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ABSTRACT
In order to develop a new mixing procedure, we con-

duct DNS (direct numerical simulation) of vector controlled
free jets. The inflow velocity of jet is periodically oscil-
lated perpendicular to the jet axis. To realize the high accu-
rate computation, a discretization in space is performed with
hybrid scheme in which Fourier spectral and 6th order com-
pact scheme are adopted. From visualized instantaneous vor-
tex structures, it is found that the flow pattern considerably
changes according to the oscillating frequency, i.e., according
to the increasing the frequency, wave, bifurcating and flapping
modes appear in turn. In order to quantify mixing efficiency
under the vector control, as the mixing measure, statistical en-
tropy is investigated. Compared to the uncontrolled jet, the
mixing efficiency is improved in order of wave, flapping and
bifurcating modes. So the vector control can be expected for
the improvement of mixing efficiency. Further to make clear
the reason for the mixing enhancement, Snapshot POD and
DMD method are applied. The primary flow structures under
the vector control are demonstrated.

Introduction
In order to enhance mixing or diffusion in many indus-

trial applications, jet mixing control has been examined. The
control methods used for jet mixing are categorized into ei-
ther passive or active methods. Irrespective of the method,
understanding the mixing state is indispensable for realizing
an effective jet control. The results of liner stability analy-
ses reveal that there are two types of dominant modes char-
acterizing the large-scale flow structures near field of a jet,
namely, varicose and helical modes, and diffusion or mixing
is effectively controlled through these modes. Further, it is
well known that a complex jet is made of a combination of
these modes (Reynolds et al., 2003). For example, a flapping
mode comprises a pair of helical modes with the same fre-

quency and the same amplitude. Further, it is experimentally
confirmed that when the axial mode is added to them, a bifur-
cating jet or a blooming jet is formed (Reynolds et al., 2003).
Such an active control was also investigated using DNS (direct
numerical simulation) (Hilgers et al., 2001; Silva et al., 2002),
and induced the generation of strong diffusion. Although the
effectiveness of these active control methods has already been
demonstrated thus far, using simple estimations involving the
jet width, mean streamwise velocity, turbulence intensity, and
so on, it is not well enough to estimate the mixing efficiency
using the reliable procedure. In particular, we investigated
compound jets (Tsujimoto et al., 2006) and found that their
mixing efficiency could not be determined using the simple
measure developed for an axisymmetric jet. Therefore, we in-
vestigated an appropriate measure for quantifying the mixing
efficiency and found that statistical entropy became a good
measure (Tsujimoto et al., 2009).
In the present study, from a different view of control method,
we focus on the vector control in which an inflow direction
varies periodically. In order to investigate the performance of
the proposed method, the DNS of axisymmetric jet under the
vector control are conducted and the vortical structures are vi-
sualized; the mixing efficiency based on the mixing measure
are quantified; further to make clear the reason for the mixing
enhancement, Snapshot POD and DMD method are applied.

Numerical method
Under the assumption of incompressible and isothermal

flow, the dimensionless governing equations are as follows:

∂ui

∂xi
= 0 (1)

∂ui

∂ t
+hi = − 1

ρ
∂ p
∂xi

+
1
Re

∂ 2ui

∂x j ∂x j
(2)

1



Figure 1. Coordinate system and computational domain

Figure 2. Definition of inflow condition

(hi = εi jkω juk,ω j : vorticity)
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The nonlinear terms are expressed in the rotational form to
conserve the total energy; therefore,p represents the total
pressure. For the characteristic length and velocity, the nozzle
diameterD and the streamwise velocityV0 =V1−V2(V1,V2 re-
fer to Eq. (4)) were chosen for nondimensionalization, respec-
tively. The Reynolds number is defined asRe= V0D/ν (ν :
kinematic viscosity). A Cartesian coordinate system is em-
ployed in whichy is the streamwise direction andx andz are
the lateral directions. Spatial discretization is performed us-
ing a hybrid scheme that adopts a sixth-order compact scheme
(Lele, 1992) in the streamwise direction and a Fourier series in
the lateral directions. In order to remove the numerical insta-
bility due to the nonlinear terms, the 2/3-rule is applied to the
lateral directions, and implicit filtering is carried out for the
streamwise direction using the sixth-order compact scheme.
A third-order Adams-Bashforth method is used for time ad-
vancement. The well-known MAC scheme is employed for
pressure-velocity coupling, which generates a Poisson equa-
tion for the pressure. After the Poisson equation is Fourier
transformed in thex andz directions, independent differen-
tial equations are obtained for each wave number and then
discretized using the sixth-order compact scheme. Finally, a
pentadiagonal matrix is deduced for each wave number. In
the present simulation code, the matrix is solved using the LU
decomposition method. The outflow boundary condition is in-
troduced for both the momentum and the energy equations by
solving the simplified convective equations

Calculation conditions
Figure 1 shows a schematic of the flow field. The inlet

velocity distribution is assumed to be top-hat type, which is
defined as follows:
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Table 1. Calculation conditions of vector controlled jets

fine coarse

Domain 20D×30D×20D

Grid number 256·300·256 128·150·128

Re number Re=V0D/ν = 1500

Prl number Pr = ν/α = 0.707

Frequency
condition

0.000, 0.010,
0.040, 0.400

0.030, 0.032,
0.035, 0.038,
0.100, 0.180,
0.200, 0.250,
0.280, 0.330,
0.350

Max angle α0 = 5

whereV1 andV2 are the center velocity and co-flow velocity,
respectively.θ0 denotes the initial momentum thickness.r is
the distance from the jet axis, andR(= D/2) is the radius of
the inlet jet. These parameters are selected by referring to the
literature [3]: V1 = 1.075V0, V2 = 0.075V0, andR/θ0 = 20.
The following thermal boundary conditions are assumed: the
ambient temperature is constant atT0 and the inflow tem-
perature isT1 at the region where the absolute value of the
inflow velocity is larger thanV2. Computational conditions
such as the size of computational domain, the Reynolds num-
ber, the Prandtl number are(Hx,Hy,Hz) = (20D,30D,20D),
Re= 1500 andPr = 0.71, respectively. The grid number is
(Nx,Ny,Nz) = (256,300,256) for a fine case,(Nx,Ny,Nz) =
(128,150,128) for a coarse case. The statistical properties are
averaged over the time. The mean quantity is denoted with
bar( ) and fluctuating components, by prime(′).

In the present calculation, as shown Fig.2, the inflow di-
rection varies alongz direction so that the inflow condition
mimics vector control. Further, to maintain a constant rate of
inflow in the computational volume, the inflow velocity com-
ponent is estimated as follows:

u(x,0,z) = urad

v(x,0,z) = Vb(r)cos(α)+vrad (5)

w(x,0,z) = −Vb(r)sin(α)+wrad

(r =
√

x2+(zcos(α))2 , α = α0sin(2π f t))

wherer is the distance from the jet center line.α is the in-
clination angle shown in Fig.2, andα0 (=5◦) is the maximum
inclination angle.f is the oscillating frequency. In the above
equations, a random perturbation(urad,vrad,wrad) with 1% of
the strength ofV0 is superposed on the inflow mean velocity.
The calculation conditions are summarized in Table 1.
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Figure 3. Instantaneous vortex structures (Q= 0.05) at various St numbers

Results and discussions
Vortical structures

In order to investigate the effect of the oscillating fre-
quency, the isosurface of the second invariance of the velocity
gradient tensor,Q (=0.05), is visualized from a perpendicular
view to the oscillating plane, as shown in Figs.3. Although the
oscillating angle at the inflow position is small,i.e., α0 = 5◦,
the controlled jets (St ̸= 0) spread downstream with an an-
gle larger than the oscillating angle. In the uncontrolled case
(St = 0), the vortex rings are formed upstream (left side of
each figure), and then, they break down and entangled tube
structures appear downstream. Further, with increasing os-
cillating frequency, the flow pattern changes considerably: at
St = 0.01, although the fine-scale structure is similar to that
of the uncontrolled case, a large-wavelength oscillation oc-
curs downstream, and hereafter, this pattern is called the wave
mode. AtSt = 0.03, although the wavelength is shorter than
that atSt= 0.01, the wave mode is retained. AtSt= 0.032 and
0.035, the wave mode is blurred. AtSt = 0.04, a bifurcating
mode, in which the jet separates into two distinct components
begins to appear; atSt = 0.1, the bifurcating mode is stable.
At St = 0.18 and 0.2, the bifurcating mode is markedly en-
hanced. AtSt = 0.25, the vortices are generated downstream
between the two separated jets. AtSt = 0.28, 0.33, 0.35, and
0.40, this tendency of generation of vortical structures con-
tinues irrespective of theSt value. AtSt = 0.4, after flowing
from the nozzle, strong hair-pin-like structures are alternately
formed upstream. These structural features are similar to the

flapping excitation observed in our previous studies [5] and
other results [3]. In the present paper, this pattern is called
the flapping mode. The above mentioned results show that
the wave mode is predominant at the lowSt values, the bi-
furcating mode is predominant at mediumSt values, and the
flapping mode is predominant at highSt values. It should be
noted that in the previous research(2),(5),(6), a strong axial dis-
turbance in the axial direction and a weak disturbance in the
azimuthal direction were added at the jet nozzle exit result-
ing in the generation of the bifurcating mode; however, our
proposed method is also capable of producing a similar flow
mode. In addition, by varying the oscillating frequency, the
vector control method is capable of easily controlling the flow
mode. Hereinafter, we focus on the fine-resolution data atSt
= 0.01, 0.04,and 0.4 and investigate the flow properties and
mixing efficiency at theseSt values.

Mixing characteristics
In order to quantify the mixing state, Everson et

al.(1998)investigated the statistical entropy based on the pas-
sive scalar concentration, and they demonstrated the charac-
teristics of this measure by examining the experimental data.
As well as we validate this mixing measure based on the DNS
data of active controlled jet (Tsujimoto et al., 2009) In the
following, we provide a simple explanation of this measure.

Boltzmann proposed the statistical entropy, which is de-

3



0 10 20 30

10

20

30

40 Free jet
St=0.01
St=0.04
St=0.4

y/D

S/
S 0

Figure 4. Mean the statistical entropy distribution

St=0.00 St=0.01

St=0.04 St=0.4

Figure 5. Contour of statistical entropy on the y-z plane
through the jet centerline.

fined as the logarithm of combination,W.

S= k lnW (6)

wherek is the Boltzmann constant.W is the combination
of the number of molecules in thei-th coarse-grained cell,
Ni , namely,W = N!

N1!N2!···NM ! = N!
∏Ni !

. Since incompressible
flow is assumed in the present study, the temperature can be
related to the concentration of the passive scalar,i.e., φ =
(T −T2)/(T1−T2). Considering the small volume surround-
ing a grid pointi, ∆V(= ∆x∆y∆z), the number of molecules is
denoted byNi = φi∆V; therefore,

S= k∆V
[
Φ lnΦ−

M

∑
i=1

φi lnφi

]
(7)

whereΦ = ∑φi

In order to investigate the streamwise variation of the
statistical entropy,S is summed over the plane perpendicu-
lar to the streamwise direction, and̄S is defined asSnormal-
ized with the inflow quantity,S0. M represents the number of
grids on thex−z plane;M = 65,536 (= 256×256). As shown
in Fig. 4, the statistical entropy increases downstream in the
order of the wave-, flapping-, and bifurcating cases. This is
reflected in the increase of randomness downstream and the
mixing enhancement due to the vector control. When a larger

total number of molecules exist in space, the statistical en-
tropy is greater. In other words, this measure reflects the phys-
ical property corresponding to the jet expansion. However, if
the same number of molecules is distributed between different
jets, the first terms of Eq. (7) does not represent the difference
concerning the mixing property; thus it seems that the second
term of Eq. (7) includes the substantial properties for mixing,
despite the fact that the magnitude of this term is smaller than
that of the first one. From this reason, in our previous paper
(Tsujimoto et al., 2009), we visualized theφi lnφi , and found
that the high-value region corresponds to the mixing region.
In order to determine the location of the highly mixed region,
the local mixing measures is visualized. Figures 5 show the
iso-contours of the component of fluctuating entropy,φi lnφi ,
on they− z plane through the jet centerline. In all cases, the
fluctuating entropy is strong in the region where a strong up-
stream shear layer is related to the vortical structures. Further
downstream, corresponding to the extension of jet diffusion,
the distribution of the fluctuating entropy also spreads in the
ambient,and unlike the distribution of the passive scalar, the
mixing region is well visualized using the fluctuating entropy.

Extracted structures with Snapshot POD
method

So far statistical extractions of structures from various
turbulent flows are conducted using POD (proper orthogonal
decomposition) method. When the conventional POD is ap-
plied to three-dimensional problems, a huge eigenvalue prob-
lem which is not substantially not resolved, occurs. To avoid
this problem, Snapshot POD (SPOD) method has been pro-
posed by Sirovich (1987). In the present study, in order to
investigate the dynamics of flow structures under the vector
control, SPOD method is is introduced. The SPOD method is
simply explained as follows:

It is assumed that a fluctuating velocity field is rep-
resented with eigenfunctions,φφφ i(xxx) and random coefficients,
ai(t).

uuu′′′(xxx, t) =
N

∑
i=1

ai(t)φφφ i(xxx) (8)

The eigenfunctionsφφφ i(xxx) andai(t) is substituted into a orig-
inal integral equation of the conventional POD method，the
following equation is obtained.

Cmna
n
i = λia

m
i (9)

whereλi is the i-th eigen value，an
i is the i-th eigenvector，

Cmn is two temporal correlation tensor defined as follows:

Cmn=
1
N

∫ ∫ ∫
V

uuu(xxx, tm)uuu(xxx, tn)dx (10)

The eigenvalue problem of Eq.(9) is solved and the eigenfunc-
tions are obtained.

φφφ i(xxx) =
1

Nλi

N

∑
n=1

an
i uuu(x, tn) (11)
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(a) normal mode(St=0.0)

(b) wavy mode(St=0.01)

(c) bifurcating mode(St=0.04)

(d) flapping mode(St=0.4)

Figure 6. Vector plots of eigenfunction (left column: 1st
mode; right column: 2nd mode)

In the POD method, it is well-known that the magnitude of
eigenvalues relate to the energy of the fluctuating velocity.
Hereinafter the eigenfunctions are arranged in the order of
increasing eigenvalues. The maximum and next eigenvalue
called as 1st and 2nd mode.

Figures 6 show the vector plots of eigenfunction iny−z
plane through the centerline. The pattern of both 1st and 2nd
mode demonstrate a similar trend with a certain phase-shift,
these mode contribute to the low-dimensional dynamics in
pairs. From Fig.6(a)(d), both the uncontrolled and the flap-
ping mode distribute downstream, suggesting that the vector
control influences indirectly on these mode. On the other
hand, for the low frequency case, the large-scale mode re-
lated to the vector control is predominant upstream. Since
the SPOD method extracts the flow mode on the basis of the
fluctuating energy, the mode is related to the region where
the time-averaged fluctuating energy is strong. Thus, the
upstream part of both the wavy and bifurcating mode is at-
tributed to the occurrence of pseudo turbulence due to the vec-
tor control. In addition, it is found that the small-scale motion
in the separated region of bifurcating jet contributes to a en-
hancement of scalar mixing.

Extracted structures with DMD method
Recently as a new analysis tool, DMD (Dynamic mode

decomposition) method is proposed by Schmid (2010). Dif-
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ferently to the POD method, since the DMD is easily capable
of extracting the temporally periodic mode, thus it is consid-
ered that this method is useful to examine the dynamics under
the vector control. The DMD method is simply explained as
follows: For the velocity fielduuum = uuu(xxx, tm) it assumes a lin-
earized relationship between time steps

uuum = AAAuuum−1 (12)

Since it needs a huge computer power to directly solve the
eigenvalue problem of matrixAAA, Companion matrix,CCC which
approximatesAAA, is introduced.

uuum = AAAuuum−1 = c0uuu0+ · · ·+cm−1uuum−1 = KKKccc (13)

AAAKKK = KKKccc (14)

where KKK = [uuu0,uuu1, · · ·uuum−1],ccc = [c0, · · · ,cm−1] Solving the
eigenvalue problem of matrixCCC, its eigenfunction is obtained:

CCC= TTT−1ΛΛΛTTT (15)

TTT is the eigenvector of matrixCCC，TTT−1 is the inverse one. Also
the eigenvalue ofCCC, i.e.,ΛΛΛ = diag(λ1, . . . ,λm) are the primly
part of the eigenvalue ofAAA. Finally, the eigenvectors ofAAA, VVV
are given by this equation.

VVV = KKKTTT−1 (16)

Figure 7(a) shows the plots of the eigenvalue of uncontrolled
jet using the DMD method. The eigenvalueλ is a com-
plex number and all one distribute on the unit circle. Fig-
ure 7(b) is the magnitude of eigenvalues. In the fig., the ab-
scissa axis is the Strouhal number StD(= ℑ[ωi ]D/2πV0) de-

fined with ωi =
(

logλi
∆t

)
．The strength of mode depends on
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(a) normal mode(St= 0.0,StD ≈ 0.302 mode)

(b) wavy mode(St= 0.01,StD ≈ 0.00993 mode)

(c) bifurcating mode(St= 0.04,StD ≈ 0.0399 mode)

(d) flapping mode(St= 0.4,StD ≈ 0.399 mode)

Figure 9. Vector plots of unstable mode extracted with DMD
nethod (left column: imaginaly part mode; right column: real
parte)

the Strouhal number and increases with decreasing the fre-
quency. Figure 8 shows the map ofω of the uncontrolled
jet. In the Fig. ωr is the real part ofω, that means the rate
of amplification;ωi is the imaginary part, which corresponds
to the temporal frequency. It should be noted that when the
ωr approaches zero, the mode tends to stably exist among all
mode,i.e., the mode nearest toωr = 0 is defined as a domi-
nant dynamic mode. From Fig.8 the dominant dynamic mode
of the uncontrolled jet,ωi ≈ 1.9. Here, the Strouhal num-
ber is estimated from this value , StD ≈ 0.302. Namely, it
founds that this value corresponds to the preferred mode(0.25
＜ Stp＜ 0.5). For the wavy, the bifurcation, and the flapping
mode, the Strouhal number of the dominant dynamic mode, is
StD ≈ 0.00993,0.0399,and0.399, respectively. It is interest-
ing to note that the dominant dynamic mode quit agree well
with the frequency of vector control.

Figures 9 show the vector plots of eigenfunction of the
dominant dynamic mode. Similar to the relation of 1st and
2nd mode of SPOD, the pattern of both real and imaginary
part of dynamic mode demonstrate a similar trend with a cer-
tain phase-shift. From Fig.9(a), corresponding to the preferred
mode of uncontrolled jet, the small-scale mode are formed

around the broken down of the potential core. The wavy and
bifurcating mode in Fig.9(b)(c) demonstrate the large-scale
pattern upstream and the similar to the 1st and 2nd mode of
SPOD in Fig.6(b)(c). For the flapping mode, the small-scale
mode due to the vector control appears upstream region as
well as other controlled mode.

Conclusions
In order to improve the mixing performance of free jet,

the vector control as the useful method is proposed. As the
control parameter, the oscillating frequency varies, and the
flow and scalar field are investigated. Conclusions are as fol-
lows:

1. From the instantaneous view of flow field, it is found
that according to the increasing of oscillating frequency,
wavy, bifurcating and flapping mode appear in turn. It
suggests that the changing oscillating frequency is capa-
ble of controlling easier the flow state.

2. From the mixing measures using the statistical entropy,
it is found that the mixing efficiency is improved in or-
der of the wave-, the flapping- and the bifurcating mode
compared to the uncontrolled jet.

3. Using Snapshot POD method and DMD method, the pri-
mary flow structures under the vector control is demon-
strated, in particular, it founds that the frequency of the
dominant dynamic mode quite agree well with the con-
trol frequency.
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