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ABSTRACT
The present study considers a reformulation of the

Durbin’s (1993) ERM-based second-moment closure model
aiming at reduction of the numerical stiffness originating
from the wall boundary conditions. The reformulation
performed represents an analogy to the procedure Hanjalic et
al. (2004) proposed when deriving the eddy-viscosity-based
ζ − f model. The presently reformulated model alternatively
solves the transport equations for the ratio of the Reynolds
stress components to turbulent kinetic energy ζi j = uiu j/k,
instead of equations governing the Reynolds stress tensor. It
is believed that the boundary conditions of the newly derived
elliptic relaxation equations will contribute to the numerical
robustness of the model with respect to the immediate wall
vicinity. Another advantage, analogously to the Hanjalic’s
et al. ζ − f model, is the appearance of the Reynolds stress
production rate (representing an exact formulation) in the
ζi j equations instead of dissipation rate ε (originating from
the corresponding model equation). Application of the
present model formulation to a plane channel flow in a range
of Reynolds numbers up to Reτ = 2003 results in a good
agreement with available DNS database.

Introduction
The application of the elliptic relaxation method (ERM),

introduced by Durbin (1993), led to a substantial improve-
ment of the modelling of the velocity-pressure gradient
correlation in the second-moment closure models. This
method has a solid theoretical basis whose application avoids
the use of empirical wall-damping functions. However, the
implementation of the method suffers numerical difficulties
due to boundary conditions in the elliptic relaxation equa-
tions, which make the computations sensitive to the near-wall
grid resolution. Contrary to the majority of other near-wall
turbulence models, this method does not tolerate very small
y+-values at the wall-closest grid nodes. The same numerical
problems also appear in the ERM-based eddy viscosity
model (EVM) version, denoted by v2 − f model, proposed
by Durbin in 1991. In order to reduce the problem of the nu-

merical stiffness Hanjalić et al. (2004) proposed solving the
transport equation for the velocity scales ratio ζ = v2/k (∝ y2)
instead of v2 (∝ y4) to make the model more robust. Similar
model version has also been formulated by Laurence et al.
(2004). No such efforts have been done for the ERM-based
second-moment closure models. It should be furthermore
recalled that the ERM-based integration is concentrated only
to the near-wall region contributing strongly to the correct
damping of the eddy-viscosity by approaching the solid wall.
However, in the off-wall region the EVM models reduce to
their high-Reynolds number counterpart, representing the
standard k− ε model of turbulence, being burdened by all
known weaknesses: the production rate of k (representing
an exact term in second-moment closures) is modeled (no
sensitivity to the sign change of the mean velocity gradients),
the model performs purely in the transitional flows and flows
affected by swirl and rotation. In the complex turbulent and
transitional flows the prediction of the complete stress field
may be important. The second-moment closure models are
inherently capable of capturing all essential mean flow and
turbulence features. Here, we proposed an ERM-version
of the second-moment closure model group. Similar to the
strategy taken by Hanjalić et al. (2004), we solve the transport
equations for the variable ζi j = uiu j/k, instead of equations
for uiu j. The linear LRR-IP model (Launder et al., 1975) and
its version comprising the quadratic formulation of the slow
pressure-strain term (Jakirlić and Jester-Zürker, 2010) are
applied as the homogeneous pressure-strain term (φ h

i j) models
in the fi j equations. The predictive performance of this new
model formulation is tested in a channel flow configuration at
different flow Reynolds numbers.

Model of Durbin
In the ERM-based full Reynolds stress model of Durbin

(1993) the elliptic relaxation equation for the function fi j =
Πi j/k reads:

L2
∇

2 fi j− fi j =−1
k

φ
h
i j (1)
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L is the length scale and φ h
i j is the homogeneous part of the

pressure-strain correlation for which any high Reynolds num-
ber model may be adopted. The length scale L is defined as:

L = CL max

[
k2/3

ε
, Cη

(
ν3

ε

)1/4]
(2)

where ε is the dissipation rate of k and ν is the kinematic
viscosity coefficient. The model constants CL and Cη are fixed
to 0.2 and 80.0, respectively.

The equation governing the Reynolds stress tensor is:

Duiu j

Dt
= Pi j + k fi j +Dν

i j +D t
i j−

uiu j

k
ε (3)

where Pi j ,Dν
i j and D t

i j stand for production, molecular diffu-
sion and turbulent diffusion. The model by Daly and Harlow
(1970) is adopted for the turbulent diffusion in an appropri-
ately modified form:

D t
i j =− ∂

∂xl

(
cµ

σk
T ulum

∂uiu j

∂xm

)
(4)

with cµ = 0.23 and σk = 1.0. The time scale T is defined as:

T = max
[

k
ε
, CT

(
ν

ε

)1/2
]

(5)

where CT = 6.0.
Velocity-pressure gradient correlation Πi j is modeled

jointly with the stress dissipation tensor εi j:

k fi j = Πi j− εi j +
uiu j

k
ε (6)

Eq. (1) then becomes:

L2
∇

2 fi j− fi j =−1
k

(
φ

h
i j +ai jε

)
(7)

with ai j = uiu j/k− (2/3)δi j. In the homogeneous limit, it is
assumed that εi j = (2/3)εδi j.

For statistically two-dimensional flows, one shear stress
component, uv, and two normal stress components, u2 and
v2, are to be calculated, and the remaining normal stress
component, w2, is subsequently determined from the relation
w2 = 2k−u2− v2. The boundary conditions for fi j are:

f11 = 0, f22 =−20ν2

ε

v2

y4
1
, f12 =−20ν2

ε

uv
y4

1
(8)

with y1 representing the distance from the wall to the next grid
node. They are derived based on the examination of the bud-
gets of the Reynolds stress transport equations in the near-wall
region. The boundary conditions cause numerical problems
because the rapid change of the Reynolds stresses appearing
in the numerator is magnified by the small denominator value
being proportional to y4

1 (Eq. 8).

Present formulation
In the present study, the transport equations of ζi j ≡

uiu j/k are solved instead of equations of Reynolds stresses
uiu j. Following the definition of ζi j, the transport equations
of ζi j are derived from the equations of uiu j and k:

Dζi j

Dt
=

Pi j

k
+ fi j−

Pk

k
ζi j +ν∇

2
ζi j

+
∂

∂xl

(
cµ

σk
kζlmT

∂ζi j

∂xm

)
+2

ν

k
∂ζi j

∂xk

∂k
∂xk

+
2
k

(
cµ

σk
kζlmT

)
∂ζi j

∂xl

∂k
∂xm

(9)

with Pi j =−kζik∂U j/∂xk− kζ jk∂Ui/∂xk and Pk = (1/2)Pii.
The last two cross-derivative terms arose as a conse-

quence of the transformation of transport equation for uiu j
into ζi j-equation. Hanjalić et al. (2004) omitted such terms
for simplicity. The compensation was made by re-tuning
some of the model coefficients. Here, we kept the both cross-
derivative terms because the check of the budgets of the ζi j
equations in a channel flow indicated that they can not be ne-
glected (see corresponding discussion later). As the conse-
quence of this transformation the stress dissipation tensor εi j
does not appear in the transport equations of ζi j. The produc-
tion rate Pk appears instead, which represents an advantage
because the εi j-components are difficult to be correctly repro-
duced in the near-wall region, while Pk is an exact term and
needs no modeling.

For the homogeneous pressure-strain model term, we
adopted both the LRR-IP model (Launder et al., 1975):

Φ
h
i j =−c1εi j− c2

(
Pi j−

2
3

Pkδi j

)
(10)

with c1 = 1.22, c2 = 0.6, and the LRR-IP model extended to
account for the non-linearity in the slow pressure-strain term
(Jakirlić and Jester-Zürker, 2010):

Φ
h
i j =−c1εi j− c

′

1ε(aika jk−
1
3

δi jA2)− c2

(
Pi j−

2
3

Pkδi j

)
(11)

with A2 = ai ja ji, ai j = ζi j − 2/3δi j, c1 = 1.5, c
′

1 =
max [0.7A2;0.5]c1 and c2 = 0.6.

The transport equations for k and ε are:

Dk
Dt

=−kζlm
∂Ul

∂xm
−ε +ν∇

2k+
∂

∂xl

(
cµ

σk
kζlmT

∂k
∂xm

)
(12)

Dε

Dt
=−c

′

ε1
k
T

ζlm
∂Ul

∂xm
−cε2

ε

T
+

∂

∂xl

(
νδlm +

cµ

σε

kζlmT
∂ε

∂xm

)
(13)

with c
′

ε1 =−cε1(1+a1Pk/ε), cε1 = 1.44, a1 = 0.1, cε2 = 1.9
and σε = 1.65.
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Figure 1. Budgets of the ζi j-equation: (a) ζ22, (b) ζ12, (c)
ζ11. T 1: Pi j/k; T 2: fi j; T 3: −Pk/kζi j; T 4: νd2ζi j/dy2;
T 5: d(cµ/σkkζ22T )dζi j/dy; T 6: 2ν/kdζi j/dydk/dy; T 7:
2/k(cµ/σkkζ22T )dζi j/dydk/dy.

Boundary conditions
Provided that the fluctuating velocity can be expanded in

terms of the wall distance y:

ui = ai +biy+ ciy2 + . . . (14)

the wall values of ζi j can be derived as:

ζ22 = ζ12 = 0 (15)

and

ζ11 =
2b1b1

b1b1 +b3b3
(16)

The boundary condition of ζ11 indicates its finite value
at the wall, though it is not known. For the fully developed
channel flows it is found that ζ11 has a fairly weak depen-
dence on the Reynolds numbers. Therefore, in our practical
applications, we use a finite value originating from the DNS
database (only) at the start of the iteration procedure, while
the boundary condition is specified as:

∂ζ11

∂y

∣∣∣∣
wall

= 0 (17)

which is quite reasonable and we met no practical difficulties.
The balance between leading terms in the ζi j-equation

becomes in the near-wall region:

lim
y→0

(
fi j +ν∇

2
ζi j +2

ν

k
∂ζi j

∂xk

∂k
∂xk

)
= 0 (18)

from which the boundary conditions are deduced as:

f11 = 0, f22 =
−10νζ22

y2
1

, f12 =
−4νζ12

y2
1

(19)

It can be seen that the denominators in the expressions
for f22 and f12 are proportional to y2

1 instead of y4
1 as it was

in the Durbin’s ERM-based Reynolds stress model. This is
an advantage with respect to the reduction of the numerical
stiffness of the ERM-based models. The boundary conditions
for k and ε are:

k = 0, ε =
2νk1

y2
1

(20)

with k1 representing the value of k at the wall-adjacent grid
node.

Formulas for the fully developed channel flow
The present model was applied to a fully developed plane

channel flow. The corresponding partial differential equations
were simplified to a set of the one-dimensional ordinary dif-
ferential equations as follows:
• the momentum equation:

0 =− 1
ρ

dP
dx
− duv

dy
+ν

d2U
dy2 (21)
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Figure 2. Results obtained by present formulations with linear and non-linear φ h
i j models compared with the original ERM-model

and DNS in a plane channel flow at Reτ = 395: (a) U+, (b) k+, (c) ε+, (d) uiu j
+, (e) ζi j and (f) asymptotic behavior of v2+

and
k+ by approaching the wall.

• the transport equations for the ζi j-components:

0 =
P11

k
+ f11−

Pk

k
ζ11 +ν

d2ζ11

dy2

+
d
dy

(
cµ

σk
kζ22T

dζ11

dy

)
+2

ν

k
dζ11

dy
dk
dy

+
2
k

(
cµ

σk
kζ22T

)
dζ11

dy
dk
dy

(22)

0 = f22−
Pk

k
ζ22 +ν

d2ζ22

dy2

+
d
dy

(
cµ

σk
kζ22T

dζ22

dy

)
+2

ν

k
dζ22

dy
dk
dy

+
2
k

(
cµ

σk
kζ22T

)
dζ22

dy
dk
dy

(23)
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0 =
P12

k
+ f12−

Pk

k
ζ12 +ν

d2ζ12

dy2

+
d
dy

(
cµ

σk
kζ22T

dζ12

dy

)
+2

ν

k
dζ12

dy
dk
dy

+
2
k

(
cµ

σk
kζ22T

)
dζ12

dy
dk
dy

(24)

• the elliptic relaxation equations for fi j-components:

L2 d2 f11

dy2 − f11 =
2

3T
− ζ11

T
−

φ h
11
k

(25)

L2 d2 f22

dy2 − f22 =
2

3T
− ζ22

T
−

φ h
22
k

(26)

L2 d2 f12

dy2 − f12 =−ζ12

T
−

φ h
12
k

(27)

• the transport equation for k:

0 =−kζ12
dU
dy
− ε +

d
dy

(
ν +

cµ

σk
ζ22T

)
dk
dy

(28)

• the transport equation for ε:

0 =
c′

ε1Pk− cε2ε

T
+

d
dy

(
ν +

cµ

σε

ζ22T
)

dε

dy
(29)

Results
The equations were solved by means of finite difference

method. All spatial derivatives were discretized by a second-
order central differencing scheme. A non-uniform grid sys-
tem of totally 201 grid points in the wall-normal direction was
used. Because of the strongly coupled non-linear equations, a
pseudo temporal scheme was introduced. All results are nor-
malized by friction velocity uτ and kinematic viscosity ν .

Fig. 1 depicts the budgets of ζi j-equations corre-
sponding to the present model with the non-linear φ h

i j
formulation at Reτ = 395. The cross-derivative terms
2ν/k(dζ22/dy)(dk/dy) and 2ν/k(dζ12/dy)(dk/dy) being
balanced by the elliptic relaxation functions f22 and f12 re-
spectively display a certain influence in the near-wall region.
The last cross-derivative term on the right hand side of Eq. (9)
is negligible for all three components, but as it may be impor-
tant in more complex flows it is retained in the present model.

Fig. 2 shows the results obtained by the present model
at Reτ = 395, combined with both linear and non-linear φ h

i j
formulations, compared with the Durbin’s ERM-RSM and
the DNS data (Iwamoto et al., 2002). The mean velocity
U+ is predicted well by both present φ h

i j model formulations,

(a)

(b)

(c)

Figure 3. Channel flow at different Reynolds numbers com-
puted by the present method with LRR-IP model: (a) U+, (b)
v2+

and (c) uv+. The profiles for Reτ =300, 650 and 950 have
been displaced at the y+-axis for legibility.

Fig. 2(a). Turbulent kinetic energy k+ exhibits somewhat
better agreement by the non-linear formulation in the region
20 ≤ y+ ≤ 100, Fig. 2b. The predictions of the dissipation
rate ε+ by all three models used are of the similar quality, Fig.
2(c). Fig. 2(d) displays the Reynolds stress component pro-
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files. The v2 and uv components are predicted well by all three
models. A somewhat better agreement of the u2-component is
obtained in the region 20≤ y+ ≤ 100 when combined with the
LRR-IP model. However, the peak of u2 exhibit a certain un-
derestimation, while the w2-peak is overestimated. The adap-
tation of the non-linear φ h

i j model version in the present for-
mulation improves substantially the maximum values of both
u2 and w2 stress components. Fig. 2(e) illustrates the predic-
tion of the ζi j components. Some departures of ζ11, ζ22 and
ζ33 in the area away from the wall have no noticeable effects
on the prediction of the Reynolds stresses, as seen in Fig. 2(d).
The asymptotic behavior of v2+

and k+ depicted in Fig. 2(f)
follows closely the theoretical findings: v2+

∝ y4 and k+ ∝ y2

(the correct asymptotic behavior of uv ∝ y3 - not shown here
- was also obtained). Both linear and non-linear φ h

i j model
formulations resulted in the same behavior, therefore only the
profiles obtained by the linear model are presented.

The present model is furthermore tested at different
channel flow Reynolds numbers. Fig. 3 illustrates the predic-
tion of U+, v2+

and uv+ at different friction velocity-based
Reynolds numbers Reτ =300, 650, 950 and 2003. The re-
sults are compared with the DNS data of Iwamoto et al.(2002)
at Reτ = 395 and 650 and DNS data of Hoyas and Jiménez
(2008) at Reτ = 950 and 2003. Here, the present model was
coupled with the linear φ

+
i j (actually LRR-IP) formulation.

The mean velocity and the shear stress component are well
reproduced across the entire channel, Fig. 4(a) and (c). The
peak of the wall-normal stress component v2+

(Fig. 3(b))
tends to be over-predicted. The employment of the non-linear
model formulation (computations are in progress) should con-
tribute to an appropriate reduction.

Fig. 4 shows the friction factor (C f ) development in
terms of the Reynolds number (Reτ = 300,650,950 and 2003)
predicted by the present linear model. Results are compared
with the available DNS data, the Dean’s:

C f = 0.073Re−0.25
m (30)

and Jones’ empirical formulations:

1
C0.5

f
= 4log(RemC0.5

f ) (31)

Here, Rem is the Reynolds number based on the bulk velocity
Um and channel half width δ . The prediction of C f is in good
agreement, especially with the DNS results.

Conclusions
The issue pertinent to numerical difficulties in the

Durbin’s elliptic relaxation method has been investigated in
the present work. A modified formulation of the ERM-based
second-moment closure model is presented, which is sup-
posed to reduce the stiffness of the initial ERM-based model
by using the equation for ζi j ≡ uiu j instead of uiu j . This
yields more robust boundary conditions for the elliptic relax-
ation equations. Reasonable results are obtained for a plane
channel flow by the proposed formulation. The performance
of the modified formulation with respect to the results qual-
ity is similar to the original model. This model formulation
should be further tested in more complex flow configurations.
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