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ABSTRACT
It is known from experimental investigations that the

leading-edge boundary layer exhibits transition to turbulence
at subcritical Reynolds numbers, i.e. at Reynolds numbers
which lie below the critical Reynolds number predicted by
linear stability theory. In the present work, we investigate this
subcritical transition process by direct numerical simulations
of a swept Hiemenz flow in a spatial setting. The laminar base
flow is perturbed upstream by a pair of stationary counter-
rotating vortices. This perturbation generates high- and low-
speed streaks by a non-modal growth mechanism. Further
downstream, these streaky structures exhibit a strong insta-
bility to secondary perturbations which leads to a breakdown
to turbulence.

The observed transition mechanism has strong simi-
larities to by-pass transition mechanisms found for two-
dimensional boundary layers. It can be shown that the tran-
sition strongly depends on the amplitude of the primary per-
turbation as well as on the frequency of the secondary pertur-
bation.

INTRODUCTION
Swept Hiemenz flow serves as a model for the leading-

edge boundary layer in the vicinity of the stagnation line of
a swept wing. Experiments by Poll (1979) indicated that the
swept leading-edge boundary layer can experience transition
to turbulence at Reynolds numbers as low as 250 (where the
Reynolds number Re = W ∗∞/

√
S∗ν∗ is defined on the basis

of the free-stream sweep velocity W ∗∞, the free-stream shear
rate S∗ and the kinematic viscosity ν∗). Linear theory, how-
ever, predicts stability for swept Hiemenz flow up to Re= 581
(Hall et al., 1984). A weakly nonlinear subcritical instabil-
ity mechanism was proposed by Hall & Malik (1986) which
helped to reduce the theoretical critical Reynolds number
somewhat. Further theoretical advances were achieved, for
instance, by Lin & Malik (1996) and later also by Theofilis

et al. (2003) who investigated modes of higher polynomial
order in the chordwise direction. It was shown by Obrist &
Schmid (2003b) that these modes can exhibit strong transient
growth. Optimal disturbances for the spatial stability problem
were found by Guégan et al. (2008). Despite these and sev-
eral other studies, no theoretical work has been able so far to
explain the large discrepancy between the theoretical results
and the experimental observations by Poll (1979).

Next to experimental and theoretical investigations,
some results from direct numerical simulations (DNS) and
large-eddy simulations (LES) of swept Hiemenz flow exist.
Spalart (1988) presented the first DNS in a temporal setting,
i.e. with periodicity in the spanwise direction. Obrist &
Schmid (2003b) used a DNS to study the receptivity for span-
wise vortical disturbances in the free-stream. For spatial con-
figurations, i.e. with an non-periodic spanwise direction, the
DNS by Joslin (1995) and the LES by Dimas et al. (2003)
are available. These simulations used ‘vibrating ribbons’ to
create localized disturbances which propagate and grow in
the downstream (span- and chordwise) direction. Both sim-
ulations were strongly limited by the available computational
power such that none of these simulations was able to illus-
trate the full transition process.

In the present work, we perform a series of DNS in
a spatial configuration at a subcritical Reynolds number of
Re = 300. We demonstrate how a pair of counter-rotating
streamwise vortices creates streaks of streamwise velocity in
the boundary layer which exhibit a secondary instability lead-
ing to transition to turbulence.

NUMERICAL METHODS
The DNS are carried out with a high-fidelity solver for

the Navier–Stokes equations (Henniger et al., 2010b) which
uses high-order finite differences in all three directions and is
optimized for massively parallel computing. The chordwise
coordinate x is perpendicular to the attachment line and par-
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Figure 1. Computational domain with in- and outflow boundary conditions and the counter-rotating pair of streamwise vortices at
the inflow.

allel to the wall, y is the wall-normal coordinate and z points
in the spanwise direction along the attachment line (figure 1).
The computational domain of size 150× 22.5× 600 covers
a finite section of the attachment line and its vicinity (using
L∗ =

√
ν∗/S∗ as reference length). In the wall-normal direc-

tion, it reaches well beyond the boundary layer (δ ∗ ≈ 3L∗)
into the free-stream. This flow field is discretized on a grid
with 513× 49× 1537 points. Grid stretching in the wall-
normal direction ensures a well-resolved boundary layer.

The base flow configuration is enforced by Dirichlet
boundary conditions at the spanwise and at the wall-normal
inflow boundary. The outflow at the spanwise end and at
both chordwise boundaries is realized by convective out-
flow boundary conditions which have been shown (e.g. Hen-
niger et al., 2010a) to yield a clean outflow of perturbations
with very little or no influence on the upstream flow field.
The present numerical set-up has been validated for swept
Hiemenz flow by simulating the spatial decay of linear eigen-
solutions of Görtler–Hämmerlin type (Theofilis, 1995).

Inflow and initial conditions

The inflow is perturbed with a pair of stationary counter-
rotating streamwise vortices of the form [u′(x,y),v′(x,y),0]T

with the amplitude A1. This perturbation is motivated by
Guégan et al. (2008) who showed that such vortices are nearly
optimal spatial disturbances for swept Hiemenz flow. Similar
to the process in two-dimensional boundary layers, such vor-
tices lead to a strong linear transient growth of the disturbance
energy by creating low/high-speed streaks through the lift-up
effect (Landahl, 1980).

In order to obtain an unsteady breakdown of the streaks
we introduce a weak secondary perturbation with an ampli-
tude A2 by modulating the amplitude of the streamwise vor-
tices at a well-defined frequency f0. The complete inflow per-
turbation then reads

(A1 +A2 sin2π f0t) · [u′(x,y),v′(x,y),0]T (1)
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Figure 2. Flow field of the perturbation which is superim-
posed at the inflow boundary onto the base flow solution.
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for |x− xc|< b and |y− yc|< b; otherwise u′ = v′ = 0.
In the present simulations, we choose the center of the

vortices at (±xc,yc) = (±1.5,3) with a half-width of b = 3.
In this configuration the centers of the two counter-rotating
vortices are at the edge of the spanwise boundary layer. The
vortices overlap in the middle such that they create a signif-
icant flow toward the wall at the attachment line (figure 2).

The simulations are started from an unperturbed ini-
tial flow field. The inflow boundary condition (1) creates
two counter-rotating streamwise vortices which propagate and
evolve into the computational domain. The simulation is con-
tinued until a statistically steady configuration is reached.
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Energy metric
The statistically steady flow field is analyzed by perform-

ing a modal decomposition into energy densities. To this end,
we subtract the base flow solution from the flow field and per-
form a discrete Fourier transform in time as well as an ex-
pansion into Hermite polynomials Hen(x) in the chordwise
direction. This leads to modal energy densities ekn (Obrist &
Schmid, 2003b),

ekn(z) =
∫

∞

0
|ûkn|2 + |v̂k(n−1)|2 + |ŵk(n−1)|2dy, (3)

where the index k indicates the frequency k f0 and n the order
of the Hermite polynomial, i.e.

ûkn(y,z) = f0
∫ t1+1/ f0

t1
e−i2π f0ktdt

∫ Lx

−Lx

u(x,y,z, t)Hen(x)

· e−(x/γ)2/2dx. (4)

The parameter γ determines the width of the Gaussian kernel
in the Hermite expansion. Here, we choose γ = 10 which
includes most of the computational domain into the energy
densities but ensures that artifacts at the chordwise boundaries
do not influence the results.

Note that the energy density (3) is defined such that the
polynomial order n of the chordwise velocity u is combined
with the polynomial order n−1 of the wall normal and span-
wise velocities, v and w. This choice is motivated by the struc-
ture of the linear modes of the swept Hiemenz flow (Obrist
& Schmid, 2003a). The Görtler–Hämmerlin modes, for in-
stance, are linear in x for the chordwise velocity u and con-
stant in x for v and w. The energy of such perturbations is
contained in the energy densities ek1.

The modes of odd polynomial order in u preserve the
symmetry of the base flow configuration. Therefore, we call
these modes symmetric modes. Their energy is represented
by the energy densities ek1,ek3,ek5, . . . . The anti-symmetric
modes break the symmetry of the swept Hiemenz flow with
respect to the attachment line. Their energy is contained in
ek0,ek2,ek4, . . . .

RESULTS
We present results of several DNS at Re = 300 with dif-

ferent amplitudes and frequencies (table 1). According to lin-
ear stability theory, the flow is stable at this Reynolds num-
ber such that only nonlinear instabilities can lead to transition
to turbulence. Therefore, the primary disturbance amplitude
is chosen such that the velocities of the streamwise vortices
at the inflow reach about 10% of the free-stream sweep ve-
locity. Despite this relatively large amplitude of the primary
disturbance, we do not observe the onset of a transition for
this perturbation alone. Instead, the pair of streamwise vor-
tices separates at the attachment line and each vortex follows
roughly the divergent inviscid streamlines of the base flow.

In order to obtain transition to turbulence, we need to
add a secondary perturbation at the inflow by modulating the

Table 1. Simulation parameters.

A1 A2 f0

slow I 0.05 0.005 1/60

slow II 0.07 0.007 1/60

slow III 0.1 0.01 1/60

slow IV 0.1 0.001 1/60

medium 0.1 0.001 1/30

fast 0.1 0.001 1/10

amplitude of the primary vortices (1). These secondary per-
turbations are weak, i.e. on the order of 0.1 to 1% of the
free-stream sweep velocity.

Figure 3 shows the vortical structures for a simula-
tion with a secondary perturbation. We observe a succes-
sive breakdown of the streamwise vortices toward a turbulent
boundary layer at the spanwise end of the computational do-
main.

To investigate the dependence of the transition process
on the frequency f0, we show in figure 4 snapshots of the
streamwise velocity w in a plane parallel to the wall at y = 1
(within the boundary layer). Each snapshot corresponds to
a different secondary perturbation frequency f0. In all three
simulations, the streamwise vortices rapidly create streaks
along the attachment line by the lift-up effect. This yields
a high-speed streak along the attachment line and two low-
speed streaks to the left and right. The divergent character of
the swept Hiemenz flow pulls these streaky structures apart as
the disturbance evolve in the downstream direction.

With the fastest secondary perturbation (figure 4c), the
streaks remain laminar and are eventually washed out of the
domain. This suggests that the frequency of the secondary
perturbation is too high for the given primary perturbation.

For the two slower secondary perturbations (fig-
ure 4 a & b), we can observe varicose secondary instabilities
after z ≈ 100 which grow rapidly and eventually lead to a
breakdown to a turbulent flow beyond z ≈ 500. The turbu-
lent region grows in the chordwise direction roughly along
the inviscid streamlines.

The mechanism of the transition process is more evident
in figure 5 which shows modal energies (3) for the medium
simulation. The rapid growth of the stationary modes e01
and e03 for 0 < z < 30 is due to the strong transient linear
growth mechanism which generates the streaks (lift-up effect).
After the saturation of the streaks at z ≈ 50, we observe a
strong growth of the modes e11 and e13. This growth is in-
terpreted as a secondary instability of the streaks which leads
to a breakdown at z≈ 300. Notice that these simulations pre-
serve the symmetry with respect to the attachment line. The
anti-symmetric modes ek0,ek2, . . . (not shown in figure 5) ob-
tain energy through arithmetic noise and grow to a noticeable
level only after the breakdown (z > 300).

Figure 6 illustrates the effect of the perturbation ampli-
tude for the slow perturbation with f0 = 1/60. We find that
there is no transition to turbulence for the weakest disturbance
(A1 = 0.05, A2 = 0.005). For the two stronger disturbances,
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Figure 3. Isosurface of the λ2 vortex criterion (Jeong & Hussain, 1995) for the slow III simulation (λ2 =−0.001).
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Figure 4. Snapshots of the streamwise velocity in a plane at y = 1 (inside the boundary layer). The green color indicates a velocity
of w≈ 0.5 which corresponds to the base flow configuration, whereas red and blue indicate high and low velocity, respectively.

there is transition and the location of the breakdown to turbu-
lence moves upstream with increasing perturbation amplitude.
Case slow IV is not shown here. It has a strong primary per-
turbation amplitude A1 = 0.1 but a weak secondary amplitude,
A2 = 0.001. In this case, the secondary instability is not strong

enough to bring this case to transition.

So far, we have only investigated secondary perturba-
tions which preserve the symmetry of the base flow. Fig-
ure 7 shows the result of a slow secondary perturbation which
is anti-symmetric. This is achieved by superimposing co-
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Figure 5. Modal energy densities ekn(z) for the simulation
medium.

(a) slow I: A1 = 0.05, A2 = 0.005

(b) slow II: A1 = 0.07, A2 = 0.007

(c) slow III: A1 = 0.1, A2 = 0.01

Figure 6. Snapshots of the streamwise velocity in a plane
at y = 1 (cf. caption and axis labels of figure 4). The three
scenarios illustrate the effect of different perturbation ampli-
tudes A1 and A2. The frequency of the secondary perturbation
is held constant at f0 = 1/60. (Subfigure (c) is identical to
figure 4 a.)

rotating vortices onto the counter-rotating vortices of the pri-
mary perturbation. The perturbation amplitudes (A1 = 0.07,
A2 = 0.007) correspond to the symmetric case shown in fig-
ure 6(b).

DISCUSSION
The presented results demonstrate that there are cases

for which we obtain subcritical transition to turbulence at
Re = 300. Figure 8 summarizes these observations. It is clear
that the investigated parameters A1, A2 and f0 are major de-
terminants for the transition process.

It is to be expected that there exists a frequency band
within which we can obtain streak breakdown. Our simula-
tions with A1 = 0.1 and A2 = 0.001 suggest that this frequency
band lies in a range between f0 = 0.01667 and 0.1. Further-
more, this frequency band appears to widen if we increase the
amplitude of the perturbation (cases slow II & III). This situ-

slow II: A1 = 0.07, A2 = 0.007 (anti-symmetric)

Figure 7. Snapshot of the streamwise velocity in a plane at
y = 1 (cf. caption and axis labels of figure 4) for an anti-
symmetric perturbation with A1 = 0.07, A2 = 0.007 and f0 =
1/60.
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Figure 8. Summary of the studies configurations (cf. ta-
ble 1): the filled symbols indicate a transition to turbulence,
for the open symbols the flow remains laminar.

ation is quite similar to established results for the secondary
instability of Tollmien–Schlichting waves as it is illustrated in
figure 5 of Herbert (1988).

There exists, however, a subtle difference to the the-
ory for two-dimensional boundary layers: a comparison of
cases slow III and slow IV shows that reducing the secondary
amplitude A2 can prevent transition. According to the two-
dimensional theory, this would only delay the streak break-
down. This phenomenon is probably related to the divergence
of the streamwise vortices which effectively limits the region
of secondary growth in the downstream direction.

We see that the present problem has a strong three-
dimensional character due to the curved streamlines which
tend to ‘pull the growing perturbations apart’ in the chordwise
direction. Nevertheless, we can draw some further analogies
to the classical theory of secondary instabilities. Figure 9 is
adapted from (figure 8.7 in Schmid & Henningson, 2000)
for the secondary instability of vortices and streaks in two-
dimensional boundary layers. It illustrates the present config-
uration in the spectral plane. In contrast to the classical ver-
sion of this diagram, the ordinate indicates the integer poly-
nomial order n in chordwise direction. Therefore, the con-
cept of a Floquet detuning constant (Schmid & Henningson,
2000) is limited in this context to integer values. We can dis-
tinguish between secondary perturbations which preserve the
symmetry of the base flow (filled circles in figure 9) and anti-
symmetric perturbations which break the symmetry of the
base flow (open circles). In the language of the classical sec-
ondary instability theory, the symmetric and anti-symmetric
secondary instabilities correspond to fundamental and subhar-
monic instabilities, respectively.

The simulation for an anti-symmetric secondary pertur-
bation (figure 7) can be directly compared to figure 6(b) which
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Figure 10. Subcritical transition mechanism observed for
swept Hiemenz flow with a pair of counter-rotating stream-
wise vortices.

is symmetrically perturbed with the same amplitudes. From
this particular comparison, it appears that the global pic-
ture of the transition process is not influenced by the (anti-
)symmetry of the perturbation. One significant difference
between the two results can be found between z = 300 and
z = 400 where the symmetric perturbation leads to a varicose
instability, while the anti-symmetric perturbation exhibits a
sinuous streak instability.

CONCLUDING REMARKS
We presented DNS results for a spatial transition sce-

nario of swept Hiemenz flow at a subcritical Reynolds number
of Re = 300. The results suggest that there exists a transition
mechanism similar to a bypass transition scenario for two-
dimensional boundary layers: (a) streamwise vortices gener-
ate streaks in the boundary layer through the lift-up effect; (b)
the streaks exhibit a secondary instability whose growth rate
depends on the frequency of the secondary perturbation; (c)
the laminar vortices break down to turbulence. This transition
mechanism is summarized in figure 10.

In order to obtain a more complete picture of the tran-
sition process, the study of the parameters A1,A2, f0 must be
extended (cf. figure 8). This includes also an investigation
of anti-symmetric secondary perturbations. Finally, the con-
figuration of the streamwise vortices at the inflow, e.g. the
sense of rotation or the parameters xc, yc and b, should be sys-
tematically varied to assess its effect on the transition process.
Clearly, the transition will be delayed or even suppressed if
the streamwise vortices are too far apart.

It is likely that more detailed investigations of the de-
scribed transition mechanism will allow a reduction of the
Reynolds number from Re = 300 toward the critical Reynolds
number observed experimentally by Poll (1979).

REFERENCES
Dimas, A. A., Mowli, B. M. & Piomelli, U. 2003 Large-eddy

simulation of subcritical transition in an attachment-line
boundary layer. Computers & Mathematics with Applica-
tions 46 (4), 571 – 589.
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