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ABSTRACT
Adjoint-based iterative methods are employed in order

to compute linear optimal disturbances in the case of a spa-
tially growing boundary layer around an elliptic leading edge.
The Lagrangian approach is used where an objective func-
tion is chosen and constraints are assigned. The optimiza-
tion problem is solved using power iterations combined with
a matrix-free formulation, where the state is marched forward
in time with a standard DNS solver and backward with the
adjoint solver until a chosen criterion is fulfilled. We consider
the global and the upstream localized optimal initial condi-
tion leading to the largest possible energy amplification at
time T . We find that the two-dimensional initial condition
with the largest potential for growth is a Tollmien-Schichting-
like wave packet that includes the Orr mechanism and is lo-
cated inside the boundary layer, downstream of the leading
edge. The localized optimal initial condition method allows
a more precise systematic study of leading edge effects; we
propose it a new method to study receptivity. We find the two-
dimensional disturbances are inefficient at triggering an unsta-
ble eigenmode. The three-dimensional disturbances exploit
the lift up mechanism; both the global and upstream localized
disturbances give significant growth. These findings support
the hypothesis of high receptivity to three-dimensional distur-
bances.

INTRODUCTION
The flat plate boundary layer has been a test-bed for vari-

ous approaches when studying hydrodynamic stability. Its rel-
evance arises from the fact that, even if is a fairly simple flow,
it contains features of many external flows; thus it is a good
model for them. In stability studies further simplified versions
of the general case are often used with approximations like
the locally-parallel assumption (Fourier decomposition in the
streamwise direction (Butler & Farrell, 1992; Reddy & Hen-
ningson, 1993) or the slowly varying (parabolized equations
(Anderssonet al., 1999; Luchini, 2000; Levin & Henningson,
2003; Tempelmannet al., 2010)). Two and three-dimensional
disturbances have been studied using global modes and of-
fer an accurate representation of the stability of the growing
boundary layer (̊Akervik et al., 2008). However the effect of
the leading edge has not been considered so far.
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Recently, with the development of the time-stepper tech-
nique (Tuckerman & Barkley, 2000), it has become possible
to tackle more complicated flow cases with two and three-
dimensional disturbances. Essentially stability studies are
possible for any type of flow case and/or geometry for which a
direct numerical simulation is feasible. The only requirement
is a numerical solver of the time-dependent linearized Navier-
Stokes equations and the corresponding adjoint problem. This
approach was first adopted by Tuckerman & Barkley (2000)
and later by Barkleyet al. (2008) and Blackburnet al. (2008).

In Monokrousoset al. (2010) optimal disturbances for a
case of a flat-plate boundary layer excluding the leading edge
was studied. It was found that the optimal initial condition for
short spanwise wavelengths are finite-length streamwise vor-
tices exploiting the lift-up mechanism to create streaks. For
long spanwise wavelengths it is the Orr mechanism combined
with the amplification of oblique wave packets that is respon-
sible for the disturbance growth. It is found that the latter
mechanism is dominant for the long computational domain
and thus for the relatively high Reynolds number considered
here.

This project is an extension to previous work by
Monokrousoset al. (2010) where optimal disturbances were
computed for the case of the flat plate boundary layer. Here
we take a step further and include the leading edge of the plate
while retaining a fairly high Reynolds number where typically
transitional or even turbulent flow is observed. In particular
we focus on the effect of the leading edge, how it can change
the optimal disturbances and how the boundary layer can be
optimally excited by disturbances coming from the outside.

The flow case, for the chosen parameters is classified as
noise amplifier, in contrast to an oscillator where more of-
ten standard modal analysis is performed. It is characterized
by convectively instabilities when studied with the local ap-
proach. From the global point of view the flow is asymptoti-
cally stable to linear disturbances. Hence it is more relevant to
look at the transient growth problem or non-modal analysis.

FORMULATION
The equations to be solved are the linearized Navier-

Stokes in the incompressible regime:

∂tu+(U ·∇)u+(u ·∇)U = −∇p+Re−1∆u, (1)

∇ ·u = 0.
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whereU is the base flow,u is a perturbation velocity,p is
pressure andRe is the Reynolds number.

The Lagrangian approach is used where an objective
function is chosen and constraints are assigned. We are look-
ing for stationary points of the Lagrange functional with re-
spect to the different design variables where optimality is ful-
filled. The method is equivalent to finding the leading eigen-
values of combined direct and adjoint Navier-Stokes evolution
operator. The quantity we choose to maximize,i.e. the ob-
jective function, is the disturbance kinetic energy at the final
time:

J (u) = (u(T ),u(T )). (2)

The chosen constraints are the demand foru to satisfy the lin-
earized Navier-Stokes and, since we work in the linear frame-
work, we force our initial condition to unit energy. Hence the
Lagrangian functional is written as:

L (u,u∗
,γ)=J −

∫ T

0
(u∗

,(∂t −A )u) dt−γ ((u(0),u(0))−1) .

(3)
where we rewrite the Navier-Stokes in the state space formu-
lation

(∂t −A )u = 0, u(0) = u0 .

u∗ andγ are Lagrange multipliers.u∗ is often called the ad-
joint variable. See Monokrousoset al. (2010) for more details.

To solve the optimization problem a matrix-free method
is employed, where the state is marched forward in time with
a standard direct numerical solver and backward with the cor-
responding adjoint solver until a chosen convergence criterion
is fulfilled.

The problem is initialized with a random field, usually
noise. The governing equations are iterated until the ac-
tion of the combined forward and backward time marching
corresponds to pure stretching of the initial condition, i.e.
p0 = λq0, with q0 being the initial perturbation,p0 the fi-
nal field from the adjoint solution andλ a scalar. At conver-
genceq0 is the optimal disturbance and also an eigenvector of
the operatorH †H whereH corresponds to the direct op-
erator, also known as the propagator andH † to the adjoint:
H †H q0 = λq0. The action ofH therefore amounts to in-
tegrating the linearized Navier-Stokes equations to final time
T , whereT becomes a parameter of the optimization.

A similar procedure is applied to find the optimal ini-
tial condition localized upstream of the leading edge that un-
dergoes the largest possible amplification as it travels down-
stream, penetrating the boundary layer. With this approach,
we propose a systematic and direct method to compute the
receptivity of the boundary layer to external disturbances as
the computed optimal modes can be used as a projection basis
to quantify the ability of incoming free-stream disturbances
to initiate perturbations in the boundary layer. The formu-
lation for localized optimal disturbances was first developed
by Monokrousoset al. (2010). The optimization problem is

slightly different from the one described above. The new La-
grangian reads

L (u,u∗
,γ) = (u(T ),u(T ))−

∫ T

0
(u∗

,(∂t −A )u) dt

−γ ((u(0),u(0))Λ −1)− (ψ,∇ ·u(0))Λ

(4)

where the initial condition must exist only inside the sub-
domain Λ. Additionally the optimal perturbation must be
divergence-free. The inner product defined by(·, ·)Λ corre-
sponds to an integral overΛ. Taking variations with respect to
each variable gives:

(

∂L

∂u∗
,δu∗

)

⇒ (∂t −A )u = 0,

(

∂L

∂u
,δu

)

⇒ (−∂t −A †)u∗ = 0,

(5)

along with two optimality conditions:

u(0) = γ−1(u∗(0)−∇ψ)|Λ,

u∗(T ) = u(T ) .

For the full derivation we refer to Monokrousoset al. (2010).

NUMERICAL APPROACH
The governing equations are solved within the spec-

tral element code Nek5000, developed by Tufo & Fischer
(2001). The linearized Navier-Stokes equations and the ad-
joint system are solved by a weighted residual spectral ele-
ment method (Patera, 1984), which allows multi-domain de-
composition while preserving high order accuracy. Inside
each sub-domain, referred to as a spectral element, the pres-
sure and velocity fields are represented by a tensor product of
Legendre polynomial Lagrangian interpolants, N-2 and Nth
order respectively. Gauss numerical quadrature is used to rep-
resent the integrals of the weak weighted residual formulation.
Pressure is treated by Gauss and velocity by Gauss-Lobatto
quadrature, entailing a staggered mesh and obviating the need
for pressure boundary conditions. For further details see Fis-
cheret al. (2008).

The modular operator and elemental approach of the
Nek5000 code renders the implementation of the adjoint for-
mulation straightforward: adjoint operators of Equation 5
are easily reformatted from existing operators of Equation
5a). Convective terms are advanced explicitly by a 3rd order
Adams-Bashforth scheme in both the forward and backward
problems. The self-adjoint diffusion terms are solved implic-
itly by a GMRES iterative solver, accelerated in the case of the
pressure field with a projection technique (Fischer, 1998) that
makes use of previous time step pressure modes for a high
quality first guess. The optimization problem for the opti-
mal initial condition is validated against previous results from
Monokrousoset al. (2010).
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Figure 1. Contours of the streamwise (a) and wall-normal
(b) velocity components of the base flow forRe = 3000. The
plot has equal scaling in the two directions. c): The spectral
element grid (without the Gauss-Lobatto Legendre points)

Flow Case
We consider a flow around a flat plate with an elliptic

leading edge. The leading edge is a modified super-ellipse:

( y
b

)2
= 1−

(

a− x
a

)p

wherep = 2+
( x

a

)2
. (6)

that has zero curvature at the juncture with the flat section so
that no disturbances are introduced by the plate itself. The
ratio a

b defines the bluntness and is chosen herea
b = 6 which

corresponds to a relatively blunt shape, Schraderet al. (2010).
The Reynolds number of the flow isRe = bU

ν based on the half
thickness of the plate(b), the free-stream velocity(U) and
the kinematic viscosity of the fluid(ν). The results presented
correspond to Reynolds numberRe = 3000.

In Figure 1a) and 1b) the two velocity components of
the base flow are shown. Since the flow is globally stable, the
base flow is computed by marching the full non-linear Navier-
Stokes equations in time until a steady state is obtained. The
boundary conditions imposed are those computed by solving
the Euler equations in a domain much larger than our compu-
tational domain. A strong deceleration of the flow is observed
near the stagnation point, as well as a strong vertical velocity
component immediately downstream. Further downstream a
thin boundary layer is developed. The computational box ex-
tends downstream 100−200 units depending on the case. For
a validation of the base flow see Schraderet al. (2010).

Resolution
Using the spectral element method, we decompose the

domain in several, relatively large elements. The present re-
sults are for polynomial order 9, which implies 100 points
per element for the 2D case and 1000 for the 3D. The total
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Figure 2. The black curves show disturbance energy vs op-
timization times forRe = 3000. The red curve is the energy
envelope.

number of elements depends on the length of the box. We
run the 2D cases in a longer box (in order to be able to ob-
serve an unstable Tollmien-Schichting (TS) wave packet) us-
ing 3040 elements, 19 in the direction normal to the plate and
160 along the plate. The total number of points is 304000.
In the 3D cases the computational box was shorter and thus
we used 124 elements in the streamwise direction. However
we needed 3 elements in the spanwise direction to resolve the
modulation of the Fourier modes and this gives a total number
of elements of 7068. Since these are 3D elements the total
number of points is 7068000. In both cases we cluster the
elements both in the wall-normal direction near the wall and
along the plate near the area of the leading edge. A section
of the computational grid located around the leading edge is
shown in Figure 1c).

RESULTS
We investigate the disturbances that give the largest tran-

sient energy growth. In order to determine the structure in
question we loop over different optimization times. Addition-
ally since the base flow is homogeneous in the spanwise direc-
tion, disturbances of different spanwise periodicity are consid-
ered separately. Owing to the cost of each optimization loop,
relatively few cases are considered. However, we are confi-
dent that the optimal structures are captured and the essential
physical mechanisms are included.

Optimal Initial Conditions
We consider optimal initial conditions where no assump-

tions are made about the location. Two and three dimensional
cases are studied.

Two-Dimensional Disturbances First we con-
sider two-dimensional disturbances. Figure 2b) reports results
for Reynolds numberRe = 3000. In this case we observe that
locally unstable TS-wave packets are generated and amplify
exponentially as they are convected downstream. The maxi-
mum time for energy growth is governed here by the down-
stream extension of the computational box, indeed a longer
box would yield longer optimization times and more space for
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Figure 3. Spatial structures for two-dimensional optimal ini-
tial condition and the corresponding responses.Re = 3000:
initial condition streamwise component a) and wall-normal
component b). Response streamwise component c) and wall-
normal component d).
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Figure 4. Contours of energy gain for different final times
and spanwise wavenumbers. The red dot corresponds to the
maximum energy gain. The levels are normalized with re-
spect to the energy of the initial condition. The corresponding
structures are shown in Figure 5

the exponential instability to grow. Additionally, we note a lo-
cal maximum for short optimization times which corresponds
again to a pure Orr-mechanism which is active on small time
scales. The energy decay seen for large optimization time is
due to the fact that these disturbances gradually exit our com-
putational box; thus their measurable energy decays.

In Figure 3 the spatial structures of the optimal dis-
turbances are shown where the optimal time isT = 300
(Re = 3000). The structures look rather similar, Orr-
structures generating wave-packets, in both cases (also seen
by Monokrousoset al. (2010) andÅkervik et al. (2008)).

Three-Dimensional Disturbances Consider-
ing three dimensional disturbances, one additional parameter
enters the problem, namely the spanwise wavenumberβ . To
determine the optimalβ we need to loop over an additional
parameter, as we do for the optimization time. These leads to
a two-dimensional parameter space we need to explore.

In Figure 4 we plot iso-contours of energy gain for differ-
ent optimization timesT and spanwise wavenumbersβ . We
see a clear peak at time,T = 90 and spanwise wavenumber
β = 2.0. In an attempt to understand the physical mechanisms

a) b)

Figure 5. Isosurfaces of the disturbance velocity of the
three-dimensional optimal initial condition(a) and the corre-
sponding flow response(b). The three components shown are
streamwise, wall-normal and spanwise (from top to bottom).
The energy gain isG = 1.3 ·103. The contour level of the is
chosen 30% of the maximum. Red corresponds to positive
and blue to negative disturbance velocity.

behind it we look at the spatial distribution of the disturbance
velocities. The three components of the optimal initial condi-
tion are shown in Figure 5a) and the corresponding response
in 5b) while the component-wise energy content is shown in
Table 1.

In Table 1 we see a strong component-wise energy
transfer which implies that the lift-up mechanism is ac-
tive: streamwise vortices induce streamwise streaks inside
the boundary layer. Similar results were obtained by Ander-
ssonet al. (1999) using the boundary layer equations and by
Monokrousoset al. (2010) in the global framework without
the leading edge. We observe that most of the initial energy is
in the spanwise and wall-normal direction, implying the exis-
tence of streamwise vortices that generate a large response is
the form of streamwise streaks which are seen in Figure 5b).
Additionally we see that the Orr-mechanism with the charac-
teristic upstream leaning structures contributes to some energy
gain.

From Figure (4) we see a rapid decay of the amplifica-
tion for long optimization times due to the limited box size.
The disturbance is forced to move upstream, in order to avoid
leaving the domain within that time and at some point it goes
upstream from the plate, towards the area of the flow where
there is no shear. On the other hand for short times, the lift-
up mechanism does not have enough time to fully exploit the
shear of the boundary layer.

As mentioned above the reported Reynolds number is
calculated based on the free-stream velocity, the half-width of
the plate and the fluid viscosity. This implies that all lengths
and hence wavenumbers are scaled with the half-width of the
plate. In order to compare with the results from previous stud-
ies like Monokrousoset al. (2010), where the wavenumber is
scaled with the displacement thickness, the length is multi-
plied with the ratio of the two Reynolds numbers since the
free-stream velocity and the viscosity are equal in both cases.
In those units the optimal wavenumber isβ ∗ = 0.67 which
is comparable to the value retrieved by Monokrousoset al.
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Initial disturbance Response

Streamwise 6.3 % 91.3%

Wall-normal 28.6% 1.8 %

Spanwise 65.1% 6.9%

Table 1. Energy content of each component for the three-
dimensional optimal initial and final condition. The energy
gain is G = 1.3 · 103. We observe a large component-wise
energy transfer.

(2010) (β ∗ = 0.55). A variation is to be expected due to the
inclusion of the leading edge in the computation.

Localized Optimal Initial Conditions
We study optimal initial conditions that are forced to be

localized in space. The method used is extensively described
in Monokrousoset al. (2010). These type of optimal initial
conditions allow us to study how a disturbance optimally pen-
etrates the boundary layer around the curved leading edge and
subsequently generates a perturbation that can have a strong
growth downstream inside the boundary layer.

Two-Dimensional Disturbances First we
study two-dimensional disturbances. We enforce the pertur-
bations to exist in a sub-domain upstream from the leading
edge. The optimization procedure gives the optimal shape
within that domain, allowing us to specifically study the
receptivity features. The results we obtain for this case
are much in line with those of Schraderet al. (2010). The
upstream-localized disturbances prove to be rather inefficient
in penetrating the boundary layer. They lose a lot of energy
during that phase and furthermore, the generated disturbance
inside the boundary layer consists of a wavepacket character-
ized by a relatively high streamwise wavenumber compared
to the one corresponding to the most unstable. Consequently
the exponential instability is not efficiently initiated resulting
in weak growth in the process.

It appears that the optimization procedure favors a stable
wave-packet over the unstable one since it probably has bet-
ter penetration properties (for this bluntness), that is, it loses
less energy during the penetration procedure and thus is more
optimal than the unstable one. To enhance the unstable wave-
packet we would need a much longer computational domain
with sufficient space for it to grow exponentially, which would
render this computation very expensive.

Three-Dimensional Disturbances As before
we perform a parametric study to find the optimal time and
spanwise wavenumberβ . In Figure 6 iso-contours of energy
gain for different optimization times and spanwise wavenum-
bers are shown for the case of the upstream localized distur-
bance. The red dot corresponds to the maximum. The optimal
disturbance occurs for timeT = 125 and spanwise wavenum-
berβ = 2.8. Comparing the values to the non-localized opti-
mal we see two main differences. First the optimization time
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Figure 6. Contours of energy gain of localized optimal
initial conditions for different final times and spanwise
wavenumbers. The red dot corresponds to the maximum en-
ergy gain. The levels are normalized with respect to the en-
ergy of the initial condition. The levels are normalized with
respect to the energy of the initial condition.

Initial disturbance Response

Streamwise 17.7 % 93.6%

Wall-normal 36.7% 1.8 %

Spanwise 45.6% 4.6%

Table 2. The table shows the component-wise energy con-
tent of each component for the initial and final condition. The
energy gain wasG = 1.2·102

is longer and alsoβ is higher. The increased time was ex-
pected since the perturbation spends some time upstream from
the leading edge and during the penetration phase. Addition-
ally the total energy gain is lower but this is expected since we
enforce to structure to be in a certain region and this leads to
less than the global optimal performance.

We have seen already that the receptivity to purely two-
dimensional disturbances is very weak and that can possibly
explain why the optimalβ is increased for the upstream lo-
calized case, it may become less optimal with respect to the
lift-up mechanism but at the same time it is less damped by the
leading presence of the leading edge. The two trends seem to
balance atβ = 2.8 (β ∗ = 0.93).

The physical mechanisms pertaining to energy gain ap-
pear to be the same with the exception that the Orr-mechanism
is not present. This is attributed to the fact that there is no
shear where the perturbation is initiated hence no energy can
be gained from an upstream leaning structure.

From Table 2 we see that most of the energy of the pertur-
bation lies in the normal to the streamwise direction compo-
nents and also the streamwise structure is almost constant im-
plying streamwise vortices that generate streaks downstream
inside the boundary layer.

The total energy gain is substantially weaker relative to
the non-localized optimals. This can be attributed to the fol-
lowing: in this case the Orr-mechanisms can not contribute
(no shear in the initial phase) and also the lift-up effect is
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happening further upstream relative to the non-localized case
which corresponds to lower Reynolds number and thus lower
transient growth potential, see Anderssonet al. (1999).

CONCLUSIONS

We have applied a Lagrange multiplier technique using
the direct and adjoint linearized Navier-Stokes equations in
order to quantify the disturbance growth potential in a flow
around a flat plate with an elliptic leading edge at moderately
high Reynolds numbers. We consider the optimal initial con-
dition leading to the largest possible energy amplification at
time T . Additionally we compute the localized optimal dis-
turbance upstream from the leading edge. This method can
be used to create a modal basis and project free-stream distur-
bancesi.e. a direct method for computing receptivity coeffi-
cients for externally excited flows. The optimization frame-
work adopted does not restrict us to assume slow variation of
the base flow in the streamwise direction, common to both the
first order approximation of the Orr–Sommerfeld/Squire for-
mulation and the more advanced Parabolized Stability Equa-
tions approximation; moreover, it allows us to include curved
geometries and fully three dimensional configurations.

We find that the two-dimensional initial condition with
the largest potential for growth is a TS-like wave packet that
includes the Orr mechanism in their initial phase and is lo-
cated inside the boundary layer, downstream of the leading
edge. Its growth is linked to the exponentially unstable eigen-
modes of the Blasius boundary layer and is limited by the
streamwise extent of the computational box. The three di-
mensional case shows a peak in the energy much earlier in
time (and space) for spanwise wavenumberβ = 2.0, relevant
to the well understood lift-up mechanism. This number is in
close agreement with earlier studies of similar nature.

The localized optimal initial conditions are more inter-
esting since they allow for better understanding of the effects
of the leading edge and its receptivity properties. Distur-
bances are placed upstream in the free-stream. We find that
the two-dimensional disturbances are rather inefficient at trig-
gering an unstable wave-packet in order to exploit the con-
vective instability of the boundary layer. The flow around the
leading edge has a strong effect on these type of disturbances,
i.e. it has a strong damping effect and the later evolution of the
disturbance is dominated by this effect. In particular a stable
wave-packet is generated and its energy just decays as it prop-
agates downstream inside the boundary layer. This indicates
that the unstable wave-packet is so strongly damped by the
leading edge flow that is never favored by the optimization.

The three-dimensional disturbances though exploit the
lift up mechanism very efficiently at a very early stage. The
generated streaks are located further from the wall than the
TS-wave and thus do not suffer from the loss of energy due
to diffusion to the free-stream. Additionally, their streamwise
wavenumber is very low and does not seem to be heavily af-
fected by the low local Reynolds number in the area. This
mechanism is proven to be very robust.
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