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ABSTRACT
We present a streamwise-constant model of turbulent

pipe flow forced by stochastic noise and focus particularly
on the influence of the no-slip boundary condition in the az-
imuthal direction on the flow behavior. With a no-slip bound-
ary condition at the wall, our model captures the formation of
“streamwise-constant puffs”, so-called due to the good agree-
ment between the temporal evolution of their velocity field
and the projection of the velocity field associated with three-
dimensional puffs in a frame of reference moving at the bulk
velocity. The three-dimensional puffs were observed exper-
imentally by Hof et al. (2004) and Nishi et al. (2008), and
simulated numerically by Shimizu & Kida (2009). When we
allow for slip in the azimuthal direction, we no longer observe
the quasi-periodic generation of puffs, instead the flow stays
away from the laminar state for extended periods of time. We
observe that, for a given forcing amplitude, a larger blunting
of the velocity profile is realized when we allow for slip in
the azimuthal direction and we relate this larger amplification
to the existence of self-sustained solutions of the linearized
streamfunction equation with slip at the wall.

INTRODUCTION
Streamwise-elongated structures have been shown to

play an important role in pipe flow transition (van Doorne &
Westerweel, 2009), as well as in fully developed turbulence
(Kim & Adrian, 1999; Morrison et al., 2004; Guala et al.,
2006), and take the form of quasi-streamwise vortices and
streaks of the axial velocity. Pipe flow transition is a two-step
process (Mellibovsky et al., 2009) characterized by the gener-
ation of puffs followed by their expansion in space and merg-
ing, leading to fully developed turbulence. The puffs corre-
spond to the flow response to large amplitude disturbances at
low Reynolds number and are characterized by a sharp trailing
edge and a smooth leading edge (Wygnanski & Champagne,
1973). The dominant flow structures inside a puff are quasi-

streamwise vortices and streaks, as observed in the particle-
image-velocimetry (PIV) measurements of Hof et al. (2004),
and are independent of the method used to generate the puff
(Wygnanski & Champagne, 1973). The velocity profile inside
a puff exhibits a blunter shape compared to laminar which is
typical of pipe flow turbulence.

Linear models of pipe flow, e.g. Schmid & Henningson
(1994), capture the general characteristics of the large-scale
structures that play an important role in the flow dynamics but
are unable to reproduce the change in mean flow associated
with the transition to turbulence. The presence of nonlinear
terms is required in order to obtain a blunting of the velocity
profile. The 2D/3C model for Couette flow by Gayme et al.
(2010), so called because it describes the evolution of the three
components of velocity in a plane perpendicular to the mean
flow direction, successfully captures the blunting of the veloc-
ity profile and turbulence intensities.

A 2D/3C model for the pipe was derived from the Navier-
Stokes (NS) equations by Joseph & Tao (1963) and is sig-
nificantly simpler and more tractable than the 3-dimensional
Navier-Stokes equations. Inspired by the work of Gayme
et al. (2010) we add small-amplitude stochastic forcing to
the 2D/3C model, which takes into account the perturba-
tions present in experiments as well as unmodelled effects.
The background noise is highly amplified by the flow due to
the non-normality of the governing operator (Reddy & Ioan-
nou, 2000), resulting in the generation of streamwise vortices
which convect axial momentum to create streaks. An inno-
vative feature of our model, as explained in Bourguignon &
McKeon (2011), is the convection of the streaks in the radial
direction by the action of the nonlinearities, which leads to a
change in mean flow reflecting the transition to turbulence.

In the following sections, we present the streamwise-
constant model for pipe flow and the numerical methods used
to simulate the flow. We describe the response of our model to
stochastic forcing, considering at first no-slip boundary con-
ditions (BCs) and then allowing for slip in the azimuthal di-
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rection. We relate our results to the difference in amplifica-
tion obtained using deterministic forcing of the streamwise
momentum equation with either a slip or a no-slip BC in
the azimuthal direction. We then study the time evolution
of a streamwise-constant puff before summarizing the main
achievements described in this paper.

PRESENTATION OF THE MODEL
The 2D/3C model consists of two evolution equations,

one for the streamfunction Ψ describing the in-plane veloci-
ties and one for the axial velocity ux deviating from laminar,
i.e. ux = ũx −U , where ũx is the instantaneous axial velocity
and U is the laminar base flow. We only force the stream-
function equation, based on the study of Jovanovic & Bamieh
(2005) which showed that maximum amplification is obtained
by forcing in the cross-sectional plane. The 2D/3C model is
written
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is the 2D Laplacian. The

boundary conditions are no-slip and no-penetration on the
wall of the pipe. The bulk velocity is maintained constant by
adjusting the pressure gradient C. The streamfunction equa-
tion is linearized in order to obtain the simplest model able to
capture the blunting of the velocity profile and also because
the study of Gayme et al. (2010) showed no significant dif-
ferences in the Couette flow statistics obtained using either a
nonlinear or a linearized streamfunction equation.

NUMERICAL METHODS
The governing equations for the streamwise vorticity

and velocity are solved numerically on a 2D domain using a
pseudo-spectral collocation method. The spectral expansion is
based on Fourier modes in the azimuthal direction and Cheby-
shev polynomials in the radial direction. The singularity at
the origin of the polar coordinate system is avoided by re-
defining the radius from −1 to 1 and using an even number of
grid points in the radial direction, as in Heinrichs (2004). The
two partial differential equations are solved in physical space,
i.e. the unknowns are the streamwise vorticity and velocity
at each grid point, with homogeneous boundary conditions
ωx = 0 and ux = 0 at the wall. The streamfunction is obtained
by solving the discretized Laplace equation ∆Ψ = −ωx as-
sociated with homogeneous boundary conditions correspond-
ing to no-penetration at the wall. The no-slip BC in the az-
imuthal direction is enforced by adding particular solutions
to the streamfunction with non-zero vorticity at the wall, fol-
lowing the influence matrix method for linear equations, see
Peyret (2002), such that the azimuthal velocity uφ = − ∂Ψ

∂η

vanishes at the wall.
We solve the discretized partial differential equations

in time, starting from the laminar state, using a third-order

semi-implicit time stepping scheme described in Spalart et al.
(1991). The code is written in Fortran and relies on an op-
timized solver for Sylvester type equations from the SLICOT

numerical library (Jonsson & Kagstrom, 2003). The bulk ve-
locity is maintained constant by adjusting the pressure gra-
dient during the simulation. We use N = 48 grid points in
the radial direction and M = 96 grid points in the azimuthal
direction for the low forcing amplitude and or low Re simula-
tions and N = 64, M = 128 grid points otherwise. The time
step is set to 10−3 dimensionless time units. The flow prop-
erties considered in this study were shown to be independent
of the choice of temporal and spatial discretizations by run-
ning comparative tests at higher spatial resolution and using
smaller time steps.

The governing equation for the streamfunction is subject
to the stochastic forcing term Nψ which is approximated nu-
merically by adding white noise at each grid point in space
and at every time step. The stochastic forcing follows a nor-
mal distribution with zero mean and a variance that depends
on the radius such that the variance per surface area is con-
stant. The square root of the variance, i.e. the forcing root
mean square (rms) amplitude, is set to 5×10−4 and 2×10−3

respectively for the small and large forcing amplitude simula-
tions. In order to prevent aliasing to appear when we compute
the nonlinear coupling terms in the streamwise velocity equa-
tion, we truncate the 2D Fourier transform of the forcing term
after the lowest two-third wavenumbers, see Canuto (2006).

The in-plane kinetic energy v2 +w2, axial kinetic energy
u2, and centerline velocity are saved at each time step and the
full flow field is saved every 4 dimensionless time units. The
centerline velocity is approximated by averaging the axial ve-
locity in the azimuthal direction over the grid points closest to
the center of the pipe. The simulation parameters and bound-
ary conditions are summarized in Table 1.

Table 1. Simulation parameters, boundary conditions (BCs),
mean in-plane turbulent kinetic energy 1

ts

∫ ts
0 v2 +w2dt (AN,Ψ)

and amplification factor from the in-plane velocities to the
streamwise velocity (AΨ,u) defined as 1

ts

∫ ts
0

u2

v2+w2 dt, where ts
is the simulation duration of 2000 dimensionless time units.

Re Forcing (rms) BCs AN,Ψ AΨ,u

2,200 5×10−4 no-slip 2.8×10−4 120

2,200 2×10−3 no-slip 9.1×10−3 17

10,000 5×10−4 no-slip 1.1×10−3 336

10,000 2×10−3 no-slip 3.8×10−3 137

10,000 5×10−4 slip 2.4×10−4 1932

10,000 2×10−3 slip 2.3×10−3 201
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RESULTS

Streamwise-Constant Puff Signatures and Am-
plification Factor

The time traces of the centerline velocity scaled by
the bulk velocity for the simulations with no-slip and no-
penetration BCs at Re = 2,200 and Re = 10,000 are shown
respectively on Figure 1(a),(b) and Figure 2(a),(b). The time
traces exhibit sharp drops followed by a smooth recovery
nearly back to the laminar value. We identify the sharp
drops as the signature of “streamwise-constant puffs” and de-
fine a puff timescale as the time elapsed between two sharp
drops. The average puff timescale increases linearly with the
Reynolds number and corresponds to 75 dimensionless time
units based on the pipe radius and bulk velocity at Re = 2,200
and 330 at Re= 10,000. A puff timescale of 75 dimensionless
time units compares well with experimental data, e.g. in Nishi
et al. (2008), the puffs are 5 to 20 diameters long depending
on Reynolds number and convect at nearly the bulk velocity.
A puff of length 20D which is separated from the next puff by
a laminar region of length equivalent to one puff would lead
to a dimensionless timescale based on the pipe radius of 80.
Increasing the forcing amplitude results in more pronounced
puff signatures as can be seen on Figure 2(b) compared to Fig-
ure 2(a). The time average in-plane kinetic energy defined as
1
ts

∫ ts
0 v2 +w2dt, where ts is the simulation duration of 2000

dimensionless time units, and the time average amplification
factor between the in-plane kinetic energy and the streamwise
kinetic energy given by 1

ts

∫ ts
0

u2

v2+w2 dt are reported on Table 1.
The amplification factor increases with the Reynolds number
for a given forcing amplitude and decreases with increasing
forcing amplitude at constant Reynolds number due to nonlin-
ear saturation. Note that we do not observe any scaling trend
of the in-plane kinetic energy with the Reynolds number for a
given forcing amplitude. The instantaneous amplification fac-
tor, given by the ratio of the streamwise kinetic energy to the
in-plane kinetic energy is plotted as a function of time on Fig-
ure 1(c),(d) and Figure 2(c),(d) and exhibits oscillations at the
same frequency as the puff signatures in the centerline veloc-
ity. The maxima of the amplification factor are approximately
in phase with the sharp drops of the centerline velocity.

When we allow for slip in the azimuthal direction,
keeping the no-slip BC in the streamwise direction and no-
penetration at the wall of the pipe, we observe that the time
traces of the centerline velocity do not exhibit clear puff sig-
natures as is the case for no-slip BCs. The centerline veloc-
ity stays away from the laminar value during extended peri-
ods of time, as can be seen on Figure 3(a),(b). We observe
that under stochastic forcing with slip in the azimuthal direc-
tion, the streamwise-constant simulations do not periodically
come back to the laminar state but instead stay away from the
laminar state sometimes during more than 1000 dimensionless
time units at Re = 10,000. The mean value of the centerline
velocity scaled by the bulk velocity for a forcing amplitude of
2×10−3 is 1.45 compared to 1.70 for the simulation with no-
slip BCs at the same Reynolds number and forcing amplitude
and 1.26 for fully developed turbulence at the same Reynolds
number (den Toonder & Nieuwstadt, 1997). At low forcing
amplitude the amplification factor is 6 times larger than with
no-slip BCs but at larger forcing amplitude the amplification
factors are of the same order of magnitude. We can justify

this increase in amplification factor at low forcing amplitude
by the fact that due to the slip condition at the wall the stream-
wise vortices can reach closer to the wall and convect near-
wall low-momentum fluid further from the wall therefore en-
hancing the streamwise-momentum redistribution resulting in
the blunting of the velocity profile. At larger forcing ampli-
tude, we can argue that the vortices are strong enough to ef-
ficiently redistribute streamwise-momentum regardless of the
boundary condition and that nonlinear saturation prevents the
continued increase of the amplification factor, therefore lim-
iting the gain obtained by allowing for slip in the azimuthal
direction.

In order to further investigate the difference in the flow
behavior when we change the azimuthal boundary condi-
tion from no-slip to slip, we consider forcing the streamwise
momentum equation by a given streamfunction Ψ(η ,φ) =
Ψ1(η)sinφ , where Ψ1(η) is expressed as a Taylor series at
the origin, i.e. Ψ1 = ∑

∞
i=0 αiη

i. We set α0 = 0 in order to
enforce continuity in the limit of η tending to zero, recalling
that Ψ(η ,φ) = −Ψ(η ,φ + π), and α2 = 0 in order for the
forcing profile to be bounded at the origin. The forcing profile
generating Ψ1 is given by

N(η) =− 1
Re

(
∂ηη +

1
η

∂η − 1
η2

)2
Ψ1(η) (2)

The lowest order streamfunction satisfying the no-
penetration boundary condition at the wall is Ψ(η ,φ) =
α(η −η3)sinφ with slip at the wall in the azimuthal direc-
tion and Ψ(η ,φ) = α(η −3η3 +2η4)sinφ with no-slip. The
associated forcing profiles N(η) are respectively N(η) = 0
and N(η) = − 90α

Re . The streamfunction with slip at the wall
is an exact solution of the unforced linearized streamfunction
equation. In order to satisfy the no-slip condition, we need
to keep higher order terms in the Taylor series expansion of
the streamfunction and these terms result in a non-zero forc-
ing. The existence of self-sustained solutions with slip at the
boundary might justify why we get larger amplification in our
stochastically forced simulations since infinitely small forc-
ing can triger a self-sustained solution and result in order one
change in mean flow whereas infinitely small forcing with
a no-slip BC in the azimuthal direction will only lead to a
change in mean flow proportional to the disturbance ampli-
tude.

Time Evolution of a Streamwise-Constant Puff
We consider the time evolution of the flow during one cy-

cle corresponding to the generation of a streamwise-constant
puff followed by its slow decay and the return of the flow close
to the laminar state. The three main stages in the evolution of a
streamwise-constant puff are plotted on Figure 4(a) to (f) and
the time instants when the snapshots were taken are indicated
on Figure 1. The evolution of a streamwise-constant puff is
described in details in Bourguignon & McKeon (2011) and
is remarkably similar to the flow visualizations by Hof et al.
(2004) in transitioning pipe flow when a puff is observed in a
reference frame moving at the bulk velocity. The cycle starts
with the formation of streamwise vortices inside the domain,
due to the stochastic forcing, and at the wall, in order to sat-
isfy the no-slip boundary condition. The vortices move away
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from the wall 4(d), (e) and create streaks by advection of the
mean shear 4(a). The low-speed streaks, defined with respect
to the laminar base flow, convect towards the center whereas
the high-speed streaks stay near the wall, resulting in a blunt-
ing of the velocity profile characteristic of turbulent pipe flow
4(b). Maximum blunting is obtained when a low-speed streak
reaches the center of the pipe, resulting in a sharp drop of the
centerline velocity, and is followed by the slow decay of the
streamwise vortices and streaks 4(c),(f) and the return of the
flow close to the laminar state.

CONCLUSIONS
We presented a streamwise-constant model for turbulent

pipe flow and focused on the influence of the no-slip boundary
condition on the flow dynamics. Under stochastic forcing
and with no-slip and no-penetration boundary conditions at
the wall of the pipe the time traces of the centerline velocity
exhibit sharp drops followed by a smooth recovery nearly
back to the laminar value. The sharp drops of the centerline
velocity occur quasi-periodically and are associated with the
signature of streamwise-constant puffs. When we allow for
slip in the azimuthal direction the clear puff signatures are no
longer present and the flow stays away from the laminar state
during extended periods of time instead of coming back close
to the laminar state quasi-periodically as is the case with the
no-slip condition. A deterministic model for both the slip and
no-slip cases was introduced and the unforced streamfunction
equation in the model exhibits an analytic solution with slip
at the wall. We argued that the large amplification observed
with slip boundary condition is related to the existence of
self-sustained solutions.
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Figure 1. Time traces of the centerline velocity (a), (b) and amplification factor u2/(v2+w2) (c), (d) from two different simulations
at Re = 10,000 with respectively 0.0005 and 0.002 rms noise levels. The vertical lines (b) indicate the time instants when the
samples of Figure 4 are taken.
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Figure 2. Time traces of the centerline velocity (a), (b) and amplification factor u2/(v2+w2) (c), (d) from two different simulations
at Re = 2,200 with respectively 0.0005 and 0.002 rms noise levels
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Figure 3. Time traces of the centerline velocity (a), (b) and amplification factor u2/(v2+w2) (c), (d) from two different simulations
at Re = 10,000 with respectively 0.0005 and 0.002 rms noise levels and with slip boundary condition at the wall of the pipe.
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Figure 4. Contours of the axial velocity, subfigures (a) to (c), and of the swirling strength for the in-plane velocities, subfigures
(d) to (f), computed respectively at t = 1620, t = 1700, and t = 1740. The swirling strength is defined as the magnitude of the
imaginary part of the in-plane velocity gradient eigenvalues.

6


