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ABSTRACT
The receptivity of a swept-wing boundary layer to lo-

calised surface roughness is studied by means of direct nu-
merical simulations (DNS). The flow case considered is meant
to model wind tunnel experiments performed at the Arizona
State University by Saric & coworkers. The receptivity am-
plitude of the crossflow disturbances predicted by the DNS is
40% of that measured in the experiments. The DNS results
are then used to evaluate the performance of different recep-
tivity models based on either the parabolised stability equa-
tions or the finite Reynolds number theory (FRNT). In gen-
eral it is found that receptivity amplitudes are well predicted
for micron sized roughness elements if non-parallel effects are
accounted for.

INTRODUCTION
Receptivity models describe how an external disturbance

environment is filtered by the boundary layer. Free-stream
turbulence, acoustic noise or surface roughness represent the
most common external disturbances.
The receptivity process is often neglected in transition pre-
diction models. However, it has been shown in experiments
by Saric & coworkers and by Bippes (1999) that the transi-
tion scenario in three-dimensional boundary layers strongly
depends on the external disturbance environment. In envi-
ronments exhibiting high levels of freestream turbulence un-
steady boundary layer disturbances dominate over stationary
disturbances excited by surface roughness. Conversely, in
low-level turbulence environments, such as free flight, station-
ary disturbances dominate. Hence, robust transition models
should account for receptivity.
In this study we focus on the excitation of crossflow distur-
bances by localised surface roughness. The case considered is
a swept-wing boundary layer which has been studied experi-
mentally by Saric & coworkers (see e.g. Reibert et al. (1996);
Saric et al. (1998)). Several attempts to model these exper-
iments both numerically and theoretically have been made.
Ng & Crouch (1999) modelled the receptivity using finite
Reynolds number theory which is based on the parallel flow
assumption and obtained receptivity amplitudes close to the
experimental ones. Haynes & Reed (2000) were able to cor-
rectly predict the nonlinear disturbance evolution by solving
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the nonlinear parabolised stability equations (NPSE). How-
ever, they did not model receptivity but extracted initial am-
plitudes from experimental data. Nishino & Shariff (2009)
performed a DNS but obtained receptivity amplitudes far be-
low those measured in the experiments and suspected their
roughness model to be inadequate.
The aim of this study is to carefully compare different ap-
proaches of modelling boundary layer receptivity to surface
roughness. We use both direct numerical simulations and
parabolised stability equations (PSE). The latter may be used
in combination with their respective adjoint (APSE) to predict
receptivity. Further, we compare to the FRNT results by Ng
& Crouch (1999).

FLOW CONFIGURATION
In the following we examine the flow over a swept wing

(NLF(2)-0415 airfoil Somers & Horstmann (1985)) mounted
in a wind tunnel. In order to obtain a strong negative pres-
sure gradient on the upper wing side and thus a strong cross-
flow instability Reibert et al. (1996) chose a sweep angle of
φ0 = 45◦ and an angle of attack of αa = −4◦. The Reynolds
number was Rec = U∞c/ν = 1.2×106 where U∞ denotes the
streamwise velocity of the incoming freestream, c represents
the unswept chord of the wing and ν is the kinematic vis-
cosity. The airfoil and the adopted coordinate systems are
shown in figure 1. Here, (x,y,z) denote chordwise, normal
and spanwise directions while (U,V,W ) represent the respec-
tive velocity components. Curvilinear coordinates are defined
as (ξ ,η ,z) which define tangential, wall-normal and spanwise
directions. The corresponding velocity components will be
denoted as (Uξ ,Vη ,W ).

DIRECT NUMERICAL SIMULATIONS
The spectral element method (SEM) has been used to

perform direct numerical simulations of the flow case de-
scribed in the previous section. The SEM which was intro-
duced by Patera (1984) provides spectral accuracy in space
while allowing for the geometrical flexibility of finite element
methods. We use the NEK5000 simulation code developed by
Fischer et al. (2008).
The spatial discretisation is obtained by decomposing the
physical domain into spectral elements which in turn are sub-
divided into arrays of Gauss-Lobatto-Legendre (GLL) nodes
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Figure 1. Swept NLF(2)-415 wing, with sweep angleφ0 and
the total incoming velocity Q∞. (ξ ,η ,z) and (x,y,z) rep-
resent curvilinear and cartesian coordinate systems respec-
tively while s denotes the direction parallel to the incoming
freestream which is tangential to the wing surface.

for the velocity and Gauss-Legendre (GL) nodes for the pres-
sure field. The solution to the Navier-Stokes equations is ap-
proximated element-wise as a sum of Legendre polynomials
up to order N, forming an orthogonal basis. The following re-
sults have been obtained using N = 11 for the velocity grids
and N = 9 for the pressure grids. The staggered pressure grid
makes the specification of pressure boundary conditions un-
necessary. This choice is referred to as a PN −PN−2 discreti-
sation (Maday & Patera (1989)). The present SEM code was
optimized for MPI based usage on supercomputers with thou-
sands of processors by Tufo & Fischer (2001). Here, we per-
formed parallel computations on either 512 or 1024 proces-
sors.

Baseflow
Direct numerical simulations (DNS) of the flow over the

swept-wing including the wind tunnel test section are not
feasible despite the highly parallelised and optimised SEM
code. The approach chosen for the current study is to per-
form RANS simulations of the whole wind tunnel test sec-
tion. The RANS are solved using the EDGE code developed
at FOI (Eliasson (2002)). The resulting flow field can be seen
in figure 2. Direct numerical simulations have then been per-
formed for the two additional domains sketched in figure 2 by
prescribing no-slip, zero-stress and periodic boundary condi-
tions at the wall, the outflow and the lateral boundaries re-
spectively. At the inflow and top boundaries of domain 1 the
velocities extracted from the RANS solution have been pre-
scribed as Dirichlet conditions. Accordingly, Dirichlet condi-
tions are extracted from the DNS of domain 1 and prescribed
at the freestream and inflow boundary of domain 2.
All DNS results presented in this paper have been obtained
for domain 2. Domain 1 has been used in a previous study
by Schrader et al. (see Schrader (2010)) and serves here to
provide correct boundary conditions for domain 2. Domain 1
includes parts of the flow over the lower side of the wing in or-
der to account for the asymmetry of the flow configuration. It
turned out that the flow separated from the lower wing surface
slightly downstream of the leading edge. This separation was
also observed by Nishino & Shariff (2010). The vortex shed-
ding caused by the separation led to a local backflow at the
lower outlet, destabilizing the simulations. Numerical tests
revealed that the separation bubble had a negligible effect on
the flow field of the upper wing side. We therefore eliminated
the separation by using a sponge region, in which the flow was
forced towards the time average of the separation bubble.

Figure 2. (a) Excerpt of the velocity field obtained from a
RANS solution of the whole set-up including the wind tunnel
test section. Domain 1 (green box) and domain 2 (black box)
have been used for DNS of the current set-up. (b) Computa-
tional mesh for domain 2.

The computational mesh used to discretise domain 2 is pre-
sented in figure 2 (b). Both DNS meshes have been generated
using the gridgen-c code by Sakov (2011) which represents
an implementation of the Schwartz-Christoffel transformation
and thus provides quasi-orthogonal grids.
The baseflow (flow field without roughness) is validated by
comparing to experimental results as well as to correspond-
ing solutions of the boundary layer equations. The pressure
coefficient obtained using domain 1 (’short box’) lies slightly
below that of Haynes & Reed (2000) (see figure 3). An ad-
ditional computation using a longer box yielded a pressure
coefficient which is in excellent agreement with the result by
Haynes & Reed (2000). This indicates a certain upstream-
flow sensitivity to outflow conditions. However, auxiliary
PSE calculations revealed that the disturbance evolution is un-
affected by the slight difference of the pressure gradient. We
have therefore decided to use the short (cheap) DNS box for
the receptivity study. The pressure coefficient extracted from
the DNS is used to solve the quasi-three-dimensional bound-
ary layer equations (BLE) starting with the stagnation point
solution. Curvature effects are neglected when solving the
BLE. Figure 4 compares displacement thickness δ ∗, momen-
tum loss thickness Θ as well as boundary layer profiles of Uξ

obtained from both the DNS and BLE. Overall we obtain a
very good agreement especially for positions further down-
stream. This is expected since the assumption of slow varia-
tion in the ξ -direction which is essential to the BLE is ques-
tionable close to the stagnation point.
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Figure 3. Comparison of computed and experimental pres-
sure coefficients at the upper wing side.
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Figure 4. Comparison of displacement and momentum loss
thickness (left) and profiles Uξ (right) obtained from the DNS
and the BLE solution. Note that the profiles Uξ are shifted
according to Uξ ,k = Uξ +0.2k where k = 1,2, · · · ,8 changing
from the leftmost to the rightmost profile in (b).

Roughness Modelling
The next step is to introduce the surface roughness into

the DNS. In the following we consider the cylindrical rough-
ness elements used by Reibert et al. (1996) (spacing L =
12mm, diameter d = 3.7mm, height h = 6µm, roughness po-
sition xr/c = 0.023). The fundamental mode excited by this
roughness array has a spanwise wavenumber β0 = 2π/L and
represents the naturally most unstable steady crossflow distur-
bance. We follow two approaches. The first one is to mesh the
physical wing geometry including the cylindrical roughness
element. However, this is not necessarily straightforward.
Many DNS codes do not allow to mesh roughness elements
with heights of the order of 1% of the boundary layer thick-
ness. Also, many simplified methods, e.g. the parabolised sta-
bility equations described later, are not capable of meshing a
roughness element. In such cases a different approach is com-
monly used which builds on representing the roughness ele-
ments by inhomogeneous boundary conditions along the wall.
The SEM method enables us to consider both approaches and
to compare their performance. Figure 5 shows parts of the
meshed wall including the roughness element. The roughness
model is implemented by projecting the no-slip boundary con-
ditions at the roughness to the undisturbed wall using Taylor
series expansions. Hence, the wall boundary conditions be-
come

ui,w = −(xr− xw)
∂Ui

∂x

∣∣∣∣
xw,yw

− (yr− yw)
∂Ui

∂y

∣∣∣∣
xw,yw

+ · · ·(1)
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Figure 5. Meshed cylindrical roughness element generated
by displacing the GLL points. For visualisation purposes the
height is scaled by a factor of 100.
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Figure 6. Disturbance amplitudes obtained from the current
DNS and those measured in the experiments. The NPSE
results shown have been initiated based on the respective
DNS/experimenta data.

where lowercase and uppercase letters denote disturbance and
baseflow quantities respectively. The subscript i represents
velocity components (u,v,w) and the subscripts r and w rep-
resent coordinates of the rough and the undisturbed wall re-
spectively. When the roughness model is used we solve the
linearised Navier-Stokes equations (LNS). The steady base-
flow needed for such a linear DNS is that presented in the
previous section.

Results
Figure 6 presents amplitudes of the fundamental mode

extracted from both the experiments and the DNS (meshed
roughness). Note that we define disturbance amplitudes As as

As = max
η

ûs

Us
, (2)

where ‘ ˆ ’ represents spatial rms values and the subscript s
denotes velocity components in the wind tunnel plane which
are tangential to the wing surface (see figure 1). It is appar-
ent that the disturbance amplitudes predicted by the DNS are
lower than those extracted from the experiments by Reibert
et al. (1996). In the region of linear disturbance growth the
DNS solution exhibits amplitudes which are 40% of the exper-
imental ones. A comparison of the DNS result to linear PSE
shows that nonlinear effects become apparent at 31% chord as
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Figure 7. Disturbance amplitudes of the fundamental mode
and two superharmonics obtained from DNS (—) and experi-
ments (�) compared to the respective NPSE results (---).

opposed to the experimental measurements where saturation
sets in at about 23% chord. However, the initial linear distur-
bance growth predicted by the DNS is in excellent agreement
to experimental observations as can be seen by comparing to
the corresponding linear PSE curves. A nonlinear PSE calcu-
lation has been performed by initiating the fundamental mode
(β0 = 2π/L) with the amplitude extracted from the DNS field
at 10% chord. The NPSE prediction matches the DNS ampli-
tude perfectly. Even the amplitudes of the first two superhar-
monics (2β0,3β0) match well in the region of modal growth
(see figure 7a). The non-modal growth apparent in the DNS
solution which represents the evolution of several superposed
disturbances of different chordwise wavenumbers α excited
by the roughness element are not predicted by the NPSE. If
the initial amplitude extracted from the DNS is multiplied
by a factor of 2.6 the NPSE prediction perfectly reproduces
the amplitude evolution experienced in the experiments. This
would correspond to choosing a roughness height of 15.6µm
in the DNS. Also here, the amplitude of the first superhar-
monic 2β0 is predicted well. The discrepancy concerning the
second superharmonic 3β0 might be due to the difficulty to ac-
curately extract such low amplitudes from experimental mea-
surements.

Direct numerical simulations of the LNS have been per-
formed for four different roughness heights (h = 6µm, 2h,
10h, 20h). The roughness has been modelled according to
(1). The results are compared to nonlinear DNS where the
roughness elements have been meshed. The resulting recep-
tivity amplitudes at the roughness position xr are shown in
figure 8. A comparison between linear and nonlinear DNS
results shows that the linear model is able to reproduce dis-
turbance amplitude for micron-sized roughness elements of
heights which are less than about 8% of the boundary layer
thickness.

PARABOLISED STABILITY EQUATIONS
The parabolised stability equations first proposed by

Herbert & Bertolotti (see e.g. Herbert (1997)) have been
widely used to predict the linear and nonlinear evolution of
disturbances in convectively unstable flows. Although both
the linear and the nonlinear PSE have been employed here to
predict the disturbance growth we will give a brief introduc-
tion to the linear PSE in the following since they are used to
predict the receptivity. More information about the nonlinear
PSE can be found in Bertolotti et al. (1992). The linear PSE
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Figure 8. Receptivity amplitudes As of the fundamental
crossflow modes at the roughness location obtained from non-
linear DNS with meshed roughness and from solving the LNS
using the linear roughness model. As(xr) is obtained by pro-
jecting the mode amplitude to the roughness position xr using
the respective PSE solution.

build on assuming disturbances of the form

q′(ξ ,η ,z, t) = q(ξ ,η)Θ(ξ )exp i(β z−ωt) (3)

where Θ(ξ ) = exp i
(∫ ξ

ξ0
α(ξ ′)dξ ′

)
, q = (uξ ,vη ,w, p)T and

(ξ ,η ,z) represent orthogonal curvilinear coordinates (see fig-
ure 1). The corresponding tangential and spanwise wavenum-
bers are (α,β ) while the angular frequency and time are
denoted by ω and t. In the following we use q̂(ξ ,η) =
q(ξ ,η)Θ(ξ ). Introducing ansatz (3) into the LNS and as-
suming a slow variation of q in the ξ -direction some terms
including the second derivatives with respect to ξ can be ne-
glected yielding a nearly parabolic system of equations of the
form

Aq+B
∂q
∂η

+C
∂ 2q
∂η2 +D

1
h1

∂q
∂ξ

= 0. (4)

with A, B, C and D being linear operators. The scaling factor
that arises due to the orthogonal curvilinear metric is given
by h2

1 = ∑
3
j=1(∂x j/∂ξ )2 where xi represents the cartesian

coordinates of the reference system.
Since both q and α in ansatz (3) are functions of ξ an
auxiliary condition of the form

∫
∞

0 qH ∂q
∂ξ

dη = 0 is intro-
duced ensuring both the growth and periodic variations of the
disturbance to be absorbed by the exponential part of equation
(3). The coupled nonlinear system of (4) and the auxiliary
condition is solved iteratively while the Dirichlet boundary
conditions (uξ ,vη ,w) = 0 are imposed in the freestream and
at the smooth wall.

Receptivity
The use of adjoint solutions to predict the receptivity of

boundary layers was introduced by Hill (1995, 1997). He
notes that adjoint eigensolutions act as a filter on a general
disturbance field enabling to identify the amplitude of the cor-
responding eigenmode. The adjoint PSE derived in the fol-
lowing thus enable us to determine the receptivity amplitudes
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of disturbances excited by surface roughness.
The adjoint PSE are defined by constructing a Lagrange iden-
tity of the form

< q∗,L q >=< L ∗q∗,q > +∇ ·J (q,q∗), (5)

where L is a linear operator representing equation (4), J
is the so-called bilinear concomitant and ‘∗’ denotes ad-
joint quantities. The adjoint state vector is defined as q∗ =
(p∗,u∗

ξ
,v∗η ,w∗)T . The inner product is defined according to

< a,b >=
∫∫

Ω
aHbh1 dξ dη for some Cn-valued functions

a and b and Ω = [ξ0,ξ1]× [0,∞]. The superscript H de-
notes conjugate transpose. L ∗q∗ = 0 are the adjoint PSE
(for a derivation see e.g. Tempelmann et al. (2010)). By im-
posing Dirichlet boundary conditions (u∗

ξ
,v∗η ,w∗) = 0 in the

freestream and at the wall the last term in (5) becomes

∫
∞

0

[
(q∗)HDq

]ξ1

ξ0
dη =

−
∫

ξ1

ξ0

[
(q∗)HBqh1−

(
∂q∗

∂η

)H
Cqh1

]
η=0

dξ

(6)

Now we introduce J(ξ ) =
∫

∞

0 (q∗)HDq̃dη as well as an am-
plitude As = maxη |ûs| such that q = Θ−1Asq̃ with q̃ being the
normalised state vector. It follows that

Θ
−1AsJ =

∫
∞

0
(q∗)HDq dη . (7)

Further, we assume that inhomogeneous boundary conditions
do not affect the shape but just the amplitude of q′ and that
A(ξ0) = 0. The surface roughness is modelled as inhomoge-
neous boundary conditions of the form

ûξ ,w(ξ ) = −
∂Uξ

∂η

∣∣∣∣
η=0

Hβ (ξ ) (8a)

v̂η ,w(ξ ) = 0 (8b)

ŵw(ξ ) = −∂W
∂η

∣∣∣∣
η=0

Hβ (ξ ) (8c)

yielding a roughness model identical to (1). The roughness is
represented as discrete Fourier modes Hβ (ξ ) in the spanwise
direction. With q = Θ−1q̂ we can insert (8) into (6). Further
substituting (7) into (6) yields the receptivity amplitude as

As(ξ1) =
1

J(ξ1)Re

∫
ξ1

ξ0

exp
(

i
∫

ξ1

ξ

α(ξ ′) dξ
′
)

×Hβ (ξ )

[
∂ ū∗

ξ

∂η

∂Uξ

∂η
h1 +

∂ w̄∗

∂η

∂W
∂η

h1

]∣∣∣∣∣
η=0

dξ ,

(9)

with (ξ0,ξ1) being some arbitrary positions upstream and
downstream of the roughness element respectively. J is eval-
uated for the undisturbed, homogeneous case. Hence, the re-
ceptivity is evaluated from the adjoint variables and the shear
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Figure 9. Comparison between the PSE model, the local
model by Ng & Crouch (1999) and data from DNS and ex-
periments.

at the wall. This allows us to extract receptivity amplitudes for
arbitrary roughness positions from one solution of the direct
and adjoint PSE for the crossflow mode of interest.
Note that for roughness positions close to the stagnation point
the receptivity amplitudes predicted by the PSE model are
sensitive to the initial location ξ0. This is due to the fact
that the PSE are initiated with a local Orr-Sommerfeld mode
which, when integrated downstream, is subject to a transient
adjustment to the non-parallel boundary layer.

Results
Figure 9 compares the disturbance amplitudes predicted

by two receptivity models to those obtained from experiments
and DNS for the roughness position considered in the exper-
iments. The receptivity models considered are the above de-
scribed PSE model and the FRNT which is based on the as-
sumption of locally parallel flow. The latter model has been
applied to the current case by Ng & Crouch (1999) and we
compare to their results. The amplitudes predicted by the PSE
model are slightly higher (about 3%) than those obtained from
the DNS. On the other hand, the amplitudes predicted by Ng
& Crouch (1999) based on FRNT are more than a factor of 2
higher and thus closely match those measured in the experi-
ment. This is not a contradiction though. It is well known that
receptivity models based on the assumption of a locally par-
allel baseflow overpredict disturbance amplitudes. Neglecting
surface curvature as was done by Ng & Crouch (1999) just has
a small increasing effect on the receptivity amplitude in this
case and thus does not counteract the amplitude reduction due
to the parallel flow assumption. Hence, the results obtained by
Ng & Crouch (1999) are consistent with our DNS and PSE.
As explained above we can obtain the receptivity to localised
surface roughness at different roughness positions from one
PSE and one adjoint PSE solution only. We then evaluate
the integral expression (9) for different functions Hβ (ξ ). The
result is shown in figure 10 where the roughness position is
represented by xr and the receptivity amplitude is given as
the respective disturbance amplitude As at the position of neu-
tral stability. The agreement between the PSE prediction and
DNS results for different roughness positions is almost per-
fect. For increasing roughness positions receptivity is mono-
tonically decreasing and hence, maximum receptivity is found
upstream of branch 1 which is in correspondence to the results
by Ng & Crouch (1999).
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CONCLUSIONS
The receptivity of a swept-wing boundary layer to lo-

calised cylindrical roughness elements has been studied by
performing direct numerical simulations. The surface rough-
ness has been introduced into the computational mesh as well
as modelled based on inhomogeneous boundary conditions.
We find disturbance amplitudes which are about 40 % and
thus of the same order as those measured in corresponding
experiments by Reibert et al. (1996). Results obtained with a
roughness model based on projecting no-slip conditions to the
undisturbed wall agree perfectly to the results obtained with
the meshed roughness until roughness heights exceed 8% of
the boundary layer thickness. We further evaluated the per-
formance of simpler receptivity models by comparing their
receptivity predictions to both the DNS and the experimen-
tal results. The receptivity model presented here, which is
based on the adjoint PSE, predicts receptivity amplitudes in
very good agreement to DNS results. The disturbance ampli-
tudes obtained by Ng & Crouch (1999) who employed FRNT
are, on the other hand, more than a factor of 2 higher than
the DNS results and thus closely resemble those measured in
the experiments. However, as already mentioned by Ng &
Crouch (1999), this might be fortuitous since it is well-known
that receptivity models based on FRNT overpredict receptiv-
ity amplitudes. Considering this, the FRNT predictions by Ng
& Crouch (1999) are consistent with our results.
Reasons for the discrepancy between experimental and nu-
merical/theoretical results might be the existence of low-level
free-stream turbulence which affects the evolution of steady
crossflow vortices or the slight difference between the ex-
perimental and numerical pressure coefficients. Also natu-
ral roughness upstream of the artificial roughness array could
increase the receptivity amplitudes. Our results suggest that
such additional effects should be accounted for to correctly
model the experimental conditions.

ACKNOWLEDGEMENTS
The authors gratefully acknowledge funding by VR (The

Swedish Research Council) and computer time by PDC (Cen-
ter for High Performance Computing) at KTH Stockholm,
Sweden.

REFERENCES
Bertolotti, F. P., Herbert, T. & Spalart, P. R. 1992 Linear and

nonlinear stability of the Blasius boundary layer. J. Fluid
Mech. 242, 441–474.

Bippes, H. 1999 Basic experiments on transition in three-
dimensional boundary layers dominated by crossflow in-
stability. Progress in Aerospace Sciences 35, 363–412.

Eliasson, P. 2002 EDGE, a navier-stokes solver for unstruc-
tured grids. In Proceedings to Finit Volumes for Complex
Applications III (ed. D.Kroner & R. Herbin), pp. 527–534.
Hemre Penton Science London.

Fischer, P. F., Lottes, J. W. & Kerkemeier, S. G. 2008 nek5000
Web page. Http://nek5000.mcs.anl.gov.

Haynes, T. S. & Reed, H. L. 2000 Simulation of swept-wing
vortices using nonlinear parabolized stability equations. J.
of Fluid Mech. 405, 325–349.

Herbert, T. 1997 Parabolized Stability Equations. Annu. Rev.
Fluid Mech. 29, 245–283.

Hill, D. C. 1995 Adjoint systems and their role in the receptiv-
ity problem for boundary layers. J. Fluid Mech. 292, 183–
204.

Hill, D. C. 1997 Receptivity in non-parallel boundary layers.
In Proceedings of the 1997 ASME Fluids Engineering Di-
vision Summer Meeting. ASME.

Maday, Y. & Patera, A. T. 1989 Spectral element methods for
the Navier-Stokes equations. In State of the Art Surveys in
Computational Mechanics (ed. A. K. Noor), pp. 71–143.
ASME, New York.

Ng, L. L. & Crouch, J. D. 1999 Roughness-induced recep-
tivity to crossflow vortices on a swept wing. Phys. Fluids
11(2), 432–438.

Nishino, T. & Shariff, K. 2009 Direct Numerical Simulation
of a Swept-Wing Boundary Layer with an Array of Dis-
crete Roughness Elements. In Proc. 7th IUTAM Sympo-
sium on Laminar-Turbulent Transition, Stockholm, Swe-
den. Springer.

Nishino, T. & Shariff, K. 2010 Personal communication.
Patera, A. T. 1984 A Spectral Element Method for Fluid Dy-

namics: Laminar Flow in a Channel Expansion. J. Comp.
Phys. 54, 468–488.

Reibert, M. S., Saric, W. S., Carillo, R. B. & Chapman,
K. L. 1996 Experiments in nonlinear saturation of sta-
tionary crossflow vortices in a swept-wing boundary layer.
AIAA Paper 96-0184 .

Sakov, P. 2011 gridgen-c - an orthogonal grid generator
based on the crdt algorithm (by conformal mapping).
http://code.google.com/p/gridgen-c/.

Saric, W. S., Jr., R. B. Carillo & Reibert, M. S. 1998 Leading-
Edge Roughness as a Transition Control Mechanism. AIAA
Paper 98-0781 .

Schrader, L. U. 2010 Receptivity of boundary layer flows over
flat and curved walls. PhD thesis, KTH Stockholm.

Somers, D. M. & Horstmann, K.-H. 1985 Design of a
medium-speed, natural laminar-flow airfoil for commuter
aircraft applications. DLR-IB 129- 85/26.

Tempelmann, D., Hanifi, A. & Henningson, D. S. 2010 Spa-
tial optimal growth in three-dimensional boundary layers.
J. Fluid Mech. 646, 5–37.

Tufo, H. M. & Fischer, P. F. 2001 Fast Parallel Direct Solvers
for Coarse Grid Problems. J. Parallel Distrib. Comput. 61
(2), 151–177.

6


