
NEAR-WALL VORTICITY DYNAMICS IN TURBULENT COMPRESSIBLE
FLOWS

Liang Wei
Department of Mechanical and Materials Engineering

Queen’s University, Kingston, Ontario
Canada K7L 3N6

email: liang@me.queensu.ca

Andrew Pollard
Department of Mechanical and Materials Engineering

Queen’s University, Kingston, Ontario
Canada K7L 3N6

email: pollard@me.queensu.ca

ABSTRACT
Neal-wall vorticity dynamics in turbulent compressible

channel flows are studied using direct numerical simulation
(DNS). The Mach numbers of the three DNS cases areMa=
0.2, 0.7, and 1.5 respectively. The Reynolds numbers of three
cases are≈ 2800, based on the bulk velocity and the half chan-
nel width. The cross-correlation between density and span-
wise vorticity is high aty+ ≈ 4, which is coincident with the
peak mean spanwise baroclinicity. The transport equation for
the mean product of density and vorticity fluctuations〈ρ ′ω ′

i 〉
is presented and the distributions of terms in the〈ρ ′ω ′

z〉 trans-
port equation indicate that the minima and maxima of the pro-
files are located aroundy+ ≈ 5. The relationship between
pressure gradients and vorticity fluxes for compressible tur-
bulent flows with variable viscosity has been analyzed quan-
titatively. Some correlations between pressure gradient and
vorticity flux are found high very near the wall. The correla-
tion are affected by Mach number and viscosity in this region.

1 Introduction
Vorticity can be generated at a solid wall, and/or through

the cross product of density gradient and pressure gradient,
which is referred to as baroclinic torque or baroclinicity.
There are many quantities, such as pressure gradients, fluid
properties, Mach number, etc that can influence the evolution
of vorticity. Previous studies on vorticity dynamics include
the linkage between pressure gradient and vorticity genera-
tion on a solid wall in laminar and turbulent flows; however,
few studies exist for the pressure, density and vorticity inter-
actions, as well as quantitatively evaluating the linkage be-
tween pressure gradient and vorticity generation as a func-
tion of Mach number and wall-normal distance. Clarifying
the interactions among pressure, density, vorticity and their
gradients is of great importance to understand the mechanism
of vorticity evolution in wall bounded compressible turbulent

flows.
The influence of pressure gradients and fluid properties

on vorticity flux has been considered by a number of re-
searchers, see Lighthill (1963), Wuet al. (1988), Gad-El-Hak
(1990), Wuet al. (1993). Developments of boundary vortic-
ity dynamics theory were reviewed by Wu & Wu (1998). The
interaction between pressure gradients and vorticity flux was
employed in flow control (Koumoutsakos, 1999; Lee & Kim,
2002). The previous studies have considered the interplay be-
tween pressure gradient and vorticity flux applied to incom-
pressible flow; the relationship between them has been con-
sidered neither for compressible flow as a function of distance
from a solid wall nor for the case when the viscosity is spa-
tially variable. The motivation for the current study is there-
fore to explore the variation in the correlations of the pressure
gradients and vorticity flux in near wall turbulent flows as a
function of Mach number for a constant wall temperature, and
to study the interactions among pressure, density, and vortic-
ity in compressible wall bounded turbulent flows.

2 Vorticity dynamics in turbulent compress-
ible channel flow
DNS of fully developed compressible turbulent flow be-

tween two isothermal parallel plates at three different Mach
numbers was carried out using a discontinuous Galerkin
method (Karniadakis & Sherwin, 2005). The Mach num-
bers of the cases considered wereMa = 0.2, Ma = 0.7, and
Ma= 1.5 respectively, referred to as Ma02, Ma07, and Ma15
hereafter. The Mach number is defined asMa=Um/

√
γRTw,

whereUm was the mean bulk velocity andTw the wall tem-
perature (Tw = 293.15K for all three cases). The Reynolds
number was≈ 2800 in all cases, based onUm, h (half chan-
nel width), the mean bulk densityρm, and the dynamic vis-
cosity at the wallµw. The flow was assumed to be periodic
in the streamwise and spanwise directions. An analysis of
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Figure 1. Cross-correlation coefficients between density (ρ)
and spanwise vorticity (ω z) close to the bottom wall in wall
units.

the Kolmogorov microscale, one dimensional energy spec-
tra and correlations showed that the grid resolution was fine
enough to capture the smallest scales and the domain size was
large enough to include the largest eddies in the flow, see Wei
(2009). The current simulation results including mean pro-
files, second-order and higher-order statistics was compared
with the incompressible DNS data of Moseret al. (1999) and
compressible DNS data of Colemanet al. (1995), see Wei
(2009) and Wei & Pollard (2011) for details. Very good agree-
ment was found between the current simulations and the two
reference cases.

2.1 Interactions among pressure, density and
vorticity

The interaction between pressure, density, and vorticity
is explored using cross-correlations. The cross-correlation co-
efficient (between variable a and variable b) is defined as:
Ra:b = 〈a′

b
′〉/〈a′

a
′〉0.5〈b′

b
′〉0.5 where angle brackets (〈 〉) de-

notes the mean value, averaged over time andx−zdirections
and the apostrophe(′) denotes fluctuations with respect to the
mean.

Pressure and density are perfectly correlated on the wall
since the temperature fluctuations are zero on the isothermal
wall. The correlation between pressure and every component
of the vorticity is found to be negligible; however, there isa
significant correlation between density and spanwise vorticity
close to the bottom wall for all three cases Ma02, Ma07 and
Ma15, see figure 1. It indicates that the maximum correla-
tion occurs aroundy+ ≈ 4 for all cases (there is a very slight
shift away from the wall with increasing Mach number). The
peak correlation coefficients are around 0.9 and they increase
(mildly) with Mach number. In other words, compressible
isothermal-wall channel flows share a common feature that
density and spanwise vorticity are highly correlated aty+ ≈ 4.

To explore the spatial distribution of density and span-
wise vorticity aroundy+ = 4, snapshots of density and span-
wise vorticity contours aty+ ≈ 1,4,20 for the case Ma15 are
given in figure 2. In the figure, the blue and gray shades
represent positive and negative fluctuations respectivelyabout
a mean value. Aty+ ≈ 4, the density (figure 2b), and the
spanwise vorticity (figure 2e) share similar long regions of
streamwise streaks in both size and position, which further
confirms their high correlation around this location. How-

ever the density and spanwise vorticity behave differentlyat
y+ ≈ 1 andy+ ≈ 20. The spanwise vorticity streaks aty+ ≈ 1
(figure 2d) look very similar with those aty+ ≈ 4 (figure
2e), which is different in shape and size from those streaks
at y+ ≈ 20 (figure 2f). The spanwise vorticity is defined as
ωz =−∂u/∂y+∂v/∂x, where−∂u/∂y is the dominant term
and∂v/∂x is negligible within the viscous sublayery+ < 5.
The streaks of the spanwise vorticity should be similar as
those of the streamwise velocity in this viscosity-dominant
region. Away from the wall, the spanwise vorticity streaks
become less coherent and organized with decreasing viscous
effects and increasing turbulence activity.

Unlike the spanwise vorticity, the density streaks change
considerably within the viscous sublayer, but the change be-
tweeny+ ≈ 4 andy+ ≈ 20 is small, see figures 2a, 2b, and
2c. The main reason is that temperature has a significant
influence on density through the equation of state including
the influence of the isothermal wall. On the isothermal wall,
the temperature fluctuations are zero and density and pressure
are non-zero and are perfectly correlated. The influence of
temperature fluctuations on the density streaks is negligible.
Away from the wall, temperature fluctuations increase in mag-
nitude and play an increasingly important role on the density
fluctuations. Note that temperature streaks are coherent close
to the wall, as shown in figure 3. The streamwise coherence of
density streaks is increased fromy+ ≈ 1 toy+ ≈ 4. Although
density and spanwise vorticity develop differently with dis-
tance from the wall, they are well correlated aty+ ≈ 4, as
noted in figure 1.

The mean spanwise component of the baroclinic vector
(〈β3〉 or 〈β z〉), nondimensionalized byU2

m/h2, for three cases
is displayed in figure 4. Note that the profiles for the cases
Ma02 and Ma07 are almost identical. The locations of the
peak values are the same as the correlation in figure 1, al-
though the magnitude of the peak for Ma15 is markedly higher
than the others. The trend of the curves is similar and the in-
tersection between the profile for the case Ma15 and those for
the cases Ma02/Ma07 is located approximately aty+ ≈ 40 in
both figures. The cross correlations between〈β3〉 and〈ρ ′ω ′

3〉
have shown that although the magnitudes of the correlation
coefficients are not high very close to the wall, peaks in the
profiles are located aty+ ≈ 3−4.

To investigate why the peak values of the correlation oc-
cur aty+ ≈ 4 instead of on the wall or some other regions, the
transport equation for〈ρ ′ω ′

i 〉 is derived. Through Reynolds
averaging and some algebraic manipulation of the vorticity
equation, it is

A
︷ ︸︸ ︷

∂ 〈ρ ′ω ′
i 〉〈u j 〉

∂x j
=

D
︷ ︸︸ ︷

−
∂ 〈ρ ′ω ′

i u
′
j 〉+ 〈ρ ′

u
′
j 〉〈ωi〉

∂x j
+

S
︷ ︸︸ ︷

〈ρ ′
(ω j

∂ui

∂x j
)
′〉

−〈ωiu j 〉
∂ 〈ρ〉
∂x j

︸ ︷︷ ︸

G

−〈ρωi
∂u j

∂x j
〉

︸ ︷︷ ︸

d

+〈ρ ′
β

′
i 〉

︸ ︷︷ ︸

B

+〈ρ ′
η

′
i 〉

︸ ︷︷ ︸

V

.

(1)

The first term on the left-hand side of equation 1 is the
advection term (A). The first term on the right-hand side of
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Figure 2. Contours of density and spanwise vorticity, nondimensionalized byρm andUm/h respectively, on (x−z) planes close to
the wall for the case Ma15. (a) Density aty+ ≈ 1; (b) Density aty+ ≈ 4; (c) Density aty+ ≈ 20; (d) Spanwise vorticity aty+ ≈ 1;
(e) Spanwise vorticity aty+ ≈ 4; (f) Spanwise vorticity aty+ ≈ 20. Threshold is taken as the mean value at the respectivey location
so that the blue colour represents the positive fluctuationswith respect to the mean and the gray colour negative.

equation 1 is the diffusion term (D). The second term (S) de-
notes the stretching of vorticity. The third term (G) represents
the contributions from the gradients of density. The fourth
term (d) is the dilatation term. The fifth term (B) is involved
with baroclinicity and density fluctuations. The sixth term(V)
denotes the influence of viscous effects. The distribution of
these terms is shown in figure 5.A andB are essentially zero
for all three cases.

For Ma02, shown in figure 5a, the two dominant terms
ared andV. One might wonder why the termd is dominant
as the local mean dilatation is almost negligible for Ma02.
The main reason is that the termd also includes the dilatation
related fluctuation terms which clearly must balanceV simply
because all other terms in equation 1 (D, S, andG) are found
to be nearly zero. The peaks in these curves occur at about

y+ ≈ 4. For Ma07, shown in figure 5b,d follows the trend
and magnitudes established at Ma02. However,V decreases
in magnitude at the expense of growth in other terms (D, S,
andG) in the transport equation. The interesting feature of
figure 5b is the viscous term. It displays the beginning of a
transition from a simple decay process fromy+ ≈ 4 toy+ ≈ 20
at Ma02 to one where the maximum is shifted farther away
from the wall with a concomitant inflexion aty+ ≈ 2. The
trends established at Ma07 are further enhanced in the case of
Ma15, shown in figure 5c. The maximum negative value for
the dilatation has moved slightly farther away form the wallto
y+ ≈ 6. The vortex stretching term,S now dominates and is
assisted by increased diffusion (D) and transportation through
density gradient (G).

The peak locations of the profiles ofD, SandG change
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Figure 3. Contours of temperature, nondimensionalized by
the wall temperatureTw, on (x−z) planes close to the wall for
the case Ma15. (a)y+ ≈ 1; (b) y+ ≈ 4; (c) y+ ≈ 20. Thresh-
old is taken as the mean value at the respectivey location so
that the blue colour represents the positive fluctuations with
respect to the mean and the gray colour negative.
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Figure 4. Mean spanwise component of the baroclinic vec-
tor (β z) nondimensionalized by the bulk velocity and half
channel width close to the wall in wall units.
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Figure 5. Balance ofρ ′ω ′
i : (a) Ma=0.2; (b) Ma=0.7;

(c) Ma=1.5. A denotes ∂ 〈ρ ′ω ′
i 〉〈u j 〉/∂x j ; D de-

notes −∂ (〈ρ ′ω ′
i u

′
j 〉 + 〈ρ ′

u
′
j 〉〈ωi〉)/∂x j ; T1 denotes

〈ρ ′
(ω j ∂ui/∂x j )

′〉; T2 denotes −〈ωiu j 〉∂ 〈ρ〉/∂x j ; T3
denotes−〈ρωi∂u j/∂x j 〉; B denotes 〈ρ ′β ′

i 〉; V denotes
〈ρ ′η ′

i 〉; wherei = 3 and j = 1,2,3.

little as Mach number increases. Conversely,V close to the
wall drops significantly when Mach number increases, due to
the combined effect of viscosity and shear. The value ofV on
the wall, however, remains almost constant with Mach num-
ber. Note that the wall temperature and its fluctuation remain
the same for all three cases, so do the viscosity and its fluctu-
ation on the wall. For all profiles with peaks/minimums, the
locations of these peaks/minimums are aroundy+ ≈ 5, which
in some sense suggests this active region around the edge of
viscous sublayer where the peaks of the correlation between
the density and the spanwise vorticity are located.

2.2 Pressure gradient and vorticity flux
For compressible flows, the momentum equation can be

written as (no assumption has been made about the spatial
variation of viscosity):

ρ
∂ui

∂ t
+ρu j

∂ui

∂x j
+

∂ p
∂xi

=−µεi jk
∂ωk

∂x j
+

4
3

µ
∂Θ
∂xi

+
τi j

µ
∂ µ
∂x j

+ρ fi ,

(2)
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whereΘ denotes the dilatationΘ = ∂u j/∂x j .
After some arrangements, the relation between pressure

gradient and vorticity flux on an isothermal wall is derived:

∂ p
∂x

=−µ
∂ωz

∂y
+

∂u
∂y

∂ µ
∂y

+
4
3

µ
∂Θ
∂x

+ρ fx , (3)

∂ p
∂y

=−µ
∂ωx

∂z
+µ

∂ωz

∂x
+

4
3

µ
∂Θ
∂y

+
4
3

Θ
∂ µ
∂y

, (4)

∂ p
∂z

= µ
∂ωx

∂y
+

∂w
∂y

∂ µ
∂y

+
4
3

µ
∂Θ
∂z

. (5)

Further refinement of equations 3, 4, 5 gives,

∂ p
∂x

=−∂ µωz

∂y
+

4
3

∂ µΘ
∂x

+ρ fx , (6)

∂ p
∂y

=−∂ µωx

∂z
+

∂ µωz

∂x
+

4
3

∂ µΘ
∂y

, (7)

∂ p
∂z

=
∂ µωx

∂y
+

4
3

∂ µΘ
∂z

. (8)

The cross-correlations between pressure gradients and
vorticity fluxes have not been investigated.R∂ p/∂xk:∂ µωi/∂x j

andR∂ p/∂xk:∂ ωi/∂x j
for three cases (Ma02, Ma07, and Ma15)

were generated to investigate the influence of Mach num-
ber, viscosity, and compressibility/dilatation. Of the 54cor-
relations considered inR∂ p/∂xk:∂ µωi/∂x j

andR∂ p/∂xk:∂ ωi/∂x j
,

only 6 were found to be significant. Additionally, cross-
correlationsRp:∂ ωi/∂x j

and R∂ p/∂xk:ωi
were also generated;

however, all these correlations were found to be very small
and thus are not be shown here. Therefore, only the highly
correlated terms withinR∂ p/∂xk:∂ µωi/∂x j

andR∂ p/∂xk:∂ ωi/∂x j

are discussed in the following sections.
The cross-correlation coefficients between streamwise

pressure gradient and spanwise vorticity flux in the wall-
normal directionR∂ p/∂x:∂ µωz/∂y andR∂ p/∂x:∂ ωz/∂y are shown
in figure 6. The absolute value of the correlation coeffi-
cients decreases as Mach number increases because of the
influence ofρ fx in which the density fluctuation increases
with increasing Mach number. The profile ofR∂ p/∂x:∂ µωz/∂y
for three cases scales well with Mach number in the re-
gion 0.5 < y+ < 5. The difference between two correla-
tions R∂ p/∂x:∂ µωz/∂y andR∂ p/∂x:∂ ωz/∂y on the wall is negli-
gible except for 0< y+ < 4, where there is a clear departure
of R∂ p/∂x:∂ ωz/∂y from its viscosity related correlation for the
case Ma15 and it is to this that attention is now turned.

The fluctuation of temperature is zero on the isothermal
wall and wall-normal gradient of the temperature fluctuation
on the wall is very small for the cases considered here. As
viscosity is a function of temperature only, both the fluctua-
tion of viscosity and its wall-normal gradient are negligible
on the wall, so that the direct influence of the viscosityµ on
the correlationR∂ p/∂x:∂ µωz/∂y is negligible on the wall for the
current cases. The difference will probably not be negligible
if Mach number is much higher than the current cases. Very
close to the wall, however, the fluctuations of temperature and
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Figure 6. Cross-correlation coefficients between streamwise
pressure gradient and spanwise vorticity fluxes in the wall-
normal direction including the influence of viscosity.
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Figure 7. Cross-correlation coefficients between spanwise
pressure gradient and streamwise vorticity fluxes in the wall-
normal direction including the influence of viscosity.

viscosity as well as their wall-normal gradients increase sig-
nificantly as Mach number increases from subsonic to super-
sonic, which is the main reason for the difference of the two
profiles very close to the wall for the case Ma15.

The cross-correlation coefficients between spanwise
pressure gradient and streamwise vorticity flux in the wall-
normal directionR∂ p/∂z:∂ µωx/∂y and R∂ p/∂z:∂ ωx/∂y are pre-
sented in figure 7. High positive correlation coefficients are
observed close to the wall. Unlike figure 6, the absolute val-
ues of correlation coefficients in figure 7 approach 1.0 as the
Mach number increases. The profile ofR∂ p/∂z:∂ µωx/∂y for
three cases does not scale with Mach number very close to
the wall. It seems that the term∂ µΘ/∂z, compared with
the terms∂ p/∂z and ∂ µωx/∂y in equation 8, becomes rel-
atively less important on the wall as Mach number increases.
The difference between the correlationsR∂ p/∂z:∂ µωx/∂y and
R∂ p/∂z:∂ ωx/∂y is almost negligible for the current cases; but
the trend suggests that the difference increases slightly with
increasing Mach number. Compared with the difference for
the caseMa = 1.5 observed in figure 6, the difference for
the Ma = 1.5 in figure 7 is negligible and this is because
∂w/∂y< ∂u/∂y very near the wall.

The cross-correlation coefficients between wall-normal
pressure gradient and streamwise vorticity flux in the span-
wise directionR∂ p/∂y:∂ µωx/∂z andR∂ p/∂z:∂ ωx/∂z are given in
figure 8. It is evident that there is little difference between
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Figure 8. Cross-correlation coefficients between wall-
normal pressure gradient and streamwise vorticity fluxes in
the spanwise direction including the influence of viscosity.

these correlations. This is obvious because the term∂ µωx/∂z
in equation 7 is equal to the termµ∂ωx/∂z in equation 4. The
correlation coefficients for all three cases are also high onthe
wall. The profile ofR∂ p/∂y:∂ µωx/∂z for three cases does not
collapse with Mach number very close to wall. However, it
is interesting to note that the highest correlation occurs for
the case Ma07 and the profile for the case Ma15 in the re-
gion around the edge of viscous sublayer is higher than the
other two cases, which could be due to the combined effects
of wall-normal gradients of viscosity, dilatation, and advec-
tion. The wall-normal pressure gradient correlation showsa
more complicated behaviour than the wall-tangential pressure
gradient correlations. In addition, the term∂ µωz/∂x in equa-
tion 7 is not well correlated with∂ p/∂y on the wall because
∂ µωz/∂x is much smaller than∂ µωx/∂z there. The driving
force in the streamwise direction leads to large streamwise
shear stress close to the wall, which causes streaks and vortex
lines close to the wall to be stretched in the streamwise direc-
tion. This streamwise stretching makes streamwise gradients
smaller than spanwise gradients.

It is also interesting to note from the above figures that
high correlations between pressure gradients and vorticity
fluxes only exist very close to the wall. The correlations are
almost negligible in the region removed from the viscous sub-
layer. As equation 2 suggests, the vorticity flux is also affected
by advection, besides viscosity and pressure gradients. The
advection is negligible very close to the wall and viscosityef-
fects dominate; however, advection begins to play a dominant
role away from the wall. Advection is an important reason
that the high correlation between pressure gradient and vortic-
ity flux decreases with distance from the wall. In other words,
when the vorticity is generated on the wall, the pressure gra-
dient plays an important role as advection very near the wall
is small. The vorticity is then diffused into the flow first due
to viscosity before being advected away.

3 Summary
The near-wall vorticity dynamics in turbulent compress-

ible flows are studied using DNS. DNS of three isothermal-
wall turbulent channel flows for Mach numberMa= 0.2, 0.7,
and 1.5 respectively are performed using DGM. The Reynolds
numbers of three cases are≈ 2800. A high cross-correlation

between density and spanwise vorticity occurs aty+ ≈ 4,
which is coincident with the peak mean spanwise baroclinic-
ity. The difference between the evolution of density and span-
wise vorticity very near the wall is discussed. The transport
equation for the mean product of density and vorticity fluc-
tuations〈ρ ′ω ′

i 〉 is presented. The connection between pres-
sure gradients and vorticity fluxes for compressible turbulent
flows with variable viscosity has been formulated and verified.
High correlations (0.7− 1.0) between pressure gradient and
vorticity flux are found very close to the wall (y+ < 5). The
correlation coefficients are significantly influenced byMa and
viscosity in this region.

Acknowledgments
The authors would like to thank Dr. George Karniadakis

& his CRUNCH group and Dr. Mike Kirby for providing the
original discontinuous Galerkin code and the related helpful
email discussions. The research was funded through grants
from NSERC Canada. Computing resources were provided
by HPCVL (www.hpcvl.org).

REFERENCES
Coleman, G. N., Kim, J. & Moser, R. D. 1995 A numerical

study of turbulent supersonic isothermal-wall channel flow.
J. Fluid Mech305, 159–183.

Gad-El-Hak, M. 1990 Control of low-speed airfoil aerody-
namics.AIAA Journal28 (9), 1537–1552.

Karniadakis, G.E. & Sherwin, S. 2005Spectral/hp Element
Methods for Computational Fluid Dynamics, 2nd edn. Ox-
ford Science Publications.

Koumoutsakos, P. 1999 vorticity flux control for a turbulent
channel flow.Phys. Fluids11 (2), 248–250.

Lee, C. & Kim, J. 2002 Control of viscous sublayer for drag
reduction.Phys. Fluids14 (7), 2523–2529.

Lighthill, M. J. 1963 Introduction. Boundary Layer Theory,
chapter II in Laminar Boundary Layers. Oxford University
Press.

Moser, R. D., Kim, J. & Mansour, N. N. 1999 Direct numer-
ical simulation of turbulent channel flow up toReτ ≈ 590.
Phys. Fluids11 (4), 943–945.

Wei, L. 2009 Direct numerical simulation of compressible and
incompressible wall bounded turbulent flows with pressure
gradients. PhD thesis, Queen’s University, Kingston, On-
tario, Canada.

Wei, L. & Pollard, A. 2011 Direct numerical sim-
ulation of compressible turbulent channel flows us-
ing the discontinuous Galerkin method.Comput. Fluids
DOI:10.1016/j.compfluid.2011.02.015.

Wu, J. Z. & Wu, J. M. 1998 Boundary vorticity dynamics
since Lighthill’s 1963 article: review and development.
Theoret. Comput. Fluid Dynamics10, 459–474.

Wu, J. Z., Wu, J. M. & Wu, C. J. 1988 A viscous compress-
ible flow theory on the interaction between moving bodies
and flow field in the (ω, ϑ ) framework.Fluid Dynamics
Research3, 203–208.

Wu, J. Z., Wu, X. H. & Wu, J. M. 1993 Streaming vortic-
ity flux from oscillating walls with finite amplitude.Phys.
Fluids A5, 1933–1938.

6


