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ABSTRACT

Neal-wall vorticity dynamics in turbulent compressible
channel flows are studied using direct numerical simulation
(DNS). The Mach numbers of the three DNS casedVbae=
0.2, 0.7, and 15 respectively. The Reynolds humbers of three
cases are 2800, based on the bulk velocity and the half chan-
nel width. The cross-correlation between density and span-
wise vorticity is high aty™ ~ 4, which is coincident with the
peak mean spanwise baroclinicity. The transport equaton f
the mean product of density and vorticity fluctuatidpsay)
is presented and the distributions of terms in thew,) trans-
port equation indicate that the minima and maxima of the pro-
files are located aroung®™ ~ 5. The relationship between
pressure gradients and vorticity fluxes for compressibie tu
bulent flows with variable viscosity has been analyzed quan-
titatively. Some correlations between pressure gradiedt a
vorticity flux are found high very near the wall. The correla-
tion are affected by Mach number and viscosity in this region

1 Introduction

Vorticity can be generated at a solid wall, and/or through
the cross product of density gradient and pressure gradient
which is referred to as baroclinic torque or baroclinicity.

flows.

The influence of pressure gradients and fluid properties
on vorticity flux has been considered by a number of re-
searchers, see Lighthill (1963), Wt al. (1988), Gad-El-Hak
(1990), Wuet al. (1993). Developments of boundary vortic-
ity dynamics theory were reviewed by Wu & Wu (1998). The
interaction between pressure gradients and vorticity flas w
employed in flow control (Koumoutsakos, 1999; Lee & Kim,
2002). The previous studies have considered the intergay b
tween pressure gradient and vorticity flux applied to incom-
pressible flow; the relationship between them has been con-
sidered neither for compressible flow as a function of distan
from a solid wall nor for the case when the viscosity is spa-
tially variable. The motivation for the current study is tthe
fore to explore the variation in the correlations of the ptee
gradients and vorticity flux in near wall turbulent flows as a
function of Mach number for a constant wall temperature, and
to study the interactions among pressure, density, anitvort
ity in compressible wall bounded turbulent flows.

2 Vorticity dynamics in turbulent compress-
ible channel flow
DNS of fully developed compressible turbulent flow be-

There are many quantities, such as pressure gradients, fluid tween two isothermal parallel plates at three different Mac

properties, Mach number, etc that can influence the evalutio
of vorticity. Previous studies on vorticity dynamics indéu
the linkage between pressure gradient and vorticity genera
tion on a solid wall in laminar and turbulent flows; however,
few studies exist for the pressure, density and vorticitgrin
actions, as well as quantitatively evaluating the linkage b
tween pressure gradient and vorticity generation as a func-
tion of Mach number and wall-normal distance. Clarifying
the interactions among pressure, density, vorticity arsir th
gradients is of great importance to understand the meahanis
of vorticity evolution in wall bounded compressible turent

numbers was carried out using a discontinuous Galerkin
method (Karniadakis & Sherwin, 2005). The Mach num-
bers of the cases considered wita = 0.2, Ma= 0.7, and
Ma = 1.5 respectively, referred to as Ma02, Ma07, and Mal5
hereafter. The Mach number is defineda = Un/+/YRTw,
whereUy, was the mean bulk velocity ang, the wall tem-
perature Tw = 29315K for all three cases). The Reynolds
number wass 2800 in all cases, based bl h (half chan-

nel width), the mean bulk densifgm, and the dynamic vis-
cosity at the wallyy,. The flow was assumed to be periodic
in the streamwise and spanwise directions. An analysis of



ever the density and spanwise vorticity behave differeatly
T T T T yt =~ 1 andy" ~ 20. The spanwise vorticity streaksyat ~ 1

‘}.-» Mac0.2 ] (figure 2d) look very similar with those at"™ ~ 4 (figure
AN FRQ';,:ngz;Ogg 2e), which is different in shape and size from those streaks

1 R, (Ma=1.5)

aty" ~ 20 (figure 2f). The spanwise vorticity is defined as
w, = —0u/dy+ dv/dx, where—du/dy is the dominant term
anddv/dx is negligible within the viscous sublaygr < 5.

The streaks of the spanwise vorticity should be similar as
those of the streamwise velocity in this viscosity-dominan
region. Away from the wall, the spanwise vorticity streaks

20 oo &0 100 become less coherent and organized with decreasing viscous
effects and increasing turbulence activity.

Figure 1. Cross-correlation coefficients between dengity ( Unlike the spanwise vorticity, the density streaks change
and spanwise vorticityeg.2) close to the bottom wall in wall considerably within the viscous sublayerf but the change be
units tweeny™ ~ 4 andy* =~ 20 is small, see figures 2a, 2b, and

2c. The main reason is that temperature has a significant
influence on density through the equation of state including
the influence of the isothermal wall. On the isothermal wall,
the temperature fluctuations are zero and density and peessu
are non-zero and are perfectly correlated. The influence of
temperature fluctuations on the density streaks is nedgigib
Away from the wall, temperature fluctuations increase inimag
nitude and play an increasingly important role on the dgnsit
fluctuations. Note that temperature streaks are coheresg cl
to the wall, as shown in figure 3. The streamwise coherence of
density streaks is increased frgm ~ 1 toy™ ~ 4. Although
density and spanwise vorticity develop differently witts-di
tance from the wall, they are well correlatedyat ~ 4, as
noted in figure 1.

The mean spanwise component of the baroclinic vector

Cross-correlations

the Kolmogorov microscale, one dimensional energy spec-
tra and correlations showed that the grid resolution was fine
enough to capture the smallest scales and the domain size was
large enough to include the largest eddies in the flow, see Wei
(2009). The current simulation results including mean pro-
files, second-order and higher-order statistics was cosgpar
with the incompressible DNS data of Mogaral. (1999) and
compressible DNS data of Colemat al. (1995), see Wei
(2009) and Wei & Pollard (2011) for details. Very good agree-
ment was found between the current simulations and the two
reference cases.

2.1 Interactions among pressure, density and ({Bs) or (B-2)), nondimensionalized byZ/h?, for three cases
vorticity is displayed in figure 4. Note that the profiles for the cases
The interaction between pressure, density, and vorticity Ma02 and Ma07 are almost identical. The locations of the
is explored using cross-correlations. The cross-coitel@p- peak values are the same as the correlation in figure 1, al-
efficient (between variable a and variable b) is defined as: though the magnitude of the peak for Ma15 is markedly higher
Rab = (@b)/(aa)%5(b'b)%5 where angle brackets f) de- than the others. The trend of the curves is similar and the in-
notes the mean value, averaged over timexana directions tersection between the profile for the case Mal5 and those for
and the apostroph@(denotes fluctuations with respect to the  the cases Ma02/Ma07 is located approximately‘at- 40 in
mean. both figures. The cross correlations betwe@s) and(p w;)

Pressure and density are perfectly correlated on the wall have shown that although the magnitudes of the correlation
since the temperature fluctuations are zero on the isotherma Coefficients are not high very close to the wall, peaks in the
wall. The correlation between pressure and every component Profiles are located at” ~ 3—4.
of the vorticity is found to be negligible; however, thereais To investigate why the peak values of the correlation oc-
significant correlation between density and spanwiseaityti cur aty” ~ 4 instead of on the wall or some other regions, the
close to the bottom wall for all three cases Ma02, Ma07 and transport equation fofo «) is derived. Through Reynolds
Ma1l5, see figure 1. It indicates that the maximum correla- 2averaging and some algebraic manipulation of the vorticity
tion occurs aroung™ = 4 for all cases (there is a very slight ~ €quation, itis
shift away from the wall with increasing Mach number). The
peak correlation coefficients are aroun@ @nd they increase

(mildly) with Mach number. In other words, compressible A D s
isothermal-wall channel flows share a common feature that ~—— T T ——
density and spanwise vorticity are highly correlategi'at- 4. olp @) uj) _ I(p wu)) +(p uj){w) +(0 () ﬂ)’)
To explore the spatial distribution of density and span- 9x; 9x; 2
wise vorticity aroundyt = 4, snapshots of density and span- a{p) au; . ’
wise vorticity contours ay™ = 1,4, 20 for the case Mal5 are _<muj>ij —(pa ij> +‘<p A >,+‘<p M) -
given in figure 2. In the figure, the blue and gray shades s Y B v

represent positive and negative fluctuations respectalatyt

a mean value. Ay" ~ 4, the density (figure 2b), and the
spanwise vorticity (figure 2e) share similar long regions of
streamwise streaks in both size and position, which further The first term on the left-hand side of equation 1 is the
confirms their high correlation around this location. How- advection termA). The first term on the right-hand side of
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Figure 2. Contours of density and spanwise vorticity, noredisionalized by, andUy,/h respectively, onX— Z) planes close to

the wall for the case Mal5. (a) Densityydt ~ 1; (b) Density ayt ~

4; (c) Density ay™ ~ 20; (d) Spanwise vorticity at™ ~ 1;

(e) Spanwise vorticity af™ ~ 4; (f) Spanwise vorticity ayt ~ 20. Threshold is taken as the mean value at the respgdtieation
so that the blue colour represents the positive fluctuatiotisrespect to the mean and the gray colour negative.

equation 1 is the diffusion ternbj. The second termyj de-
notes the stretching of vorticity. The third ter@)(represents
the contributions from the gradients of density. The fourth
term () is the dilatation term. The fifth ternBj is involved
with baroclinicity and density fluctuations. The sixth tefv)
denotes the influence of viscous effects. The distribution o
these terms is shown in figure B.andB are essentially zero
for all three cases.

For Ma02, shown in figure 5a, the two dominant terms
ared andV. One might wonder why the terghis dominant
as the local mean dilatation is almost negligible for Ma02.
The main reason is that the tedhalso includes the dilatation
related fluctuation terms which clearly must balaxicamply
because all other terms in equation, §, andG) are found
to be nearly zero. The peaks in these curves occur at about

3

yt ~ 4. For Ma07, shown in figure 5lmj follows the trend
and magnitudes established at Ma02. HoweVedecreases

in magnitude at the expense of growth in other terds$
andG) in the transport equation. The interesting feature of
figure 5b is the viscous term. It displays the beginning of a
transition from a simple decay process frgim~ 4 toy™ ~ 20

at Ma02 to one where the maximum is shifted farther away
from the wall with a concomitant inflexion at™ ~ 2. The
trends established at Ma07 are further enhanced in the €ase o
Mal5, shown in figure 5¢c. The maximum negative value for
the dilatation has moved slightly farther away form the wall

yt ~ 6. The vortex stretching terng now dominates and is
assisted by increased diffusio)(and transportation through
density gradient@).

The peak locations of the profiles Bf SandG change
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Figure 3. Contours of temperature, nondimensionalized by
the wall temperatur@,,, on (x— z) planes close to the wall for
the case Mal5. ()" ~1; (b)y" ~4; (c)y" ~ 20. Thresh-

old is taken as the mean value at the respegtil@ation so
that the blue colour represents the positive fluctuatiorth wi
respect to the mean and the gray colour negative.
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Figure 4. Mean spanwise component of the baroclinic vec-
tor (8-2) nondimensionalized by the bulk velocity and half

channel width close to the wall in wall units.
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Figure 5. Balance ofp'w: (a) Ma=0.2; (b) Ma=0.7;
(c) Ma=15. A denotes d(p &)(uj)/dxj;; D de-
notes —d((p'wu;) + (p'Uj)(@))/dx;; T1 denotes
(p'(wjdui/dxj)); T2 denotes —(wuj)d(p)/dxj; T3
denotes —(pwdu;j/dx;); B denotes (o'B); V denotes
(p'n;); wherei = 3andj = 1,2,3.

little as Mach number increases. Convers®lyglose to the
wall drops significantly when Mach number increases, due to
the combined effect of viscosity and shear. The valué oh

the wall, however, remains almost constant with Mach num-
ber. Note that the wall temperature and its fluctuation remai
the same for all three cases, so do the viscosity and its fluctu
ation on the wall. For all profiles with peaks/minimums, the
locations of these peaks/minimums are aroyhds 5, which

in some sense suggests this active region around the edge of
viscous sublayer where the peaks of the correlation between
the density and the spanwise vorticity are located.

2.2 Pressure gradient and vorticity flux

For compressible flows, the momentum equation can be
written as (no assumption has been made about the spatial
variation of viscosity):

ou o, 0w 0P dw 4 00 Tiou
P 5t +pujﬁxj ox Héii axj+3“axi+uax,- +pfi,

)



whereO denotes the dilatatio® = duj/dx;.
After some arrangements, the relation between pressure
gradient and vorticity flux on an isothermal wall is derived:

op  Ow,  dudu 4 90
x - Moy Tayay T3Fax TP O
op__ 9w Odw, 4 00 4. ou
ay - Moz THa Tk, 3% @
op _ o owou 4 00
gz Moy Tayay tataz ©
Further refinement of equations 3, 4, 5 gives,
op  Juw,  40uO
ox~ oy Taox PN ©
Jp _ dpwx  duw, 40u0 %
dy 0z ox 39y’
Jp _duax  40u0 ®)
oz~ dy 3 9z

The cross-correlations between pressure gradients and
vorticity fluxes have not been investigate®yp;ox, .o /ox;
andRyp/ax 00 /ox; fo_r threc_e cases (MaOZ, Ma07, and Mal5)
were generated to investigate the influence of Mach num-
ber, viscosity, and compressibility/dilatation. Of the &ar-
relations considered iR"P/‘WﬂHW‘?xJ‘ and R,;_p/,;xk:m/,;xj,
only 6 were found to be significant. Additionally, cross-
correlationsRy; 5, /ax; and R.gp/gxk:m were also generated;
however, all these correlations were found to be very small
and thus are not be shown here. Therefore, only the highly
corre!ated terms withirﬁegp/.,;xk:dum/.,;xj andRyp/ax:ow /0x;
are discussed in the following sections.

The cross-correlation coefficients between streamwise
pressure gradient and spanwise vorticity flux in the wall-
_normal directiorRyp/axapw,/ay aNARyp/ax.aw,/ay are shown _
in figure 6. The absolute value of the correlation coeffi-
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Figure 6. Cross-correlation coefficients between streaawi
pressure gradient and spanwise vorticity fluxes in the wall-
normal direction including the influence of viscosity.
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Figure 7. Cross-correlation coefficients between spanwise
pressure gradient and streamwise vorticity fluxes in thé-wal
normal direction including the influence of viscosity.

viscosity as well as their wall-normal gradients increage s
nificantly as Mach number increases from subsonic to super-
sonic, which is the main reason for the difference of the two
profiles very close to the wall for the case Ma15.

The cross-correlation coefficients between spanwise
pressure gradient and streamwise vorticity flux in the wall-

normal directionRsp/sz96/ay @Nd Rop/azac/ay are pre-

cients decreases as Mach number increases because of thesented in figure 7. High positive correlation coefficients ar

influence ofpfx in which the density fluctuation increases
with increasing Mach number. The profile B ox.ap0, /9y

for three cases scales well with Mach number in the re-
gion 05 < y* < 5. The difference between two correla-
tions Ry axapa,/oy @A Ryp/ax.a, oy ON the wall is negli-
gible except for O< y* < 4, where there is a clear departure
of Ryp/axaa,/ay from its viscosity related correlation for the
case Mal5 and it is to this that attention is now turned.

The fluctuation of temperature is zero on the isothermal
wall and wall-normal gradient of the temperature fluctuatio
on the wall is very small for the cases considered here. As
viscosity is a function of temperature only, both the fluetua
tion of viscosity and its wall-normal gradient are negligib
on the wall, so that the direct influence of the viscogitgn
the correlatiorRy ) gx.0,/ay IS Negligible on the wall for the
current cases. The difference will probably not be neglégib
if Mach number is much higher than the current cases. Very
close to the wall, however, the fluctuations of temperatack a

5

observed close to the wall. Unlike figure 6, the absolute val-
ues of correlation coefficients in figure 7 approach ds the
Mach number increases. The profile Rfp;5z.00,/ay fOr
three cases does not scale with Mach number very close to
the wall. It seems that the ter@u®/dz, compared with
the termsdp/dz and duwy/dy in equation 8, becomes rel-
atively less important on the wall as Mach number increases.
The differenc_e between the_ (_:orrelatidﬁ§p/5z:3uwx/ay and
Rop/azaw /oy 1S almost negligible for the current cases; but
the trend suggests that the difference increases slightty w
increasing Mach number. Compared with the difference for
the caseMa = 1.5 observed in figure 6, the difference for
the Ma = 1.5 in figure 7 is negligible and this is because
ow/dy < du/dy very near the wall.

The cross-correlation coefficients between wall-normal
pressure gradient and streamwise vorticity flux in the span-
wise directionRsp/ay:apc, /92 aNARap/9z0, /92 re given in
figure 8. It is evident that there is little difference betwee
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Figure 8. Cross-correlation coefficients between wall-
normal pressure gradient and streamwise vorticity fluxes in
the spanwise direction including the influence of viscosity

these correlations. This is obvious because the tueay /dz

in equation 7 is equal to the tergd wy/dzin equation 4. The
correlation coefficients for all three cases are also higthen
wall. The profile ofRjp;gy.0p,/02 fOr three cases does not
collapse with Mach number very close to wall. However, it
is interesting to note that the highest correlation occors f
the case Ma07 and the profile for the case Mal5 in the re-
gion around the edge of viscous sublayer is higher than the
other two cases, which could be due to the combined effects
of wall-normal gradients of viscosity, dilatation, and adv
tion. The wall-normal pressure gradient correlation shaws
more complicated behaviour than the wall-tangential pness
gradient correlations. In addition, the tefipw;/dx in equa-

tion 7 is not well correlated witl@ p/dy on the wall because
dUw;/0x is much smaller thad Lwy/dz there. The driving
force in the streamwise direction leads to large streamwise
shear stress close to the wall, which causes streaks arekvort
lines close to the wall to be stretched in the streamwisedire
tion. This streamwise stretching makes streamwise greglien
smaller than spanwise gradients.

It is also interesting to note from the above figures that
high correlations between pressure gradients and vagrticit
fluxes only exist very close to the wall. The correlations are
almost negligible in the region removed from the viscous sub
layer. As equation 2 suggests, the vorticity flux is alsociéd
by advection, besides viscosity and pressure gradients. Th
advection is negligible very close to the wall and viscosity
fects dominate; however, advection begins to play a donhinan
role away from the wall. Advection is an important reason
that the high correlation between pressure gradient artatvor
ity flux decreases with distance from the wall. In other words
when the vorticity is generated on the wall, the pressure gra
dient plays an important role as advection very near the wall
is small. The vorticity is then diffused into the flow first due
to viscosity before being advected away.

3  Summary

The near-wall vorticity dynamics in turbulent compress-
ible flows are studied using DNS. DNS of three isothermal-
wall turbulent channel flows for Mach numblgila = 0.2, 0.7,
and 15 respectively are performed using DGM. The Reynolds
numbers of three cases a2800. A high cross-correlation

between density and spanwise vorticity occursyat~ 4,
which is coincident with the peak mean spanwise baroclinic-
ity. The difference between the evolution of density andchspa
wise vorticity very near the wall is discussed. The transpor
equation for the mean product of density and vorticity fluc-
tuations(p'a{} is presented. The connection between pres-
sure gradients and vorticity fluxes for compressible tuehtl
flows with variable viscosity has been formulated and vetifie
High correlations (of — 1.0) between pressure gradient and
vorticity flux are found very close to the way{ < 5). The
correlation coefficients are significantly influenced\g and
viscosity in this region.
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