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ABSTRACT 
  Development of anisotropy in a spanwise rotating channel 
is analyzed in time and space through direct numerical 
simulations. The aim is to understand how the anisotropy 
sets-up both in time and space in a supercritical flow, the 
role of rotation being rather generic in this particular 
context. Several techniques to quantify anisotropy are used 
such as the trajectories in time and space of the Lumley 
invariants, the dissipation tensor invariants and local 
anisotropy characterization in spectral domain. It is shown 
that large excursions within the Lumley triangle occur near 
the centerline, and the local perturbation hesitates for long 
time between a one component to a nearly isotropic state. 
The wall damps these excursions; the local turbulence 
structure changes only slightly near the wall and it remains 
basically axisymmetric. 
 
INTRODUCTION 
  Investigating the response of the forced wall turbulence is 
difficult because, it is generally hard to identify a turbulent 
structure, isolate it from its rush environment and track it in 
time and space. Furthermore, the interaction of the given 
structure with its incoherent surrounding renders the 
analysis delicate. The strategy to resolve this problem, at 
least partially, is to proceed by a by-pass like method, i.e. to 
inject an individual structure in a supercritical flow and 
determine its development in time and space, until it leads 
to a fully developed turbulence. That is the methodology 
adopted here with the main aim to study how a structure 
with a given initial anisotropy characteristics respond to the 
structural changes and how the anisotropy develops in time 
and space. A supercritical spanwise rotating channel flow is 
chosen as the generic case for this purpose. Different 
methods to identify the anisotropy both in physical and 
spectral domains are subsequently used and analyzed.  
 
BASE FLOW CONFIGURATION  
  A local perturbation in the form of a quasi-streamwise pair 
of vortices is followed in time and space, in a way quite 
similar to the investigations dealing with by-pass transition  
 

 
 
 
 
 
 
(Henningson et al., 1993). The perturbation takes rapidly the 
form of a local turbulent spot as it is seen in Fig.1 for 
Rossby and Reynolds numbers that are respectively 

€ 

Ro =Uc 2Ωh = 6 , and 

€ 

Re =Uch ν = 1500 (here 

€ 

Ω is the 
angular rotation velocity, 

€ 

Uc  is the centerline velocity, 

€ 

h  is 
the channel half width and 

€ 

ν  is the viscosity). Hereafter, the 
flow quantities are scaled by 

€ 

h  and 

€ 

Uc . Direct numerical 
simulations are used for this purpose. The computational 
domain extends to 

€ 

16πh × 2h × 8πh  in the streamwise, wall 
normal and spanwise directions and the number of 
computational modes are respectively 

€ 

256 ×128 × 256 . 
Stretched coordinates are used in the wall normal direction. 
The critical Reynolds number under these circumstances is 

€ 

Rec = 150  according to (Alfredsson and Persson, 1989) and 
the flow is supercritical here. The perturbation becomes a 
developed turbulent spot before it leaves the computational 
domain. For this reason, the rotation is rather generic in this 
investigation allowing the time tracking of the local spot 
from its early until its developed stages. A similar analysis 
in the canonical channel flow without rotation would require 
a much longer computational domain and/or a stronger 
initial perturbation. We could determine the frontiers of the 
developing perturbation simply by sweeping the 
instantaneous vorticity field through a threshold method, in 
the homogeneous 

€ 

y  planes (

€ 

x,y  and

€ 

z  are respectively the 
longitudinal, wall normal and spanwise directions, with 

€ 

u,v  
and 

€ 

w  being the corresponding fluctuating velocity 
components-in the indicial notations we use 

€ 

xi  and 

€ 

ui  
where 

€ 

i = 1,2  and 3 correspond in order to 

€ 

x,y  and 

€ 

z , idem 
for the velocity field).  The flow indeed becomes fully 
developed turbulent as early as at 

€ 

t = 240 as it is seen in Fig. 

2 that shows the distribution of the longitudinal 

€ 

ʹ′ u = uu , 

wall normal 

€ 

ʹ′ v = vv  and spanwise 

€ 

ʹ′ w = ww  turbulent 
intensity scaled by the arithmetic mean of the pressure-
suction sides wall shear stress. The classical reaction of the 
wall turbulence under spanwise rotation is observed in Fig. 
2a, with the wall activity increasing at the pressure side.  
   The shear stress tensor is defined as usual by 
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€ 

bij =
uiu j

ukuk
−
1
3
δ ij     (1) 

where 

€ 

ui  is the fluctuating velocity component and 

€ 

δ ij  is 
the Kronecker symbol (Simonsen and Krogstad, 2005). Fig. 
2b shows the classical Lumley chart in the fully developed 
rotating channel. The turbulence near the wall develops 
along the 2 component line of the –II and III invariants. It 
approaches a rod-like axisymmetric form further away from 
the wall and local isotropy near the centerline, but does not 
entirely reach this state, in contrast with canonical turbulent 
wall flows without rotation in which the turbulence travels 
very near the rod-like line.  
 
RESULTS 
   The initial perturbation is a pair of counterrotaing vortices 
generated by the streamfunction: 

€ 

ψ =εf y( ) ʹ′ x 
lx
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               (2) 

where  

€ 

f (y) = 1+ y( )
p
1− y( )

q
, p = q = 2, ε = 0.1,lx = lz = 4           (3)   

We could determine the frontiers of the developing 
perturbation simply by sweeping the instantaneous vorticity 
field through a threshold method, in the homogeneous 

€ 

y  
planes and the results were satisfactory (not shown here). 
Most of the quantities, especially the invariants of the 
dissipation tensor have been computed within the 
perturbation volume.    
  The trajectories in the Lumley chart have been followed in 
time in the homogeneous 

€ 

y  planes. It was noticed that near 
the centerline, the local perturbation “hesitates” for a while 
between a 2 component and a rod-like axisymmetric 
structural form along which it finally continues its journey 
before reaching an “equilibrium” state. The transformation 
from one component to a nearly isotropic state takes time in 
this region. This behavior is common in the part of the flow 
that would correspond to the “external” layer in a fully 
developed turbulent rotating channel flow. Large excursions 
within the Lumley triangle also occur in the intermediate 
zone 

€ 

−0.8 ≤ y ≤ −0.5  with turnovers upon 2 component to 
rod-like structures. Beginning from 

€ 

y = −0.8 , i.e. in the 
inner layer in return, there is no such hesitation, and the 
excursions take place along 2 component to one component 
axisymmetric line. Fig. 3 shows the excursions of the –II 
invariant at respectively very close to the wall 

€ 

y h = −0.99 
and in the “outer” layer at 

€ 

y h = −0.1. The reader can notice 
that the trajectories at the wall closely follow the 2 
component line, while they are somewhat more chaotic, near 
the centerline. 
  Fig. 4 shows the time variations of the invariants –II and III 
of the shear stress tensor at respectively the channel 
centerline 

€ 

y = 0  and near the wall at 

€ 

y = −0.95  (the lower 
wall is at 

€ 

y = −1). The time oscillations of the invariants 
seen in Fig. 4 are strongly nonlinear near the centerline, 
while there is a clear effect of damping near the wall. A 
closer look to the data revealed that the temporal response of 
the shear stress tensor invariants could be modeled as a 
Duffing non-linear oscillator with damping increasing 
towards the wall (not shown here).  

  The response of the dissipation tensor invariants is 
qualitatively similar, yet there are quantitative differences in 
their temporal variations compared with the shear stress 
invariants. Recall that the dissipation tensor is defined as 

€ 

dij =
ε ij
2εK

−
δ ij
3

                  (4) 

wherein the dissipation tensor and its contraction 

€ 

εK are 

€ 

ε ij = 2ν ∂ui
∂xk

∂u j

∂xk
 , and 

€ 

εK = ε ii /2
i=1

3

∑            (5) 

 
   The reaction of the invariants related to 

€ 

dij  are similar to 

€ 

bij  at least qualitatively. The damping effect of the wall is 
once more clear from in Fig. 5a that shows the behavior of 
the invariant II at 

€ 

y h = −0.99: the trajectories follow the 2 
component axisymmetric- 1 component line, without 
penetrating into the triangle. The structure of turbulence 
changes only slightly and remains basically axisymmetric. 
Large excursions within the triangle take place as one goes 
further into the flow (Fig. 5b) and the time spent into the 
triangle increases as one approaches the outer layer. The 
trajectories become more and more irregular as one 
approaches further the centerline. Turbulence hesitates to 
become isotropic. The passage from nearly one-component 
to (nearly) isotropic state takes time. 
   It is possible in canonical (non rotating) wall turbulence to 
approximate the shear tensor 

€ 

bij  by using an algebraic 
equation for 

€ 

dij  which is typically of the form 

€ 

bij y
+( )∝ c yc+( )dij yc+( )             (6) 

 where 

€ 

yc
+ = f y +( )             (7) 

is a function of the distance to the wall in wall units. Such a 
relationship is also plausible in rotating turbulence. We 
compare the tensors 

€ 

bij  and 

€ 

dij  in Fig. 6 at 

€ 

t = 240 at 
which time the flow is fully developed. It is seen that the 
dissipation tensor invariants follow better the borders of the 
Lumley triangle compared to 

€ 

bij , and that large differences 
between 

€ 

bij  and 

€ 

dij  persist near the (pseudo isotropic) 
centerline. 
  We determined the velocity distribution of the trajectories 
into the Lumley triangle to provide quantitative information 
concerning the set-up of anisotropy. The results will not be 
detailed in this short paper and will be published elsewhere. 
We noticed that the velocity decreases linearly in time as 
expected, with large dispersion along the constant 
acceleration line. There is no clear dependence upon the 
distance from the wall. 
  The local isotropy of high and low frequency structures has 
been determined by computing the modulus of Fourier 
transforms of local shear stresses in the homogeneous planes 
and by determining the invariants of the related normalized 
tensor in a way much similar to Liu and Pletcher (2008). 
The local anisotropy of high and low frequency structures 
has been determined by computing 
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 The Fourier transform is computed at homogeneous 

€ 

x,z( )  planes at a given distance  

€ 

y  from the wall. Let   us 
denote by 

€ 

Fij  the amplitude of  

€ 

ψ ij . We define the tensor 

€ 

A =
Fij t;y,κ x ,κ z( ) −Fkk t;y,κ x ,κ z( )

δ ij
3

Fkk t;y,κ x ,κ z( )
             (9)

     
where

€ 

Fkk t;y,κ x ,κ z( )  is related to the amplitude of the 
kinetic energy Fourier transform. The invariants of 

€ 

A  
describe the local anisotropy in the spectral domain. The 
procedure is much similar to that used in Liu and Pletcher 
(2008).  Fig. 7 shows the distribution of the second invariant 
of 

€ 

A  at a given distance from the wall and time in the 
Fourier plane 

€ 

κ x ,κ z( ) . The second invariant is highly 
intermittent, granular and clearly appears as multi-fractal. 
This is not the case for 

€ 

Ro = ∞ . These results will be 
discussed in more details in the symposium. The small-scale 
singularities observed in the invariants diluted rapidly in 
space as the time was increased, but the high intermittency 
and the granular geometry persisted even at large 
development times. There are no apparent preferential 
direction or concentration zones in the spectral domain. 
Indeed, we computed the “center of gravity” of the spectral 
invariants in the 

€ 

κ x ,κ z( )  plane at different 

€ 

y h positions, 
and did not notice significant differences (not shown here).  
  We first computed the time average of the spectral 
invariants 

€ 

II  and 

€ 

III at large developing times (between 

€ 

t = 120  and 

€ 

t = 240) and then averaged the time mean 
invariants in the spanwise wavenumber range through 

€ 

ιII = −
1
Lz

II
0

Lz

∫ dkz  and 

€ 

ιIII =
1
Lz

III
0

Lz

∫ dkz                         (10) 

 
at several 

€ 

y h . The corresponding distributions are shown 
in Fig. 8. It is seen that in the high frequency range at 
typically 

€ 

kx ≥ 20  both 

€ 

ιII  and 

€ 

ιIII  are independent of 

€ 

y h . 
That means that small scale structures have the same local 
anisotropy across the entire layer in the fully developed 
regime. At small values of the wavenumber 

€ 

kx ≤10, the 
spanwise averaged mean local anisotropy is larger near the 
centreline, than near the wall. For instance 

€ 

ιII = 0.8  at 

€ 

y h = 0  that is larger than 

€ 

ιII = 0.6  at 

€ 

y h ≤ −0.7. The 
tendency observed in the 

€ 

ιIII  distribution is similar. That 
surprisingly indicates that large scale structures are (slightly) 
more anisotropic in the outer layer than in the inner layer. 
Another interpretation might be that the repercussion of the 
large scale structures on the anisotropy is less significant in 
the inner than the outer-layer. Given that it is difficult to 
assess strongly anisotropic large-scale structures in the outer 
layer, the second interpretation seems to be more plausible. 
Note finally that these behaviours are similar to those 
observed in a canonical turbulent boundary layer (Liu and 
Pletcher, 2008).  
  
CONCLUSION 
  The development of a local perturbation is analyzed in a 
subcritical spanwise rotating channel flow, with the aim to 
determine how the anisotropy involves in time and space. 
The time-space tracking of invariants of the shear stress and 
dissipation tensors shows that the local disturbance hardly 
reaches its isotropic state near the centreline. The time 
response of the shear stress invariants is strongly non linear 
in the outer layer. The trajectories of the invariants within 
the Lumley triangle follow basically the axisymmetric line 
near the wall whose strong damping effect results in rather 
smooth temporal variations. The observed behaviors can be 
modeled through a non-linear Duffing oscillator whose 
damping coefficient increases progressively from the 
centreline to the wall. 
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Figure 1. Time-space evolution of the localized perturbation at 

€ 

Ro = 6 and 

€ 

Re = 1500  at 

€ 

t = 20  (left) and 

€ 

t = 110  (right) in 
terms of instantaneous turbulence kinetic energy contours. 
 
 
 

 
Figure 2. (Left) Turbulent intensity profiles at 

€ 

t = 240 in the fully developed turbulent spanwise rotating channel flow (

€ 

Ro = 6 
and 

€ 

Re = 1500 ). (Right) Lumley chart in the fully developed turbulent rotating channel. 
 
 
 
 

  
Figure 3. Trajectories of the stress tensor invariants in Lumley triangle near the wall (left) and the centerline (right). Final time 
is at 

€ 

t = 240. + : Departure ; * : Arrival points. 
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Figure 4. Temporal evolution of the second and third invariants of shear stress tensor at the centerline 

€ 

y h = 0   (left) and near 

the wall at 

€ 

y h = −0.95 (right). 

 

 

 
Figure 5. Trajectories of the dissipation tensor invariants in Lumley triangle near the wall (left) and the centerline (right). Final 
time is at 

€ 

t = 240. + : Departure ; * : Arrival points. 
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Figure 6. Lumley triangle in the fully developed state at 

€ 

t = 240. Open circles correspond to the stress tensor, and closed 
symbols to the dissipation tensor. Points are shown every 

€ 

y h = 0.1 . 
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Figure 7. The second invariant of the spectral tensor as defined in the text at 

€ 

t = 30 . Left 

€ 

y h = −0.9 , right 

€ 

y h = −0.7 .  

 

 

 
 
 

 
 
 

Figure 8. Time mean spanwise averaged local spectral anisotropy 

€ 

−
1
Lz

II
0

Lz

∫ dkz  (and 

€ 

1
Lz

III
0

Lz

∫ dkz ) versus the streamwise 

wavenumber (time average performed between t=120 and 240). 


