
1 
 

FLOW INSTABILITY IN BAFFLED CHANNEL FLOW 
 
 
 

Changwoo Kang and Kyung-Soo Yang 
Department of Mechanical Engineering 

Inha University 
Incheon 402-751, Republic of Korea 

(TEL) 82 32 860 7322 
(FAX) 82 32 868 1716 

ksyang@inha.ac.kr 
 
 

ABSTRACT 
Flow instability in baffled channel flow, where thin baffles 

are mounted on both channel walls periodically in the 
direction of the main flow, has been numerically investigated 
in a laminar range. The geometry considered here can be 
regarded as a simple model for finned heat exchangers. The 
aim of this investigation is to understand how baffle interval 
(L) and Reynolds number (Re) influence the flow instability. 
With a fixed baffle length of one quarter of channel height (H), 
ratios of baffle interval to channel height (RB=L/H) between 1 
and 4 are considered. The critical Reynolds number of the 
primary instability, a Hopf bifurcation from steady to a time-
periodic flow, turned out to be minimal when RB=3. For the 
particular case of RB=1.456, we performed Floquet stability 
analysis in order to study the secondary instability through 
which a time-periodic two-dimensional flow bifurcates into a 
three-dimensional flow. The results obtained in this 
investigation are in good agreement with those computed from 
full simulations, and shed light on understanding and 
controlling flow characteristics in a finned heat exchanger, 
being quite beneficial to its design. 

 
 

INTRODUCTION 
Laminar-turbulent transition is often caused by flow 

instability, and regarded as an essential process towards fully 
turbulent flow. In many engineering applications, suppressing 
or triggering transition is widely used depending upon the 
desired type of flow, laminar or turbulent, required by the 
particular application. Therefore, understanding the process of 
laminar-turbulent transition is very important in flow control, 
and must be preceded by a study of flow instability associated 
with the particular geometry. 

Flows in heat exchangers or turbulence enhancers are 
often characterized by finned channel flows. The thin plates 
mounted on channel walls (“baffles”) play an important role in 
enhancing the heat transfer not only by enlarging the fluid 
contact area but also by destabilizing the flow field. The flow 
instability caused by the baffles triggers laminar-turbulent 
transition. Consequentially, mixing is greatly increased in the 
disturbed flow field, resulting in more effective heat transfer 
(Howes et al., 1991; Cheng and Huang, 1991). 

Flow instability in a general two-dimensional (2D) flow 
has been well explained by a bifurcation theory (Roberts, 
1994; Yang, 2000; Battaglia et al., 1997). Two different types 
of bifurcation are often observed in a 2D channel flow. One is 
Fold bifurcation where a steady solution bifurcates into 
another steady one, and the other is Hopf bifurcation where a 
steady solution bifurcates into a time-periodic solution 
(Roberts, 1994). In the case of baffled channel flow in which 
baffles are mounted on the channel walls symmetrically in the 
vertical direction and periodically in the streamwise direction, 
extensive studies were carried out both experimentally 
(Roberts, 1994) and numerically (Yang, 2000), and reported 
the characteristics of Hopf bifurcation associated with the flow 
configuration.  

In this investigation, a parametric study is carried out in 
order to elucidate the effect of baffle interval on flow 
instability in baffled channel flow. The baffle length is fixed 
as H/4 as in the previous studies (Roberts, 1994; Yang, 2000). 
Firstly, we compute the critical Reynolds number for Hopf 
bifurcation for each value of L under consideration, searching 
for the most unstable baffled channel flow. Secondly, for the 
case of RB=1.456, we perform Floquet stability analysis in 
order to elucidate the secondary instability associated with that 
particular flow configuration.  

The geometric configuration of the baffled-channel is 
depicted in Fig. 1. The flow configuration considered here can 
be regarded as a model for finned heat exchangers, and the 
results obtained in the current parametric studies provide 
useful information for designing such devices. 

 
 

FORMULATION AND NUMERICAL METHODS 
The current investigation requires a parametric study 

where numerous numerical simulations must be performed 
with various values of baffle interval (L) and Reynolds 
number (Re). This kind of parametric study demands 
considerable amount of computing resources; the computing 
efforts can be significantly reduced by employing an 
immersed boundary method which facilitates implementing 
the baffles on a Cartesian grid system (Yang and Balaras, 
2006). See Fig. 2. 
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The governing equations for two-dimensional 
incompressible flow, modified for the immersed boundary 
method, are as follows; 

 
 0u =×Ñ  (1) 
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1(uu)u 2 +Ñ+Ñ-×-Ñ=

¶
¶ p

t
 (2) 

 
where u (or u, v), p and f represent velocity vector, pressure 
and momentum forcing, respectively. All the physical 
variables except p are nondimensionalized by the mean bulk 
velocity (Um) and channel height (H). Pressure is 
nondimensionalized by a reference pressure ( refP ) and the 
dynamic pressure. Reynolds number (Re) is defined as 

n/HU m , where n  is kinematic viscosity. The governing 
equations were discretized using a finite-volume method in a 
nonuniform staggered Cartesian grid system. A second-order 
central differencing was employed for spatial discretization of 
derivatives. A hybrid scheme is used for time advancement; 
nonlinear terms are explicitly advanced by a third-order 
Runge-Kutta scheme, and the other terms are implicitly 
advanced by the Crank-Nicolson method. A fractional step 
method was employed to decouple the continuity and 
momentum equations (Kim and Moin, 1985). The Poisson 
equation resulted from the second stage of the fractional step 
method was solved by a multigrid method. For detailed 
description of the numerical method used in the current 
investigation, See Yang and Ferziger (1993). 

 
CHOICE OF PARAMETERS AND BOUNDARY 
CONDITIONS 

No-slip condition is employed at all solid boundaries 
including the “thin” baffles of zero thickness, and the flow is 
assumed to be periodic in the streamwise direction (x). 
Therefore, we actually consider an infinitely long channel 
with the baffles mounted periodically in x (Fig. 1), even 
though the actual computational domain contains only one 
period in x. Simulation of unsteady streamwise-periodic flow 
in a channel can be classified into one of the following two 
cases. In one case, mass flux is fixed in time, but pressure 
difference between the inlet and outlet of the channel ( pD ) 
fluctuates. In the other case, mass flux fluctuates while pD  is 
fixed in time. We adopted the former approach by following 
You et al. (2000).  

The numerical resolution increases up to 256256 ´  (RB 

≥3) computing cells in x and y directions, respectively, as Re 
increases. Further refinement shows less than 0.23% of 
difference in the growth rate of the primary instability. 

 
 

RESULTS AND DISCUSSION 
 

Onset of the Primary Instability 
Streamlines of the steady symmetric solution at Re=60 and 
Re=80 with RB =1.456 are shown in Fig. 3. The flow does not 
undergo any instability at these Reynolds numbers. At a lower 
Re (Fig. 3(a)), two recirculation regions are identified between 
the baffles; they are merged into one at a higher Re (Fig. 3(b)). 
Above a certain critical value of Reynolds number (Rec), 
however, the flow undergoes a Hopf bifurcation leading to a 
solution periodic in time (Roberts, 1994). As a quantitative 
measure of the instability which causes the bifurcation, Vcl is 
defined as follows; 

 

 
(a) Re=60 

 

 
(b) Re=80 

 
Figure 3. Streamlines of steady flow for RB=1.456. 

 
 

x

y

0 0.2 0.4 0.6 0.8 1 1.2 1.40

0.2

0.4

0.6

0.8

1

 
 

Figure 2. Grid system. 
 
 

 
 

Figure 1. Flow configuration. 
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In the case of a steady solution such as in Fig. 3, the flow is 
symmetric in y, and obviously Vcl must be zero. If an 
instability occurs, however, the symmetry breaks up and Vcl 
grows in time. Physically, this means that the absolute flow 
rate through the center line increases. Therefore, Vcl can serve 
as a measure of the instability (Roberts, 1994). 

Figure 4 presents the time history of Vcl and Re for  
RB=1.456. The Reynolds number seems to be almost constant 
at Re=130 as intended. In the initial stage of simulation which 
started from low-amplitude random noise, instability does not 
occur. Approximately at t=13, however, a Hopf bifurcation is 
triggered, and Vcl grows exponentially afterwards, yielding the 
growth rate (s ) of the most unstable mode as the slope of the 
linear portion of the curve. Finally, nonlinearity sets in 
approximately at t=95, and Vcl periodically oscillates. The 
growth rates computed for various Re values are presented in 
Fig. 5; negative growth rates are obtained from the 
exponentially decaying Vcl curves. It is seen that the critical 
Reynolds number (Rec) is about 104 for RB=1.456, being in 
good agreement with the previous studies (Roberts, 1994; 
Yang, 2000). Figure 6 shows instantaneous streamlines at 
equal time interval for one period of flow oscillation at 
Re=130 with RB=1.456. Vortices are generated just behind of 
each baffle, and travel further downstream along the channel 
wall to reach the next baffle. The main stream periodically 

moves towards the upper and lower walls in an alternating 
manner; the counter-rotating vortices are also shed from the 
tips of the upper and lower baffles, respectively, in an 
alternating way.  

 
 

Onset of the Secondary Instability 
 
Floquet Stability Analysis The onset of the secondary 

instability leading to a 3D flow can be detected by a Floquet 
stability analysis in which an instantaneous velocity field of 
the baffled channel flow is decomposed into a 2D base flow 
with a period T (U(x,y,t)=U(x,y,t+T)) and a 3D perturbation 
velocity ( u'  (x,y,z,t)) as follows, 

 
 ),,,(),,(),,,( tzyxtyxtzyx u'Uu +=  (4) 
 

Substituting Eq. (4) into the Navier-Stokes and continuity 
equations, and then linearizing them, one can obtain the 
following governing equations for the perturbation velocity 
field, 

 
 0u'=×Ñ  (5) 
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Here, the additional terms for the immersed boundary method 
are also included. No-slip condition is employed at all solid 
boundaries including the “thin” baffles of zero thickness 
( 0u'= ), and the perturbation velocity is assumed to be 
periodic in the streamwise direction (x) with a period of L. 
Since velocity and pressure fluctuations are assumed to be 

Re

s

50 100 150 200 250 300 350 400-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Present
Roberts

Rec»104

 
 

Figure 5. Instability growth rate vs. Re for RB=1.456. 
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Figure 4. Vcl vs. time for RB=1.456. 

   
(a) t=0T                                  (d) t=3/5T 

   
(b) t=1/5T                           (e) t=4/5T 

 

   
(c) t=2/5T                           (f) t=5/5T 

 
Figure 6. Streamlines of unsteady flow during one period 

for RB=1.456 and Re=130. 
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homogeneous in the spanwise direction, they can be expressed 
by an inverse Fourier transform in z as follows, 
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where β=2π/λ represents the spanwise wave number and λ is 
the corresponding spanwise wavelength of a disturbance. 
Since Eqs. (5) and (6) are linear, modes with different |β| can 
be decoupled. The governing equations for each disturbance 
wave are similar to Eqs. (5) and (6), except for the 
replacement of the gradient operator ∇ with ∇β=(∂/∂x, ∂/∂y, 
iβ). By defining the operator L so that L( û ) is the right-hand 
side of the linearized equation, the governing equation can be 

written symbolically as )ˆ(
ˆ

uLu
=

¶
¶

t
. The general solution of 

this equation can be expressed as a sum of solutions of the 
form, )exp(),,,(~ ttyx sbu , where σ is the Floquet exponent 
and each Floquet mode u~ is a time-periodic function. 
Instability of the base flow U is determined by the Floquet 
multipliers, μ≡exp(σT); |μ|>1 indicates exponentially growing 
perturbation. The Floquet multipliers can be obtained from the 
eigenvalues of L; u~ represents the corresponding 
eigenfunctions. Recently, a one-dimensional (1D) power-type 
method was introduced by Robichaux et al. (1999) to estimate 
the maximum magnitude of the Floquet multipliers by 
computing the following ratio 

 
 )(/)(

max
tNTtN +»m  (8) 

where N(t) is the L2 norm of the perturbation velocity at an 
instant of time. This method was verified by Blackburn and 
Lopez (2003). In this study, we use the method of Robichaux 
et al. (1999) in conjunction with an immersed boundary 
method to calculate the Floquet instability of the baffled 
channel flow (Yoon et al., 2010). For the sake of convenience, 
the term “Floquet multiplier” implies the one that has the 
maximum magnitude among the Floquet multipliers from now 
on, and the subscript, “max”, is dropped. 

Equations (5) and (6) were temporally and spatially 
discretized in the same way as for the base flow. The 2D time-
periodic base flow was first computed with 192192´  in x and 
y directions; thirty-two snapshots were saved for one period of 
the flow. They were fed to Eqs. (5) and (6), being Fourier 
interpolated at each time step, if necessary. For the Floquet 
stability analysis, a numerical resolution of 192192´  in x and 
y directions was also used. 

In this section, we fix RB=1.456 as in the previous studies 
(Roberts, 1994; Yang, 2000). In Fig. 7, temporal variations of 
N(t) and m  are presented for Re=120 and β=1.0. A random 

noise was used as a perturbation velocity field ( u' ) at t=0. 
After an initial decay, the L2 norm of the perturbation velocity 
starts to grow at t » 2, and establishes a linear growth at t » 10 
after which the Floquet multiplier becomes constant 

( 1.30=m ). Since 1.0>m , this particular mode (β=1.0) turns 
out to be unstable to 3D disturbance. 

Variation of m  with β are depicted in Fig. 8 for several 
Reynolds numbers near Rec=104. The dashed line represents 

1.0=m , meaning neutral stability. As Re increases, the range 
of unstable β becomes larger, and both the maximum value of 
m  and the corresponding value of β increase. For example, 

the most unstable modes are β=1.01 for Re=120 and β=1.063 
for Re=130, respectively. It should be noted that there exist 
some unstable waves of small β (i.e. large wavelengths) even 
for the Reynolds numbers close to the critical Reynolds 
number of Hopf bifurcation. This trend was also found in 
some other flows with wall-mounted obstacles (Amon and 
Patera, 1989). 

Floquet multipliers in a wider range of β are shown in Fig. 
9 for Re=120, 125, and 130. In the case of Re=120, the 
Floquet multiplier is less than 1.0 for all β greater than 1.6, 
confirming that only one type of unstable mode (hereafter 
called ‘mode A’) can occur at a low spanwise wave number at 
Re=120. For a higher Re, however, another unstable mode 
(hereafter called ‘mode B’) develops in the range of 3 < β < 5. 
The critical Reynolds number of mode B turned out to be 125 
as seen in Fig. 9. The spanwise wave number for mode B 
tends to slightly decrease as Re increases. In the case of 
Re=130, both mode A and mode B coexist, but mode A 
dominates.  

Another unstable mode (hereafter called ‘mode C’) 
appears in the range of 6 < β < 9 with further increasing Re. 
See Fig. 10. The critical Reynolds number of mode C is found 
to be 148 with the corresponding β=7.71. It should be noted 
that mode B is dominant for Re=153, while mode C dominates 
in the case of Re=187. The corresponding spanwise wave 
numbers are 3.15 and 7.48, respectively, which are in good 
agreement with the previous results of Yang (2000). By using 
full 3D simulations, he found that the most unstable spanwise 
wave numbers are 3.14 for Re=153 and 7.58 for Re=187, 
respectively. 
 

Floquet Modes Flow structure of the mode of a given β 
can be visualized with the corresponding Floquet mode. Two-
dimensional basic flow is periodic with a period T 
(U(x,y,t)=U(x,y,t+T)), and exhibits the following RT 
symmetry (Reflection-Translation symmetry). 

 
 2)/,,(),,( TtyxUtyxU +-=  

2)/,,(),,( TtyxVtyxV +--=  (9) 
 

Here, U and V are the velocity components U in x and y 
directions, respectively. Similarly, a Floquet mode also 
exhibits an RT symmetry. Figure 11 presents contours of the 
streamwise vorticity component ( xw

~ ) of the Floquet mode 
corresponding to Re=120, β=1.0 (mode A) during one time 
period. White and black contours represent positive and 
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negative values, respectively. As clearly seen in Fig. 11, 

xw
~ satisfies the following odd RT symmetry. 

 
 2)/,,(~),,(~ Ttyxtyx xx +--= ww  (10) 
 
The RT symmetry of xw

~ is equivalent to the mode A of 
Barkley and Henderson (1996) characterized by the following 
relations. 
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In Fig. 12, are presented the contours of xw

~ of the Floquet 
mode corresponding to Re=125, β=4.0 (mode B) during one 
time period, revealing an even RT symmetry as follows. 

 
 2)/,,(~),,(~ Ttyxtyx xx +-= ww  (12) 

 
The RT symmetry of xw

~ is equivalent to the mode B of 
Barkley and Henderson (1996) characterized by the following 
relations. 
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Figure 13 shows contours of xw

~ of the Floquet mode 
corresponding to Re=150, β=7.7 (mode C) during one time 
period, revealing the same type of RT symmetry as in the 
mode B. 

       
(a) t=1/4T                            (b) t=2/4T 

       
(c) t=3/4T                            (d) t=4/4T 

 
Figure 11. Contours of streamwise vorticity( xw

~ ) of the 
Floquet mode during one time period for 
Re=120 and β=1.0. 
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Figure 10. Variation of Floquet multipliers with spanwise 
wavenumber 
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Figure 9. Variation of Floquet multipliers with spanwise 
wavenumber 
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Figure 8. Variation of Floquet multipliers with spanwise 
wavenumber 
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Figure 7. Growth of the norm and the Floquet multiplier 
for Re=120 and β=1.0. 
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CONCLUSION 

Flow instability in baffled channel flow, including the 
primary and secondary instabilities, has been numerically 
studied. The baffles, mounted periodically on both channel 
walls, are implemented on a Cartesian grid system via an 
immersed boundary method. The critical Reynolds number for 
the primary instability depends upon RB, being minimum at 
RB=3.0. Floquet stability analysis has been performed for 
RB=1.456 in order to identify the most unstable spanwise 
mode at a given Re. Three dominant modes (A, B, and C) with 
distinct spanwise wave numbers were identified. Each mode 
has its own RT symmetry; odd RT symmetry for mode A, and 
even RT symmetry for modes B and C. The most unstable 
spanwise wave number obtained by the Floquet stability 
analysis is in good agreement with the previous result 
obtained by full 3D simulation. Our results shed light on 
complete understanding of flow instability in baffled channel 
flow which has great applicability in engineering. 
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(a) t=1/4T                            (b) t=2/4T 

        
(c) t=3/4T                            (d) t=4/4T 

 
Figure 13. Contours of streamwise vorticity( xw

~ ) of the 
Floquet mode during one time period for 
Re=150 and β=7.7. 
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Figure 12. Contours of streamwise vorticity( xw

~ ) of the 
Floquet mode during one time period for 
Re=125 and β=4.0. 


