlying WENO scheme needs to be modified.

We start from a variant of the original WENO scheme
(Jiang et al. 1996), the adaptive central-upwind WENO
scheme (WENO-CU6) (Hu et al. 2010). The adaptation be-
tween the higher order non-dissipative and lower order dissi-
pative reconstructions requires the smoothness indicators

β k
r =

k−1

∑
n=1

∆x2n−1
∫ xi+∆x/2

xi−∆x/2

(
dn

dx
f̂ k,r
i (x)

)2

dx (4)

and a nonlinear weighting

ωr =
αr

∑3
r=0 αr

, αr = dr

(
C+

τ6

β 3
r + ε

)
, (5)

where dr are linear weights which combine f̂ 3,r
i (x), r =

0,1,2,3 to f̂ 6,3
i (x). C � 1 is a positive parameter, ε is a

small positive number, and τ6 is a linear combination of β6
3

and β3
r , r = 0,1,2. Note that it is set β 3

3 = β 6
3 to assure that

f̂ 3,3
i (x) contributes only to the numerical flux of f̂ 6,3

i (x). Al-
though the WENO-CU6 exhibits much less numerical dissi-
pation than classical WENO schemes, it still is too dissipative
for physically consistent ILES (Hu et al. 2010).

While terms τ6/(β 3
r + ε) are responsible for the WENO

adaptation and give sufficient dissipation for flow discontinu-
ities, the positive parameter C pushes the numerical flux to
that of f̂ 6,3

i (x) when the variation of τ6/(β 3
r + ε) is relatively

small. One could simply increase the value ofC so that numer-
ical dissipation is reduced for the resolved scales. However,
this will lead to difficulties with the WENO adaptation for
flow discontinuities and may result in numerical instability.
Such an effect of inreasing C can be counterbalanced by steep-
ening the τ6/(β 3

r +ε) contribution in (5), leading to a stronger
separation between resolved and non-resolved scales. For this
purpose the following modified weighting, without deteriorat-
ing the order of accuracy of the original WENO-CU6 scheme,
is introduced

ωr =
αr

∑3
r=0 αr

, αr = dr

(
Cq +

τ6

β 3
r + ε

)q

, (6)

where Cq � C is a positive modeling parameter and q > 1
is an integer. Due to the power function the variation of
τ6/(β 3

r + ε) is strongly magnified. Note that this procedure
operates on the reconstruction directly, and does not require
a separation of solenoidal or compressional components of
the velocity field. In particular, no explicit differentiation be-
tween shocks as subgrid scales and turbulent subgrid scales is
needed.

Scale-separation method
Several test problems are provided to assess the potential

of the scale-separation approach for ILES. Parameters are set
to Cq = 1000 and q = 4 for all test problems. The flow is de-
scribed by the compressible Navier-Stokes equation with the
ideal-gas equation of state. As flows at very large Reynolds
number are of interest physical viscosity is set to zero. The
equation is solved by the above WENO methodology using
an entropy-fix Roe numerical flux function (Jiang et al. 1996,
Hu et al. 2010).

First we consider the three-dimensional Taylor-Green
vortex to examine the capability of the ILES scheme to re-
produce transition to turbulence. The initial flow field is given
by

ρ = 1,

(u,v,w) = (sinxcosycos z,−cos x sinycos z,0),

p = 100+
1
16

[(cos2x+cos2y)(2+cos2z)−2] .

Final time of the computation is t = 10. The flow can be con-
sidered as incompressible since the pressure is chosen such
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Figure 1. Taylor-Green Vortex: (a) evolution of kinetic energy; (b) energy spectrum at t = 0, 1, 2, 3, 4 and 10. The computations
are performed on the periodic domain of [0,0,0]× [2π,2π,2π] on 323 and 643 grids.

that the Mach number becomes very small. The evolution of
the kinetic energy and the energy spectrum at t = 0,1,2,4,10
are given in Fig. 1. As shown in Fig. 1a, at early stages kinetic
energy is merely distributed among the resolved scales (total
kinetic energy is constant). At about time t = 4 subgrid-scales
are produced and kinetic energy begins to decay due to SGS
dissipation, and eventually decays as t−1.5, which is slightly
faster than t−1.2 found by Lesieur et al. (2003). A similar
observation has been made for high-resolution ILES (Grin-
stein et al. 2006). Note also that experimental data indicate
a rather large variation of the power-law exponent during dif-
ferent stages of decay, see Skrbek et al. (2000). As shown in
Fig. 1b, the power-law kinetic-energy spectra clearly reflect
the infinite-Reynolds-number limit, unlike that obtained by
Cook (2007) with artificial-fluid LES at the same resolution,
showing a pronounced artificial dissipative range. Between
t = 4 and t = 10 turbulence develops, a the kinetic energy
builds up a Kolmogorov intertial range, in agreement with the
high-resolution LES of Grinstein et al. (2006). As the above
behavior of our ILES scheme also is resolution independent,
physical consistency is demonstrated by this test case.

Next we consider a shock density-wave interaction prob-
lem (Shu et al. 1989, Johnsen et al. 2010), which is an one-
dimensional generic case to assess shock-capturing and wave-
disturbance propagation capabilities of the model at the same
time. The initial conditions are set by a Mach 3 shock inter-
acting with a perturbed density field

(ρ,u, p) =
{
(3.857,2.629,10.333) if 0 ≤ x < 1
(1+0.2sin(5x),0,1) if 10 ≥ x > 1

and are evolved until final time t = 1.8. From the density,
velocity and entropy profiles shown in Fig. 2, that the pro-
posed ILES method not only captures the shock wave, but
also maintains the amplitudes of density and entropy waves
after passing through the shock with comparable or better ac-
curacy than hybrid schemes (Johnsen et al. 2010, Adams et al.
1996). Note also that due to the lack of efficient scale sepa-

ration the original WENO-CU6 exhibits larger artificial wave
dissipation (Hu et al. 2010).

At last, we consider quasi-isotropic compressible turbu-
lence at the limit of infinite Reynolds number with moder-
ate initial Mach number. Both the solenoidal and dilatational
velocity fields have relevant magnitude. For the dilatational
field two distinguished regimes exist (Garnier et al. 2009):
one is the the pseudo-sound regime where acoustic effects
dominate; the other is the nonlinear subsonic regime where
embedded weak shocks (shocklets) are generated. Initial
velocity perturbations are introduced by randomly oriented,
isentropic, sinusoidal sound and shear waves concentrated at
the large scales with a root-mean-square (RMS) Mach num-
ber

√
3urms,0/〈c0〉 = 0.5. The initial data have a velocity

power spectrum proportional to k4 exp(−k2/k2
0), with k0 = 2,

and the ratio of compressible-component RMS to solenoidal-
component RMS is 1/10. Final time is t = 6 correspond-
ing roughly to 6 turn-over times of the most energetic initial
mode (Sytine et al. 2000). The solenoidal and dilatational
spectra at t = 1,2,4,6 are given in Fig. 3. A well-defined
Kolmogorov-range up to wave number k = 10 has developed
at t = 2, Fig. 3. This is in agreement with the simulation
of Sytine et al. (2000)on a 2563 grid. After t = 4 the Kol-
mogorov range extends up to kmax, independently of resolu-
tion, again indicating physical consistency of the model. As
shown in Fig. 3b, the dilatational component develops in a
different fashion. A Kolmogorov-range develops faster than
for the solenoidal component for an intermediate wavenum-
ber range. At larger wavenumbers a −9/3-range develops,
which is in agreement with the theoretical predictions of the
pseudo-sound regime (Garnier et al. 2009). A similar be-
havior is observed for the 323 grid, where the Kolmogorov-
scaling is not that obvious, however. Another noteworthy ob-
servation for the solenoidal component is that a spectrum tail
develops near kmax. After this tail has developed, it does not
further steepen but rather decays self-similarly with the re-
mainder of the spectrum. Such a behavior indicates that the
spectrum tail is not a numerical artifact but at the high wave
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Figure 2. Shock density-wave interaction problem using a 200 points grid: (a) density and velocity profiles; (b) entropy profile.
The ”exact” solution is computed by the WENO-CU6 scheme with 3200 grid points.
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Figure 3. Energy spectrum at t = 1, 2, 4, 6 of a compressible quasi-isotropic turbulence with initial Mach number 0.5: (a)
solenoidal spectra; (b) compressional spectra. The computations are performed on the periodic domain of [0,0,0]× [2π,2π,2π] on
323 and 643 grids.

number range. Although the energy increases with wave num-
ber along this tail, but rather has physical origin. A possible
explanation is the occurence of shocklets where dilatational
kinetic energy is concentrated. Evidence for shocklets is pro-
vided by contour plots of dilatation in Fig. 4a. Figure 4b
shows the probability density function (PDF) of the longitudi-
nal velocity derivative at t = 4, where the derivative u′ is eval-
uated from a divided difference with the respective grid size.
Whereas small velocity-derivative fluctuations follow a Gaus-
sian PDF, large velocity-derivative fluctuations shows a dis-
tinct non-Gaussian, slightly skewed PDF, which is well estab-
lished for isotropic turbulence. A quite good agreement with
PDF from DNS for a similar setup but with Taylor-Reynolds
number Reλ = 175 (Samtaney et al. 2001) can be observed.
Note that the present ILES gives a better agreement with DNS
than some explicit LES simulations (Kang et al. 2003, Yakhot

et al. 2005).

Concluding remarks
In this work we have proposed a scale separation ap-

proach for ILES. Scale separation is accomplished by a simple
modification of the weighting strategy of an existing WENO
scheme (WENO-CU6). Basic idea is to counterbalance a
stronger bias towards the central high-order non-dissipative
stencil by a higher integer power of the smoothness-measure
contribution to the weights. This leads to a scale separa-
tion of contributions from resolved scales and non-resolved
scales. Model parameters are the linear weight bias and the
integer power exponent. It was shown that a straight-forward
parameter choice is widely effective without further tuning.
Numerical examples imply that the scale-separation WENO-
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Figure 4. Compressible quasi-isotropic turbulence at time t = 4: (a) a slice of 15 dilatation contours from −2 to 2. Light and dark
gray scales show positive and negative dilatation; (b) Longitudinal velocity derivative PDF with resolution. The refence DNS data
is reproduced from Fig. 16 in Samtaney et al. (2001), where u′ is evaluated with separation of 2π/64.

CU6 scheme leads to a physically consistent implicit SGS
model for incompressible and compressible turbulence, while
the shock-capturing capabilities of the original WENO-CU6
scheme are maintained.

REFERENCES
NA Adams, S. Hickel, and S. Franz, 2004, ”Implicit

subgrid-scale modeling by adaptive deconvolution”, J. Com-
put. Phys., Vol. 200, pp. 412-431.

N.A. Adams and Shariff K, 1996 ”A high-resolution hy-
brid compact-ENO scheme for shock-turbulence interaction
problems”, J. Comput. Phys., Vol. 127, pp. 27-51.

D.S. Balsara and C.W. Shu, 2000, ”Monotonicity pre-
serving weighted essentially non-oscillatory schemes with in-
creasingly high order of accuracy”, J. Comput. Phys., Vol.
160, pp. 405-452.

J.P. Boris, F.F. Grinstein, E.S. Oran, and R.L. Kolbe,
1992, ”New insights into large eddy simulation”, Fluid dy-
namics research, Vol. 10, pp. 199-228.

P. Colella and P.R. Woodward, 1984, ”The Piecewise
Parabolic Method (PPM) for gas-dynamical simulations”, J.
Comput. Phys., Vol. 54, pp. 174-201.

A.W. Cook, 2007, ”Artificial fluid properties for large-
eddy simulation of compressible turbulent mixing”, Physics
of Fluids, Vol. 19, 055103.

E. Garnier, N.A. Adams, and P. Sagaut, 2009, ”Large
Eddy Simulation for Compressible Flows”, Springer.

E. Garnier, M. Mossi, P. Sagaut, P. Comte, and M. Dev-
ille, 1999, ”On the use of shock-capturing schemes for large-
eddy simulation”, J. Comput. Phys., Vol. 153, pp. 273–311.

F.F. Grinstein and C. Fureby, 2006, ”Recent progress on
flux-limiting based implicit Large Eddy Simulation,” Proceed-
ings, European Conference on Computational Fluid Dynam-
ics, ECCOMAS CFD.

F.F. Grinstein, L.G. Margolin, and W. Rider, 2007, ”Im-
plicit large eddy simulation: computing turbulent fluid dy-
namics”, Cambridge Univ Pr.

S. Hickel and N.A. Adams, 2007, ”On implicit subgrid-
scale modeling in wall-bounded flows”, Phys. Fluids, Vol. 19,
105106.

S. Hickel, N.A. Adams, and J.A. Domaradzki, 2006 ”An
adaptive local deconvolution method for implicit LES”, J.
Comput. Phys., Vol. 213, pp. 413-436.

XY Hu, Q. Wang, and NA Adams, 2010, An adaptive
central-upwind weighted essentially non-oscillatory scheme”,
J. Comput. Phys., Vol. 229, pp. 8952-8965.

G.S. Jiang and C.W. Shu, 1996, ”Efficient implementa-
tion of weighted ENO schemes”, J. Comput. Phys, Vol. 126,
pp. 202–228.

E. Johnsen, J. Larsson, A.V. Bhagatwala, W.H. Cabot,
P. Moin, B.J. Olson, P.S. Rawat, S.K. Shankar, B. Sjögreen,
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