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ABSTRACT
Boundary layer receptivity to pairs of unsteady oblique

freestream vortical modes is studied in direct numerical sim-
ulation of flow over a flat plate with an elliptic leading edge.
The freestream is perturbed by three types of oblique Fourier
modes, differing in the magnitude of the three vorticity com-
ponents. The vortical modes excite steady boundary layer
streaks, and the associated receptivity mechanism is nonlin-
ear in the forcing amplitude. Leading edges with two differ-
ent aspect ratios are considered. It is found that the streak
amplitudes obtained are largely unaffected by the leading
edge bluntness. Whereas linear receptivity is the predominant
mechanism at low forcing frequencies, the nonlinear mech-
anism becomes important when high-frequency vortices are
present in the freestream. Nonlinear receptivity is therefore
expected to contribute significantly to the excitation of bound-
ary layer streaks by freestream turbulence.

INTRODUCTION
Receptivity is the initial stage of laminar-turbulent transi-

tion in boundary layers. The term denotes the mechanism by
which freestream fluctuations or corrugations of an aerody-
namic surface are converted into boundary layer instabilities.
Here, we present a direct numerical simulation (DNS) study
of receptivity to oblique freestream vortical modes in bound-
ary layer flow over a flat plate with an elliptic leading edge.

Oblique-mode transition is a simple model for bypass
transition due to freestream turbulence. Berlin et al. (1994)
study by DNS the laminar-turbulent transition of a Blasius
boundary layer under the action of pairs of oblique vortical
freestream modes. Three steps are identified: the nonlin-
ear generation of streamwise vortices by the oblique modes,
the formation of boundary layer streaks due to these vortices
and the secondary streak instability. The work by Berlin &
Henningson (1999) focuses on the receptivity phase, where
single freestream vortical modes and pairs of oblique waves
act as triggers of instability. The Blasius boundary layer is

found to be particularly receptive to single modes with sig-
nificant streamwise vorticity. The receptivity mechanism is
linear in the forcing amplitude and produces streamwise elon-
gated boundary layer streaks. Similar streaks are forced by
the oblique modes via a nonlinear receptivity mechanism. A
weakly nonlinear perturbation model by Brandt et al. (2002)
is able to reproduce the streak generation by oblique modes.

The study of nonlinear effects on the streak formation
in boundary layers is motivated by the observation that linear
theories underpredict the streak amplitudes typically found in
experiments with freestream turbulence. Leib et al. (1999)
state that “nonlinear effects play an important role in the de-
velopment of Klebanoff modes in many of the most important
experiments”. The authors conjecture that “this [nonlinear]
effect increases with increasing downstream distance from the
leading edge and possibly with increasing frequency” and that
“the nonlinear effects may enter in a more or less quasi-steady
manner”. These statements motivate the present work, where
the nonlinear boundary layer response to freestream vortical
modes with different frequencies is studied. The leading edge
is included and its shape is varied to identify bluntness ef-
fects on the nonlinear receptivity. This paper follows a similar
study of linear receptivity to vortical modes on the same ge-
ometry (Schrader et al., 2010).

FLOW CONFIGURATION
We study flow over a flat plate with leading edge (Figure

1a), where the leading edge is shaped as a modified super-
ellipse (Figure 1b). Lin et al. (1992) are the first considering
this contour, because it features smoothness in wall curvature
and hence a reduction of receptivity at the junction. We denote
the streamwise, vertical and spanwise directions by x, y and z
and the respective velocities by U , V and W (baseflow) and
u, v and w (disturbance). All lengths are scaled by the short
semi-axis b of the leading edge. The long semi-axis a = AR ·b
determines the bluntness of the nose, where AR stands for the
aspect ratio of the leading edge. Here, we consider AR = 6

1



(a) (b)

Figure 1. (a) Flat plate with elliptic leading edge (AR = 6).
Lengths are normalized by half-thickness b of plate. Red line:
leading edge junction. (b) Modified super-ellipse (MSE), rep-
resenting leading edge shape.

(a) (b)

Figure 2. Spectral element mesh (AR = 6 leading edge). (a)
Inflow region, (b) close-up view of leading edge. Spectral
elements (black boxes) and GLL nodes (red dots).

and 20. These values are also used in earlier numerical stud-
ies (e.g. Lin et al., 1992; Wanderley & Corke, 2001; Schrader
et al., 2010). The reference speed is the freestream veloc-
ity U∞ and the flow conditions are defined by the Reynolds
number Re = U∞b/ν = 2400. The outflow boundary is lo-
cated at xout = 208.34b so that the outflow Reynolds number
is Reout =U∞xout/ν = 5×105.

NUMERICAL METHOD
The simulations are carried out using the three-

dimensional incompressible Navier-Stokes solver Nek5000
(Fischer et al., 2008) based on the spectral element method
(SEM). The SEM combines the high accuracy of global spec-
tral methods with the geometrical flexibility of finite element
methods and is suitable for high fidelity simulations of flow
around bodies with surface curvature and leading edges. The
physical domain is decomposed into spectral elements, upon
which the solution is approximated by tensor products of Leg-
endre polynomial Lagrangian interpolants. In one dimension,
the Legendre expansion is written as

q(l)(r) =
N

∑
n=0

q(l)n Ln(r), (1)

where q is a flow variable (e.g. streamwise velocity), r is the
local spatial coordinate of element l, Ln is the nth order Leg-
endre polynomial, qn is the spectral coefficient and N is the

(a) (b)

(c) (d)

(e) (f)

Figure 3. Error estimators of streamwise mean flow on ini-
tial SEM mesh (from Schrader et al., 2010, a,c,e) and im-
proved mesh (b,d,f). Leading edge with AR = 6. White ar-
rows indicate local elemental direction along which error es-
timators were computed.

highest polynomial degree included. The spatial allocation
of the integration nodes is based on Gauss-Lobatto-Legendre
(GLL) and Gauss-Legendre (GL) quadratures for the velocity
and pressure fields, respectively. Here, we choose N = 7 for
the velocity grid and N = 5 for the pressure grid, following
the PN -PN−2 discretization of Maday & Patera (1989). This
results in a staggered pressure grid with regard to the velocity
grid, obviating the possibility of spurious pressure modes and
rendering pressure boundary conditions unnecessary.

The computational mesh (Figure 2) is similar to the
grids used by Schrader et al. (2010); however, the freestream
boundary is streamline-shaped instead of straight. This is
advantageous when freestream disturbances are convected
downstream. For the three-dimensional simulations, 7650 el-
ements are used, which amounts to nearly 2.8 million degrees
of freedom. Dirichlet conditions for the mean velocity at the
inflow and the freestream boundaries are generated from a po-
tential flow solution including the streamline displacement by
the boundary layer (see Schrader et al., 2010). No-slip, no-
stress and periodic conditions are applied at the wall, the out-
flow and the lateral boundaries, respectively.

Error Estimator
The quality of the flow solution on a given computational

mesh can be assessed by computing a posteriori error estima-
tors. This is carried out here for two-dimensional simulations
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of the streamwise mean flow around the leading edge with
AR = 6. The error estimator (Mavriplis, 1990) is defined as

ε =

√√√√√ q2
N

1
2 (2N +1)

+

∞∫
N+1

q2
n

1
2 (2n+1)

dn. (2)

The quantity qN is the highest-order spectral coefficient of
(1), while the coefficients qn for order N + 1 and higher are
estimated by an extrapolation of the spectrum (of the stream-
wise mean velocity here), using the exponential-decay rela-
tion qn = ce−σn. The constant c and the decay rate σ are
obtained through a least squares best fit of the last four points
(N− 3, ...,N) of the resolved spectrum to an exponential de-
cay.

The error estimator was originally developed to de-
vise criteria for spectral-element mesh adaptation (Mavriplis,
1994). Here, we use ε to investigate the error of the stream-
wise mean velocity on a given mesh and improve the mesh
manually as indicated by ε . Because ε estimates the one-
dimensional spectrum of the elemental approximation, we ob-
tain N + 1 values of ε for each local direction per element.
Averaging ε over these N +1 values yields two error estima-
tors per element for a two-dimensional simulation (one in each
direction). The initial mesh (from Schrader et al., 2010) pro-
duces an uneven error distribution in the inflow region (Fig-
ure 3a) and relatively large errors at the leading edge (Figures
3c,e), where the white arrows indicate the elemental direc-
tion of the error evaluation. This information is used to derive
an improved numerical mesh (Figures 3b,d,f), where we only
redistribute the elements while leaving the total number of el-
ements and the spectral order unchanged. The major benefit
of the improved mesh is an increase of time step size and an
ensuing reduction of simulation time by approximately 10%.

Freestream Disturbance
Pairs of oblique vortical modes serve as a simple model

of freestream turbulence. The vortical disturbances are pre-
scribed as Fourier modes with spatial and temporal period-
icity, where streamwise periodicity is replaced by time peri-
odicity invoking Taylor’s hypothesis. The modal amplitude
functions are those of Schrader et al. (2010), where three dif-
ferent types are used, labeled as ξ -, η- and ζ -modes. This
denotation indicates the dominant component of the vorticity
vector (ξ ,η ,ζ ) of these modes. Schrader et al. (2010) point
out that only two linearly independent vortical modes exist,
the ξ - and the ζ -modes (labeled B and A modes in Bertolotti,
1997), whereas the third type (the η-mode) is not a physically
independent solution. It is nonetheless convenient to intro-
duce all three modes because vortical modes with only one
single vorticity component can easily be derived from the ξ -
, η- and ζ -modes. This is extensively utilized by Schrader
et al. (2010) in a study of linear receptivity to purely stream-
wise, vertical and spanwise freestream vorticity.

The inflow wave vector is (γ,β ) = (0.48,±0.72), with γ

and β being the vertical and spanwise wavenumbers. These
values are consistent with those in Schrader et al. (2010); the
only difference is that we also include the mode with span-
wise wavenumber β = −0.72 and add it to the mode with

(a) (b) (c)

(d) (e) (f)

Figure 4. Inflow disturbance of pairs of oblique vor-
tical modes (frequency F = 96, wave vector (γ,β ) =

(0.48,±0.72), amplitude εv = 3.54×10−3). Velocity magni-
tude of (a) ξ -modes, (b) η-modes, (c) ζ -modes. Streamwise
vorticity of (d) ξ -modes, (e) η-modes, (f) ζ -modes.

β = +0.72. This produces a freestream vortical disturbance
consisting of two oblique waves. The disturbance is scaled

to obtain an amplitude of εv =

√
u2in/2, where uin is the

disturbance-velocity vector at the computational inflow,

uin = ℜ{û ei(γy±β z−ωt)}, (3)

with ℜ denoting the real part. The quantity û is the modal
velocity coefficient and depends on the mode type (ξ -, η-
or ζ -mode; see Schrader et al., 2010, for details). The an-
gular frequency ω is replaced by the frequency parameter
F = [ω/(U2

∞/ν)]× 106 here. Figure 4 shows the velocity
magnitude and streamwise vorticity of inflow disturbances
made up of pairs of oblique ξ -, η- and ζ -modes (frequency
F = 96, wave vector (γ,β ) = (0.48,±0.72), amplitude εv =
3.54× 10−3). The ξ -modes feature the largest and the η-
modes the smallest streamwise vorticity.

RESULTS
The boundary layer response to a pair of oblique ξ -

modes with frequency F = 96 manifests itself mainly in the
streamwise velocity (Figure 5a). The upstream disturbance
features the short streamwise length scale of the freestream
modes (enforced by the frequency), whereas the dominant
downstream structure is streamwise elongated. Not only the
streamwise scale but also the spanwise wavelength change in
downstream direction (doubling of the spanwise wavenum-
ber, Figure 5b). We summarize that the receptivity mecha-
nism to high-frequency oblique freestream modes consists of
two steps: the linear excitation of fundamental disturbances
followed by a nonlinear self-interaction of the fundamental
mode. Streamwise elongated streaks with twice the spanwise
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(a) (b)

Figure 5. boundary layer response to pair of oblique ξ -
modes (F = 96, (γ,β ) = (0.48,±0.72), εv = 3.54× 10−3).
(a) x-y plane of streamwise, vertical and spanwise disturbance
velocities (z = 2.05). Thin lines: δ99. (b) Horizontal plane of
streamwise disturbance at y(maxy(urms)).

(a)

(b)

Figure 6. (a) Temporal-spanwise Fourier decomposition of
boundary layer disturbance excited by pair of oblique ξ -
modes (F = 96, (γ,β ) = (0.48,±0.72), εv = 3.54× 10−3).
(b) Comparison of fundamental mode (F,β ) and spanwise
super-harmonic (0,2β ) for two forcing amplitudes: εv =

3.54×10−3 and 3.54×10−4.

wavenumber of the freestream modes arise from this process.
These streaks attain significantly larger amplitudes than the
upstream fundamental disturbance.

A temporal-spanwise Fourier decomposition of the total
boundary layer disturbance (urms curve in Figure 6a) confirms
that the upstream disturbance is dominated by a fundamental
short-scale mode, whereas the downstream disturbance evo-
lution is mainly attributable to steady streaks with twice the
fundamental spanwise wavenumber. The steadiness of these
streaks becomes manifest as an elongation of the disturbance
structure (zero streamwise wavenumber, cf. Figure 5b). This
confirms that nonlinear effects appear “in a more or less quasi-
steady manner” (Leib et al., 1999, cf. Introduction). The

(a)

(b)

Figure 7. Temporal-spanwise Fourier decomposition of
boundary layer disturbance excited by pair of oblique (a)
η-modes and (b) ζ -modes (F = 96, (γ,β ) = (0.48,±0.72),
εv = 3.54×10−3).

third and fourth most important contributions to the boundary
layer disturbance are the mean-flow modification (0,0) and
the double-frequency mode (2,±2) (Figure 6a).

The nature of the boundary layer receptivity is clari-
fied by matching the evolution curves obtained for two dif-
ferent forcing amplitudes εv. The unsteady fundamental
mode amplitude is found to be linear in εv, whereas the
steady streak amplitude scales as ε2

v (Figure 6b). The strong
steady streak disturbance is hence generated by quadratic self-
interaction of the unsteady fundamental mode. The ampli-
tudes of the modes (0,0) and (2,±2) are also proportional to
ε2

v (not shown). Linear and nonlinear receptivity processes
thus act simultaneously in boundary layers exposed to high-
frequency freestream fluctuations. The nonlinear receptivity
process obeys the two-step mechanism explained by Brandt
et al. (2002), where the generation of streamwise vortices by
the oblique modes precedes the excitation of boundary layer
streaks by these vortices (lift-up mechanism).

When exposed to oblique η- and ζ -modes, the bound-
ary layer develops steady disturbance streaks, too, but these
streaks have lower amplitudes than those forced by the ξ -
modes (Figure 7). Because the ξ -modes feature a larger
streamwise vorticity component than the η- and ζ -modes
(Figure 4), we conclude that the boundary layer is nonlinearly
most receptive to streamwise vorticity, as in the case of lin-
ear receptivity (Schrader et al., 2010). Interestingly, the (0,0)
and (2,±2) components amplify less in an environment of
oblique η-modes than in the presence of the other two mode
types (Figure 7a).
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(a)

(b)

Figure 8. Temporal-spanwise Fourier decomposition of
boundary layer disturbance excited by pair of oblique ξ -
modes ((γ,β ) = (0.48,±0.72), εv = 3.54× 10−3). Forcing
frequency (a) F = 16, (b) F = 192.

Frequency Effects
Leib et al. (1999) conjecture that nonlinear effects on

the streak development may be more relevant at high frequen-
cies. This is confirmed here by comparing the standard case
(F = 96) with two cases at a lower and a higher forcing fre-
quency (F = 16 and F = 192), using oblique freestream waves
of the ξ -type. For F = 16, the disturbance (urms-curve) is
made up mostly of the fundamental unsteady mode, whereas
the steady double-spanwise wavenumber streak hardly con-
tributes to urms (Figure 8a). The dominant receptivity mech-
anism of ξ -modes with F = 16 is thus linear (cf. Schrader
et al., 2010). In contrast, the boundary layer destabilization
by oblique ξ -modes with F = 192 is almost entirely due to
nonlinear receptivity, resulting in steady streaks (Figure 8b).

Bluntness Effects
So far, only the leading edge with aspect ratio AR= 6 has

been used. In order to study leading edge bluntness effects, we
now also consider a more slender leading edge (AR = 20) and
compare six different simulations (two leading edges times
three mode types, ξ , η and ζ , at frequency F = 96). It is found
that the flow response to all three types of freestream vorticity
is largely unaffected by the leading edge shape (Figure 9a).
We further confirm that the boundary layer is nonlinearly most
receptive to oblique ξ -modes and least receptive to η-modes.

Schrader et al. (2010) demonstrate that linear boundary
layer receptivity to purely vertical freestream vorticity is par-
ticularly efficient in flows with blunt leading edges. Key to
the mechanism is the generation of streamwise vorticity due
to stretching and tilting of the vertical vorticity at the lead-
ing edge. Schrader et al. (2010) construct the purely vertical

(a)

(b)

Figure 9. Nonlinear receptivity to pairs of oblique modes.
Comparison for two leading edges (AR = 6 and 20). (0,2β )-
streak amplitude due to (a) ξ -, η- and ζ -modes (F = 96,
(γ,β ) = (0.48,±0.72), εv = 3.54× 10−3) and (b) ηy-modes
(γ = 0, F = 96, β =±0.72, εv = 3.54×10−3).

vorticity modes (denoted ‘ηy-modes’) by setting the vertical
wavenumber γ of the η-modes to zero. Here, we use pairs of
oblique ηy-modes at frequency F = 96, invoking the nonlin-
ear receptivity mechanism, and vary the leading edge shape.
Again, a change of bluntness does not alter the streak ampli-
tude (Figure 9b). It is concluded that the bluntness-dependent
vortex stretching and tilting mechanisms do not play any sig-
nificant role in nonlinear receptivity. Instead, the stream-
wise vorticity required for effective streak excitation is mainly
generated by the nonlinear interaction between the oblique
freestream modes. This mechanism is shown here to be in-
dependent of the leading edge shape.

Nonlinear versus Linear Receptivity
Here, we compare the downstream evolution of two

steady boundary layer streaks (F = 0) with the same spanwise
wavenumber (β = 1.44), but different origin: the first streak is
excited by a pair of oblique ξ -modes with frequency F = 96
(nonlinear receptivity), whereas the second streak is triggered
by a single ξ -mode with frequency F = 0 (linear receptiv-
ity). The two streaks amplify at different streamwise rates
(Figure 10), because they are generated in different regions of
the boundary layer. The linear receptivity mechanism is ini-
tiated right at the leading edge, where it produces significant
upstream transient growth. The nonlinear process, a two-step
mechanism, acts over a longer extent of the boundary layer so
that the nonlinear streak fully emerges farther downstream (in
different flow conditions). Matching the streak amplitudes at
a certain downstream location (Rex = 2× 105 in Figure 10)
enables us to assess the relative importance of linear and non-
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Figure 10. Streamwise development of two steady streaks
(β = 1.44) triggered via nonlinear and linear receptivity.
Streak due to linear receptivity is scaled to match amplitude
at Rex = 2×105 of streak due to nonlinear receptivity.

linear receptivity. To this end, we write the streak amplitude
Astr as

Astr = Clinεv,lin (4)

Astr = Cnlnε
2
v,nln,

where εv,lin and εv,nln are the forcing amplitudes of the linear
and nonlinear receptivity mechanisms, and Clin and Cnln are
the local (Rex-dependent) linear and nonlinear receptivity co-
efficients. For the example of Rex = 2×105, we read off from
Figure 10 a streak amplitude of Astr = 0.0113. With εv,lin =

2.92×10−4 and εv,nln = 3.54×10−3, we obtain Clin = 38.73
and Cnln = 904.45. Equating the two relations in (4) identi-
fies an amplitude threshold εthresh = Clin/Cnln, above which
the nonlinearly excited streak becomes stronger at a certain
streamwise location (Rex) than the streak due to linear recep-
tivity. For Rex = 105 (2×105;5×105), we find εthresh = 0.093
(0.043;0.018). These thresholds are large, suggesting that
linear receptivity is more effective than nonlinear receptivity.
Because the downstream growth rate of the nonlinear streak
exceeds that of the linear streak, the relative importance of
nonlinear receptivity is enhanced with increasing Reynolds
number. Moreover, εthresh depends on the frequency of the
oblique vortical modes triggering the nonlinear streak.

CONCLUSIONS
Leib et al. (1999) notice a discrepancy between

Klebanoff-mode amplitudes observed in experiments and
streak amplitudes obtained from linear receptivity and insta-
bility theories. Therefore, nonlinear (quadratic) boundary
layer receptivity to unsteady freestream vorticity is studied
here. To this end, we perform DNS of flow past an elliptic
leading edge, considering pairs of oblique vortical freestream
modes. The spectral element method used proves to be partic-
ularly efficient when combined with an error-estimator based
mesh improvement.

When exposed to oblique vortical modes, the bound-
ary layer develops steady, energetic disturbance streaks, pro-
vided that the frequency of the modes is high enough. The
largest streak amplitudes are obtained when the freestream

modes bear mainly streamwise vorticity. The streak intensity
is largely unaffected by the leading edge shape, irrespective of
the type of freestream disturbance (dominant vorticity com-
ponent). This is in contrast to linear receptivity, where blunt
leading edges enhance the receptivity to vertical freestream
vorticity (Schrader et al., 2010), and suggests that nonlinear
receptivity studies in Blasius flow are still valid in flows with
leading edges. Although linear receptivity is more effective,
nonlinear receptivity is expected to be significant in flows with
freestream turbulence because of the energy concentration in
the higher-frequency range of the turbulent spectrum.
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Linköpings universitet).

REFERENCES
Berlin, S. & Henningson, D. 1999 A nonlinear mechanism

for recpetivity of free-stream disturbances. Phys. Fluids 11
(12), 3749–3760.

Berlin, S., Lundbladh, A. & Henningson, D. 1994 Spa-
tial simulations of oblique transition in a boundary layer.
Phys. Fluids 6 (6), 1949–1951.

Bertolotti, F. P. 1997 Response of the Blasius boundary layer
to free-stream vorticity. Phys. Fluids 9 (8), 2286–2299.

Brandt, L., Henningson, D. S. & Ponziani, D. 2002 Weakly
non-linear analysis of boundary layer receptivity to free-
stream disturbances. Phys. Fluids 14, 1426–1441.

Fischer, P., Kruse, J., Mullen, J., Tufo, H.,
Lottes, J. & Kerkemeier, S. 2008 NEK5000
- Open Source Spectral Element CFD solver.
Https://nek5000.mcs.anl.gov/index.php/MainPage.

Leib, S. J., Wundrow, D. W. & Goldstein, M. E. 1999 Effect of
free-stream turbulence and other vortical disturbances on a
laminar boundary layer. J. Fluid Mech. 380, 169–203.

Lin, N., Reed, H. & Saric, W. 1992 Effect of leading edge ge-
ometry on boundary-layer receptivity to freestream sound.
In Instability, Transition and Turbulence (ed. M. Hussaini,
A. Kumar & C. Streett). Springer.

Maday, Y. & Patera, A. T. 1989 Spectral element methods for
the Navier-Stokes equations. In State of the Art Surveys in
Computational Mechanics (ed. A. K. Noor), pp. 71–143.
ASME, New York.

Mavriplis, C. 1990 A posteriori error estimators for adaptive
spectral element techniques. In Notes on Numerical Fluid
Mechanics 29 (ed. P. Wesseling), pp. 333–342. Braun-
schweig: Vieweg.

Mavriplis, C. 1994 Adaptive mesh strategies for the spec-
tral element method. Comput. Methods Appl. Mech. Engrg.
116, 77–86.

Schrader, L.-U., Brandt, L., Mavriplis, C. & Henningson,
D. S. 2010 Receptivity to free-stream vorticity of flow past
a flat plate with elliptic leading edge. J. Fluid Mech. 653,
245–271.

Wanderley, J. B. V. & Corke, T. C. 2001 Boundary layer re-
ceptivity to free-stream sound on elliptic leading edges of
flat plates. J. Fluid Mech. 429, 1–21.

6


