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ABSTRACT
Optimal control was successively implemented using

Large Eddy Simulations, as a reduced-order model. The ap-
plication of optimal control is targeting the drag reduction
on the channel upper and lower walls. Three different cost
functionals (drag, terminal turbulent kinetic energy, mean tur-
bulent kinetic energy) have been tested and the strategy was
applied to flows going fromReτ = 100 toReτ = 360. Wall
transpiration (unsteady blowing/suction) with zero net mass
flux is used as a control. AtReτ = 100, control managed to
fully relaminarize the flow (drag reduction of about 57%) by
considering as cost functional the terminal kinetic energy. For
this same cost functional, an important drag reduction of about
50% is still obtained atReτ = 180 but without reaching the
relaminarization. Our results show that to minimize the flow
drag, it is more efficient to consider the kinetic energy as cost
functional than directly the drag. Lastly, it is essential for the
convergence of the minimization that the optimality systemis
solved on a sufficiently long time horizon.

INTRODUCTION
Optimizing internal and external aerodynamics of an air-

craft with flow control has always been considered as a major
issue in the development of aeronautics. Indeed, since much
of the energy expended during a flight is invested to over-
come the drag force exerted by the air on the aircraft body
(wings, fuselages, drifts), reducing this force using flow con-
trol would increase the flight autonomy, or even reduce the
takeoff weight, which would reduce consequently the oper-
ational costs. From a general prospect, flow control can al-
ways be viewed as an optimization process for which an ap-
propriate cost functional is minimized under the constraints of
the flow state equations, generally considered as the Navier-
Stokes equations. In this context, optimal control theory
(Gunzburger, 1997) seems well adapted to the resolution of

this type of problems. The optimal control parameters are then
searched as the solution of the so-called optimality system
(coupled system of partial differential equations formed by the
state equations, adjoint equations and optimality conditions),
associated to the constrained optimization problem. For a
three-dimensional turbulent flow, the computational costsfor
solving the optimality system are so high that an iterative pro-
cedure must be used. These difficulties can be partly over-
came by replacing in some phases of the optimization pro-
cess, the high-fidelity model of the flow obtained tradition-
ally by Direct Numerical Simulation (DNS) by an appropriate
approximate model which can represent the essential charac-
teristics of the flow dynamics. In this paper we have imple-
mented optimal control of a turbulent channel flow (see Fig.
1) using Large Eddy Simulations (LES) as an approximate
model. Compared to DNS, the computational costs are greatly
reduced, allowing the application of optimal control scheme
to flows at higher Reynolds numbers. However, the reduction
of cost offered by LES is not sufficient to optimize a three-
dimensional turbulent flow over a large time horizonTo. In
practice, we have used thereceding-horizon predictive con-
trol (El Shrif, 2008). This method consists of dividing the op-
timization time horizonTo into short sub-intervals of lengthT
and to solve the optimal control problem in each time window
using as initial conditions the control obtained in the previous
time window. The procedure is repeated until the end of the
total time horizon considered. However, until now, there is
no evidence that the optimal control obtained using this algo-
rithm corresponds to that which would have been obtained if
one had applied the iterative procedure directly over the full
time horizonTo.

In this paper we begin by describing the numerical meth-
ods used to solve the LES model and continue with results
obtained for the case of the uncontrolled flow. Then we pro-
ceed by describing the application of optimal control theory
to reduce the drag force on the upper and lower walls of the
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turbulent channel flow. Results of optimal control for flows at
different Reynolds numbers and a detailed analysis for the re-
sulting controlled flow dynamics are then presented. Finally,
we give some concluding remarks and suggestions for future
development.
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Figure 1. Computational domain and system of coordinates.

NUMERICAL METHODS
In this study, a Smagorinsky model with a dynamic pro-

cedure suggested by Lilly (1992) is used for the LES model.
The coordinates and flow variables are normalized by the
channel half widthδ , the kinematic viscosityν, and the fric-
tion velocity uτ = (τw/ρ)1/2, whereτw is the averaged wall
shear stress andρ is the density. All results for controlled
and uncontrolled flow are presented in viscous units, with
t+ = tu2

τ/ν, y+ = yuτ/ν andu+ = u/uτ . The flow is assumed
periodic in the streamwiseex and spanwiseez directions. The
computational grid is uniform in these two homogenous di-
rections and stretched using tangent hyperbolic function in the
wall-normal direction. The dimensionless filtered momentum
equations (see equation 2) are solved with classical numerical
methods (El Shrif, 2008). Finally, all simulations are carried
out with a constant mass flow.

LES VERSUS DNS FOR UNCONTROLLED
FLOW

In the case of uncontrolled channel flow atReτ = 180,
the LES code is first validated by comparing for two different
grid resolutions, the resulting statistics with those obtained in
the reference DNS of Moseret al. (1999) (thereafter noted as
MKM 99). Table 1 gives all the parameters involved in our
simulations with the corresponding Reynolds number. The
channel lengths are indicated asLx, Ly andLz, the correspond-
ing grid points are given asNx, Ny and Nz, and finally the
resolutions are given in wall units as∆+

x , ∆+
yw

and ∆+
z . The

size of the computational domain in the streamwise and span-
wise directions were adjusted so that the velocity fluctuations
are uncorrelated before the channel center was reached. For
clarity issues, the table gives also the corresponding Reynolds
numbers based on the mean bulk velocityReb and that based
on the center line velocityRec. The mean velocity profiles
of our DNS (S1) and LES (S2) simulations are compared in
Fig. 2(a) against the corresponding profile obtained in MKM
99. The resulting LES mean velocity profile is in good agree-
ment with the DNS in the near wall region, and also in the
buffer zone. However, some discrepancies appeared in the

logarithmic region forS1. In addition, the root mean squares
(rms) of velocity fluctuations in the streamwise, wall-normal
and spanwise directions are compared with those of MKM 99
in Figs. 2(b), 2(c) and 2(d) respectively. The streamwise com-
ponent is slightly over-estimated, while spanwise and normal
components are slightly under-predicted. As for the mean ve-
locity profile,S2 outperformsS1 to predict the variations of the
rms profiles with a reasonable numerical costs. The resulting
accuracy of these first and second order statistics demonstrates
that S2 can be used as a successful candidate to produce tur-
bulent flow dynamics close to that obtained by DNS.

OPTIMAL CONTROL USING LES
The basic idea of the optimal control approach (Gun-

zburger, 1997; El Shrif, 2008) is to minimize a cost functional,
which represents the physical quantity to be optimized. So
as to make the control interesting from an economic point of
view, the energy spent to implement it must be an order of
magnitude less than that gained from its application. Basedon
this general principle, one can determine the controlΦ to be
applied on the upper and lower walls of the turbulent channel
flow by defining a cost functional based on the physical quan-
tity of interest and the energetic representation of the control
itself. Since the turbulent kinetic energy (TKE) is responsi-
ble for increasing the momentum transport from the center of
the channel to the near-wall region, the kinetic energy can be
viewed as the cause of turbulence and the drag as the effect. It
is then reasonable for the cost functional to target directly the
cause (TKE) rather than the effect (drag). A cost functional
targeting the minimization of the total kinetic energy or/and
the kinetic energy at the end of a time window of lengthTo

or/and the drag can be written as:

J (u,Φ) =
`

2

∫ t0+To

t0

∫

Γ±
2

Φ2 dxdt

+
`reg

2

∫ t0+To

t0

∫

Ω
| u(Φ) |2 dxdt

+
`ter

2

∫

Ω
[ui (Φ)ui (Φ)]t=t0+To

dx

+ `drag

∫ t0+To

t0

∫

Γ±
2

(−τ12n2) dxdt.

(1)

The quantities with overbars correspond to filtered LES vari-
ables. The first term is a measure of the magnitude of the
control. This quantity is integrated over the wall sectionsΓ±

2
and time horizonTo under consideration.̀ is a regularization
parameter which represents the price of the control. This pa-
rameter must be taken small if the control is considered to be
cheap and large for expensive control settings. The second
term represents the time-averaged value of the turbulent ki-
netic energy, while the third term targets the terminal value of
the kinetic energyi.e. the value at the end of each optimiza-
tion horizon. Finally, the last term is a measure of the drag.
Using optimal control theory, this problem can be cast as an
optimization process where the cost functional (1) can be min-
imized under the constraint of the state equations represented

2



Table 1. Simulation parameters for the uncontrolled flow.

Reτ Reb Rec Lx Ly Lz Nx Ny Nz ∆+
x ∆+

yw
∆+

z ∆t+

S1(DNS) 180 5610.7 3278 4π 2 4
3π 192 129 160 11.8 0.12 4.7 0.09

S2(LES) 180 5549.0 3189.4 4π 2 4
3π 64 73 96 35.3 0.22 7.85 0.36

MKM 99(DNS) 180 – 3300 4π 2 4
3π 128 129 128 17.5 0.05 5.8 −

10-1 100 101 1020.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

U
+

y+

MKM 99
Linear law
Logarithmic law
S1
S2

(a)

0 25 50 75 100 125 150 175
0.0

0.5

1.0

1.5

2.0

2.5

3.0

√

u′
2

y+

MKM 99
S1
S2

(b)

0 25 50 75 100 125 150 175
0.0

0.2

0.4

0.6

0.8

1.0

√

v′
2

y+

MKM 99
S1

S2

(c)

0 25 50 75 100 125 150 175
0.0

0.2

0.4

0.6

0.8

1.0

1.2

√

w
′2

y+

MKM 99
S1
S2

(d)

Figure 2. Comparisons of the first and second order statistics obtained by LES atReτ = 180 to the DNS results of Moseret al.
(1999). (a) Mean velocity profile. (b), (c) and (d) Profiles ofrms velocity fluctuations in streamwise, wall-normal and spanwise
directions.

by the LES momentum equationsi.e.

Li(u,P) =
∂ui

∂ t
+

∂
∂x j

(

ui u j
)

−2
∂

∂x j

(

νSi j
)

+
∂P
∂xi

= 0, (2)

whereSi j = 1
2( ∂ ui

∂ x j
+

∂ u j

∂ xi
) represents the strain-rate tensor of

the filtered velocity field. These state equations are subjected
to suitable initial and boundary conditions. In particular, the

control Φ, which corresponds to suction and blowing on the
walls, intervenes via the boundary conditionu2|Γ±

2
= −Φn2

wheren2 is the outward unit vector. Here,ν is the nondimen-
sional total viscosity, defined asν = 1/Reτ +C∆2

|S| whereC
is the Smagorinsky dynamic constant,∆ is the grid-filter width

and|S| =
(

2Si jSi j
)1/2

. After introduction of the adjoint vari-
ablesu∗i and P∗, the Lagrange multipliers technique can be
used to transform the original constrained optimization prob-
lem to an unconstrained optimization problem. The variation
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of the cost functional (1) with respect to the state variables
gives the adjoint equations which are found to be (El Shrif,
2008):

L ∗
i (u∗,P∗

) = −
∂ u∗i
∂ t

−2u j S
∗
i j +

∂ P∗

∂ xi
− 2ν

∂S
∗
i j

∂ x j

−
∂

∂ x j

(

4C ∆2

| S |
Skl S

∗
kl Si j

)

−
∂ Ei j

∂ x j
−Bi − `regui = 0.

(3)

These equations are subjected to the following boundary and
terminal conditions:

u∗i |Γ2±
= 0 i = 1,2,3 (BC) and

u∗i (t0 +To) = `terui(t0 +To) i = 1,2,3. (TC)

The expressions of the tensorsEi j andBi are very complex.
They are given as a function of the resolved states and adjoint
fields (El Shrif, 2008). These terms arise from the variationof
the dynamic model constantC with respect to the state vari-
ables. Finally, the variation of (1) with respect to the control
variables provides the optimality conditions given by:

D J

D Φ
= `Φ+E22−P∗

. (4)

Equations (2), (3) and (4) form what is called the optimality
system. This system of coupled partial differential equations
can be solved iteratively in order to find the instantaneous con-
trol parametersΦ that minimize (1) and consequently reduce
the drag force on the channel walls. The control is updated
using a conjugate gradient algorithm. The receding-horizon
predictive control has been used for the resolution of the opti-
mality system with sub-intervals of lengthT+ going from 1.5
to 80.

OPTIMAL CONTROL RESULTS
In this section, we present results of optimal control ob-

tained using three different values of Reynolds number. We
have started withReτ = 100 which is small enough to al-
low the realization of numerous control simulations at a rea-
sonable numerical cost. A detailed analysis of the effect of
some parameters involved in the optimization process has
been achieved at this Reynolds number. The influence of the
choice of the cost functional as well as the length of the opti-
mization time windows have been discussed based on the re-
sults obtained. The two other values of Reynolds number that
were considered, 180 and 360, correspond to super-critical
turbulent flow regimes. These values were used to study the
effect of an increase of the Reynolds number on the control.
The parameters used to perform the optimal control simula-
tions for the three Reynolds numbers considered are given in
Table 2.

Influence of the choice of the cost functional
The performance of the optimal control in terms of drag

reduction is very sensitive to the choice of the cost func-
tional. Figure 3 represents the temporal evolution of the to-
tal mean dragD from controlled simulations performed at
Reτ = 100 for three different types of cost functional. These
results clearly show that the optimization problem depends
strongly on the choice of the cost functional. In terms of drag
reduction, the most effective form of the cost functional cor-
responds to the terminal kinetic energy, where the drag is re-
duced by about 57% and the flow is fully laminarized. For
the two other cost functionals, drag reductions were lower.In-
deed, we obtain about 37% of drag reduction for the cost func-
tional based on the total kinetic energy and 25% for the cost
functional that directly targets the drag on the upper and lower
walls. This behavior can be explained in two ways, firstly it
seems related to the physics of turbulence where the turbulent
kinetic energy can be considered as the ”cause” of turbulence
and the drag as the ”effect”. In this sense, minimizing the tur-
bulent kinetic energy has a direct effect on the drag reduction.
Thus optimal control formulation based on the minimization
of the turbulent kinetic energy, and more particularly the ter-
minal kinetic energy, is more effective in reducing the drag
than if a cost functional targeting directly the drag force was
considered. In Fig. 4, we observe that the control cost cor-
responding to the minimizations ofJTKE(reg) andJdrag is
equal to zero at the end of each optimization window. This be-
havior is due to the terminal condition of the adjoint equation
which is zero in both cases. As a consequence, when the min-
imization of the terminal kinetic energy is the objective, the
control acts uniformly throughout the optimization window.
This is the second point that can explain why the formulation
based on the terminal kinetic energy is more effective in terms
of drag reduction. Figure 5 represents the temporal evolution
of total kinetic energy for the different cost functional consid-
ered. The change in kinetic energy clearly reflects the sub-
critical behavior of the channel flow atReτ = 100. Indeed, we
find that if the control succeeds in reducing the kinetic energy
below a given critical value then the flow is relaminarized. On
the contrary, if this critical value is not reached as this isthe
case with formulations based on the kinetic energy and on the
drag, there is a saturation or an increase in the kinetic energy.
At T+ = 25.5, the critical value is reached beyondt+ ' 800
(Figs. 3 and 5). For larger values of the optimization time
window T+, this phenomenon happens earlier.

Influence of the length of the optimization time
window

In the previous section, we showed that the most effec-
tive choice of cost functional in terms of drag reduction is the
terminal kinetic energy formulation based on the minimiza-
tion of JTKE(ter). Here, we consider this cost functional
and examine the influence of the length of the optimization
time window on the convergence of the optimization proce-
dure. Figures 6 and 7 represent, for different values of the
optimization time windowT+ ranging from 1.5 to 80, the
temporal evolution of the averaged total drag and of the to-
tal kinetic energy, respectively. These figures show that for
T+ ≥ 25.5, the flow is laminarized: the drag tends towards the
laminar value beyondt+ ' 2000 and the total kinetic energy
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Figure 3. Drag history of optimal controlled flows at
Reτ = 100. Three different kinds of cost functional are con-
sidered forT+ = 25.5.
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Figure 4. Control cost history of optimal controlled flows
at Reτ = 100. Three different kinds of cost functional are
considered forT+ = 25.5.
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cost functional are considered forT+ = 25.5.
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Figure 6. Drag history of optimal controlled flows at
Reτ = 100 for the minimization ofJTKE(ter). Different
optimization time windowsT+ are considered.
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Table 2. Parameters used for the different optimal control simulations.

Reτ Rec Reb Lx Ly Lz Nx Ny Nz ∆x+ ∆y+
w ∆z+ ∆t+

100 1817 3030.3 4π 2 4
3π 48 49 48 26.2 0.19 8.7 0.3

180 3214.1 5600.2 4π 2 4
3π 64 65 64 35.3 0.25 11.7 0.36

360 6834.2 12115.9 2π 2 3
4π 64 97 64 35.3 0.326 13.25 0.72

decreases sharply, tending to zero as the optimization time
proceeds. We can see also on these figures that, as the length
of the optimization time window increases, the drag and the
total kinetic energy reduce rapidly. In Fig. 7, an abrupt in-
crease of the total kinetic energy is observed beyondt+ ' 700
for T+ ≤ 10.5. This increase clearly indicates the difference
in behavior at long times between the simulations carried out
for T+ ≥ 25.5 (laminarization) and forT+ < 25.5 (saturation
of the kinetic energy). A probable explanation is that, at this
time, occurs in the production cycle of turbulence an event of
intense turbulent activity accompanied by a sudden increase
in kinetic energy inside the flow. When the length of the op-
timization time window is large enough, the turbulent events
that generate these sudden increases of the kinetic energy can
be captured by the optimization process and thus be taken into
account in the gradient of the cost functional. Fort+ ' 700,
two antagonistic mechanisms opposed. On the one hand, there
is a sudden increase in kinetic energy and, on the other hand,
more drag reduction occurs. The final behavior of the system
is directly related to the physical mechanism that is able to
impose upon the other.

Effect of increasing the Reynolds number
The drag histories obtained by optimal control at three

values of Reynolds number ranging from 100 to 360 are com-
pared in Fig. 8. The amount of drag reduction is of about
50% in the case ofReτ = 180 and of about 45% atReτ = 360,
which is less than the drag reduction resulting from control
simulations atReτ = 100 (57%). This decrease of drag reduc-
tion with the increase of the Reynolds number was already
observed in the opposition control procedure (El Shrif, 2008).
Since turbulent events at high Reynolds number are very vio-
lent and very fast, they are hardly captured in the gradient of
the cost functional. This loss of information gives incorrect
gradient and contributes to an ill evaluation of control param-
eters, so the computed control does not match the real dynam-
ics of the involving turbulent events.

CONCLUSION
In this work, we have used Large Eddy Simulations as

a reduced-order model permitting the implementation of op-
timal control procedures to reduce the drag in a fully devel-
oped turbulent channel flow. Control laws were imposed as an
unsteady blowing/suction on the channel walls for turbulent
flows going fromReτ = 100 toReτ = 360. Using LES as an
approximate model led to a significant reduction in the com-
putational costs (CPU and memory). AtReτ = 180, we have
then solved the optimality system using optimization windows

much larger than that enabled by the DNS (Bewleyet al.,
2001). Moreover, it gave us the opportunity to perform op-
timal control at higher Reynolds number concluding that, at
Reτ = 360, about 45% of drag reduction was still achieved.
Our results confirm that it is more efficient to target the source
of turbulence (kinetic energy) rather than its effects (drag on
the walls). Indeed, we obtain that the reduction of drag is
more important when the cost functional is based on the ter-
minal kinetic energy rather than on drag. Note also that in
our simulations of optimal control, the minimum drag that we
have obtained corresponds exactly to the value in the laminar
regime. This result seems to confirm the conjecture hypothe-
sis advanced by Bewley & Aamo (2004) who claims that the
minimal drag that can be achieved by a control procedure ap-
plied to a turbulent channel flow using a blowing/suction cor-
responds to that of the laminar flow. Unlike the case of sub-
critical turbulent flow (Reτ = 100), the optimal control proce-
dure did not allow relaminarization of the flow atReτ = 180
andReτ = 360. Finally, a future prospect of this work is to
use reduced-order models based on Proper Orthogonal De-
composition (POD). Indeed, it was recently demonstrated in
Bergmann & Cordier (2008) that it was possible to use a POD
model for minimizing the drag coefficient of a cylinder wake.
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