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ABSTRACT
It is well-known that the addition of minute amounts of

long polymer chains to organic solvents, or water, can lead
to significant turbulent drag reduction (DR). In the present
study, direct numerical simulations (DNS) of turbulent chan-
nel flow of a viscoelastic fluid, at friction Reynolds numbers
ranging from 180 to 1000, are further analyzed. The analysis
is focused on the turbulent stress and viscoelastic extra-stress
(conformation tensor) fields in order to contrast the dynamics
of the viscoelastic and Newtonian fluids and to quantify the
effects of enhanced elasticity on the viscoelastic extra-stress
fields. The simulation results coupled with the analyzes just
mentioned can be useful in further assessing the underlying
mechanisms responsible for the occurrence of drag reduction.

INTRODUCTION
The numerical simulation of the drag reduction phe-

nomenon by polymer additives has been actively pursued for
over a decade. The first such direct numerical simulation with
a viscoelastic fluid were performed by Sureshkumaret al.
(1997). The simulation was of a fully developed channel flow
at aReτ0 of 125 using the FENE-P model (Finitely Extensible
Non-linear Elastic in the Peterlin approximation), appropriate
for dilute polymer solutions. Additional studies followedus-
ing other fluids and flow conditions (e.g. Dimitropouloset al.,
1998; Dubiefet al., 2004; Housiadas & Beris, 2003, 2006).
Dimitropouloset al. (2001) performed a detailed analysis of
the budget of turbulent kinetic energy and streamwise enstro-
phy for the FENE-P solution. They showed that the inhibition

of vortex stretching, which is a consequence of the high exten-
sional viscosity of the polymer solution, is a possible mech-
anism responsible for drag reduction. Using the Oldroyd-B
model, Min et al. (2003b) (see also Minet al., 2003a) pre-
dicted the onset of drag reduction at friction Weissenberg
numbers in agreement with those from experiments. In con-
trast, they proposed an elastic theory in which the polymer
stores turbulent energy near the wall and releases it further
away when the elastic time scale is sufficiently long.

Just as in turbulent Newtonian flows, such direct numer-
ical simulations have limited engineering usefulness. Con-
straints imposed by the small scale resolution required at high
Reynolds numbers are augmented by constraints imposed by
increasing Weissenberg numbers (fluid relaxation time scale
to mean flow time scale) and maximum polymer chain elon-
gation lengthsL. This has led to the development of Reynolds-
averaged (RANS) closure modeling. Lowest-order models
have been proposed by Liet al. (2006) (an algebraic, zero-
equation, eddy viscosity model). Cruzet al. (2004) for-
mulated a two-equationk − ε closure with modified shear-
thinning fluid properties. Intermediate to the RANS mod-
eling and DNS, Thaiset al. (2010) performed a novel large
eddy simulation of viscoelastic turbulent channel flow. They
utilized a temporal filtering approach that allowed them to
achieve maximum chain extensibility for the FENE-P model
of 100 and a zero-shear friction Weissenberg number up to
116, but at a relatively modest zero-shear friction Reynolds
number of 180. The drag reduction results obtained from this
(T)LES agreed with DNS results at the same conditions. The
development of such low-order engineering models requires
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DNS at relatively high Reynolds numbers, and it is the results
of these simulations which is the focus of the present contri-
bution.

FORMULATION
The incompressible flow field under considera-

tion is a fully developed turbulent channel flow of a
FENE-P viscoelastic fluid. The channel streamwise direction
is x1 = x, the wall-normal direction isx2 = y, and the
spanwise directionx3 = z. The instantaneous velocity field is
(u,v,w) = (u1,u2,u3), and the variables are scaled with the
bulk velocity〈Ub〉 and the channel half-heighth. The channel
is also assumed of infinite extent in the spanwise direction.

Momentum Equation
The dimensionless momentum conservation equation is

given by
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where the bulk Reynolds number isReb = ρ 〈Ub〉h/η0, β0 =
ηs/η0, andη0 = ηs +ηp0 is the total zero-shear rate viscosity
(ηp0 is the polymeric zero-shear rate viscosity). A uniform
polymer concentration is assumed and is characterized by the
viscosity ratioβ0 (the limit β0 = 1 is a Newtonian fluid). The
solvent to total viscosity ratio was here fixed toβ0 = 0.9. The
quantityeiδi1 is the driving pressure gradient in the stream-
wise channel directionx1.

Conformation Tensor
The extra-stressτi j in Eq. (1) is related to the confor-

mation tensor componentsci j, which represent the ensemble
average squared norm of the end-to-end vector of polymer
molecules. The extra-stress and conformation tensor relation-
ship for the FENE-P fluid is given by

τi j =
f ({c})ci j −δi j

Web
, (2)

where f ({c}) is the Peterlin approximation,

f ({c}) =
L2−3

L2−{c}
, (3)

with L the maximum chain extensibility,{c} = cii the trace of
the conformation tensor, andWeb = λ 〈Ub〉/h the bulk Weis-
senberg number. The governing equation for the conformation
tensor is
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wherePrc = η0/ρκc is an extra-stress Prandtl number defined
as the ratio of the total kinematic zero-shear rate viscosity
(η0/ρ) to a numerical stress diffusivityκc. Viscoelastic simu-
lations utilizing Eq. (4) require a numerical stabilization term
(Sureshkumar & Beris, 1995) in order to effectively compute
flows over a range of Weissenberg numbers. For the simula-
tions reported here, the stress Prandtl number was chosen to
yield a diffusivity of 1/(PrcReb) = 3.5×10−4 in Eq. (4) at the
highest Reynolds number considered (see Thaiset al., 2011,
for details of the simulations and numerical scheme used).

RESULTS
A wide range of fully developed channel flow numerical

simulations have been performed contrasting the behavior of
Newtonian and viscoelastic (FENE-P ) fluids in a channel of
lengthLx = 8π allowing a high drag reduction regime. The
zero-shear frictional Reynolds numbers,Reτ0 (= uτ0h/η0) in
the simulations have ranged from 180 to 1000, with a com-
mon friction Weissenberg number,Weτ0 (= ρλu2

τ0h/η0) of
116 and a maximum chain extension lengthL = 100. The DR
for the various Reynolds number cases have been:Reτ0 =180,
DR =64%; Reτ0 =395, DR =62%; Reτ0 =590, DR =61%;
Reτ0 =1000,DR =58%. The statistical correlations to be pre-
sented have been averaged in time as well as in the stream-
wise and spanwise homogeneous directions, with the com-
ponents of the Reynolds stress tensor defined byTi j =u′iu

′
j.

Both the extra-stress tensor,τi j, and conformation tensor,ci j
are partitioned into a mean,τ i j andci j, and fluctuating parts,
τ ′i j and c′i j. Although the focus here will be on the turbu-
lent second-moments and conformation (extra-stress) tensor,
it is worthwhile at the outset to see the influence of increas-
ing Reτ0 on the mean velocity of the FENE-P fluid flow. Fig-
ure 1 shows the variation of the mean velocity across the chan-
nel half-width. For the lowerReτ0 values of 180, 395, and
590, there is minimal, if any, sign of an initial log-law region.
Only at Reτ0 = 1000 does a log-law region begin to appear.
Such behavior suggests a significant extension of the sublayer
buffer layer regions into the channel. While it is clear the
FENE-P fluid has had a significant effect on the mean veloc-
ity profile, this should not be construed as an overall reduction
of the turbulence itself. The dynamic interactions betweenthe
viscoelastic fluid dynamics and the turbulent flow dynamics
results in this mean velocity alteration relative to the Newto-
nian fluid. In the remainder of this paper, the focus will be on
the respective turbulent flow and viscoelastic fluid statistical
features.

Turbulent Flow Dynamics
The turbulence dynamics are significantly affected by the

inclusion of viscoelastic fluid effects. A measure of this ispro-
vided by examining the turbulent kinetic energy,kt (= Tii/2),
in the Newtonian and viscoelastic fluid flows. Figure 2 shows
this distribution across the channel half-width (in wall-units)
and compares the influence of increasingReτ0 between the
Newtonian and FENE-P fluids. As the figure shows, there is
a significant increase (almost double) in peak amplitude of
the kinetic energy for the FENE-P fluid. Additionally, relative
to the Newtonian case, there is a shift of peak amplitude lo-
cation away from the channel wall for the viscoelastic fluid;
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Figure 1. Variation of mean velocity profile with friction
Reynolds number: FENE-P fluid,L = 100,Weτ0 = 116.
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Figure 2. Turbulent kinetic energy: (a) Newtonian fluid; (b)
FENE-P fluid,L = 100,Weτ0 = 116.

although, the peak location tends to vary little with increasing
Reτ0. Additional insight can be gained into the dynamics by
examining the distribution of the component normal stresses.

Figures 3 – 5 show the Reynolds normal stress compo-
nents. Overall, for each Reynolds stress component, there is
an increase in magnitude with increasingReτ0 for both the
Newtonian and viscoelastic fluids. The Newtonian behavior
is in line with independent simulations by Hoyas & Jiménez
(2006) up toReτ0 = 2000. However, for the streamwise com-
ponentT+

xx , the values for the viscoelastic fluid are almost dou-
ble those of the Newtonian values (see Fig. 3); whereas, for
the wall-normal and spanwise components there is a decrease
in the values relative to the Newtonian fluid (see Figs. 4 and
5). This increase in streamwise Reynolds normal stress com-
ponent is consistent with the increase found in the turbulent
kinetic energy distribution.

For the wall-normal and spanwise Reynolds stress com-
ponents, there is a decrease of approximately 50% in the
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Figure 3. Streamwise Reynolds normal stress component:
(a) Newtonian fluid; (b) FENE-P fluid,L = 100,Weτ0 = 116.

maximum value atReτ0 = 1000 from the Newtonian to
the FENE-P fluid (see Figs. 4(b) and 5(b)). In contrast,
there is a relative increase, at the sameReτ0 = 1000 value
for the streamwise component between the Newtonian and
FENE-P fluids as shown in Fig. 3(b). These results suggest
that the turbulent stress anisotropy is influenced by the inclu-
sion of viscoelastic effects. In addition, the location of the
peak Reynolds normal stress values are shifted away from the
channel wall for the FENE-P fluid for each normal stress com-
ponent; however, this shift is more enhanced, and dependent
on Reynolds number, for the wall-normal and spanwise com-
ponents than the streamwise normal stress component.

For the Reynolds shear stress componentT+
xy , a similar

reduction to that observed for theT+
yy andT+

zz normal stress
components is shown in Fig. 6. The reduction in peak magni-
tude for theReτ0 = 1000 case is about 33% as compared to the
almost 50% for the normal stressesT+

yy andT+
zz . Figure 6 also

shows a relatively minor shift away from the channel wall in
the location of the peak shear stress magnitude with increasing
Reτ0.

The discussion of the turbulence dynamics can be aug-
mented by examining the Reynolds stress anisotropy invari-
ants and an invariant map of the second- and third-invariants.
The Reynolds stress anisotropy is given bybi j = Ti j/Tii −
δi j/3 with the second, IIb, and third, IIIb, invariants de-
fined by IIb =−bi jb ji/2 and IIIb =bi jb jkbki/3. The Reynolds
stress anisotropy invariant maps are shown in Fig. 7 atReτ0 =
590. Relative to the behavior of the Newtonian fluid, the dis-
tribution across the channel for the FENE-P fluid is quite dif-
ferent. The Newtonian distribution near the wall lies alongthe
two-component boundary where theTxx andTzz components
dominate with a bias towards the axisymmetric boundary. In
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Figure 4. Wall-normal Reynolds normal stress component:
(a) Newtonian fluid; (b) FENE-P fluid,L = 100,Weτ0 = 116.
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Figure 5. Spanwise Reynolds normal stress component: (a)
Newtonian fluid; (b) FENE-P fluid,L = 100,Weτ0 = 116.
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Figure 6. Reynolds shear stress component: (a) Newtonian
fluid; (b) FENE-P fluid,L = 100,Weτ0 = 116.

contrast, for the FENE-P fluid the bias is toward the one-
component limit implying an enhanced retardation of theTzz

component. The migration from the two-component bound-
ary toward the axisymmetric boundary occurs aty+ = 8 for
the Newtonian case, but for the FENE-P fluid the invariants lie
along the axisymmetric boundary fromy+ = 16. In addition,
the anisotropy distribution for the FENE-P fluid approaches
the one-component limit showing a significant suppression of
the wall-normal and spanwise normal stress components rela-
tive to the streamiwse component. Since the characteristicve-
locity scale appropriate to an estimate for the turbulent eddy
viscosity is the square root of the wall-normal componentTyy,
this result suggests a diminished influence of the turbulence on
the mean flow (see Fig. 1). Near the channel centerline, the
invariant distributions approach the isotropic limit for New-
tonian flow; whereas, for the FENE-P fluid the streamwise
stress component is still sufficiently dominant over the other
stress components for the invariant map at the centerline to
terminate along the axisymmetric boundary.

Viscoelastic Fluid Dynamics
From Eqs. (2) and (4), the distribution of the conforma-

tion tensor governs the influence of the viscoelastic fluid on
the flow dynamics through the extra-stress tensor. In particu-
lar, the normal components of the conformation tensor are the
dominant contributors to this polymeric influence. As Fig. 8
shows, the streamwise normal component of theci j dominates
(by more than an order of magnitude) over a large portion of
the channel half-width relative to the other normal compo-
nents. Even with the dominance in magnitude ofcxx, Benzi
(2010) has recently shown that the wall-normal component
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Figure 7. Reynolds stress anisotropy invariant map at
Reτ0 = 590: (a) Newtonian fluid; (b) FENE-P fluid,L = 100,
Weτ0 = 116.

cyy is the dominant contributor to an effective polymeric vis-
cosity that strongly influences the turbulent dynamics in the
inner layer. While this effective viscosity is not a turbulent
eddy viscosity, the dependence on the wall-normal compo-
nent is consistent with near-wall turbulent modeling concepts
that recognize that the wall-normal Reynolds stress compo-
nent is the relevant velocity scale in the inner layer near the
wall. Figure 8(b) shows there is only a weak linear variation
of both thecyy and czz components, and this only occurs in
a relatively narrow region of the inner layer (10< y+ < 20
for the cyy component and 25< y+ < 35 for theczz compo-
nent). This is in contrast with the theoretical proposal of Benzi
(2010) who estimated a linear behavior over a larger portion
of the near-wall region, and also predicted ay−1 behavior for
the cxx component, keeping in mind that his theory utilizes
a simplified fluid model which mimics partially viscoelastic
effects.

The extra-stress anisotropyei j = τ i j/τ ii −δi j/3 can also
be analyzed through a corresponding anisotropy invariant map
shown in Fig. 9. The extra-stress induces a strong elongation
effect in the streamwise direction which is consistent withthe
large values of the corresponding conformation tensor com-
ponent. Since the figure is a phase-plane of invariants, it pro-
vides information on the principal rates of strain of the extra-
stress tensor and also shows that in the principal directions
normal to the streamwise direction, the corresponding eigen-
values are approximately equal and of the same sign (eii = 0).
Although Fig. 8(b) for the wall-normal and spanwise com-
ponents of the conformation tensor (extra-stress tensor) show
unequal distributions across the channel, this is not inconsis-
tent with the eigenvalue behavior, since the eigenvalues are
the principal stretches along the principal directions. These
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Figure 8. Normal components of conformation tensor for
FENE-P fluid,Reτ0 = 590,L = 100,Weτ0 = 116: (a) Stream-
wise component; (b) Wall-normal,◦, and spanwise,×, com-
ponents.
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Figure 9. FENE-P extra-stress anisotropy invariant map:
Reτ0 = 590,L = 100,Weτ0 = 116.

principal axes are related to they andz axes through a simple
rotation.

The elastic energy is given byke =(1− β0)τ ii/(2Reb)
and is extracted directly from the conformation tensor using
Eq. (2). It is governed by a dynamic balance between produc-
tion and dissipation as

Dke

Dt
= Pem +Pet − εe , (5)

where Pem = (1 − β0)/Reb τxy ∂U/∂y is the produc-
tion of elastic energy by the mean flow,Pet =(1 −
β0)/Reb τ ′i j∂u′i/∂x j is the production of elastic energy by the
fluctuating extra-stress, andεe= ke/Web is the elastic energy
dissipation rate. The form of the elastic energy dissipation rate
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is analogous to an inertial estimate for the turbulent kinetic
energy dissipation rate given bykt/Tt , whereTt is a turbu-
lent time scale. Figure 10 shows the balance of terms for the
elastic energy across the channel half-width atReτ0 = 590.
Similar to the turbulent kinetic energy distribution in Fig. 2,
the elastic energy (which is proportionnal to the long-dashed
line in Fig 10) has relatively slow growth with distance from
the wall, and then increases more rapidly in the buffer layer
region where a peak value is reached aty+ ≈ 20. From this
peak value there is a continuous decrease throughout the chan-
nel toward the centerline.

While the qualitative balance between the mean produc-
tion and elastic energy dissipation rate is apparent in the fig-
ure, the production of elastic energy by the fluctuating extra-
stress displays a unique behavior in the range 10< y+ < 30
where its contribution to the dynamic balance effectively van-
ishes.

CONCLUDING REMARKS
Finally, it would be remiss not to make some comments

concerning two prominent long-standing explanations for the
mechanism of polymer drag reduction proposed by Lumley
(1969) and Tabor & De Gennes (1986). Lumley’s 1969 expla-
nation assumes the affect of polymer stretching in a turbulent
flow produces an increase in the effective viscosity in a region
outside of the viscous sublayer and in the buffer layer. Tabor
and De Gennes’s 1986 explanation assumes that the elastic
energy stored by the polymer becomes comparable to the ki-
netic energy in the buffer layer. The corresponding viscoelas-
tic length scale is larger than the Kolmogorov scale which in-
hibits the usual energy cascade and thickens the buffer layer.
It is not a simple matter to assess these two explanations since
the results here show that the turbulent flow dynamics are
coupled with the FENE-P fluid dynamics (elastic effects) in
a manner that is not yet known with certainty. The simulation
results shown display an increase in turbulent kinetic energy
and elastic energy in the critical buffer layer region; however,
the dynamic balance causing this needs further investigation.
Even with this information, improved estimates are needed
for the effective viscosity which have a direct impact on the
influence of the extra-stress on the mean velocity field.
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