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ABSTRACT

Direct Numerical Simulation is performed to investigate

the evolution of internal waves and turbulence inside a strati-

fied medium with stable background shear. The upper-ocean

flow consists of a shear layer associated with a sub-surface

jet located below a free-slip surface. Inside the shear layer,

a well-mixed layer is located on top of a linearly stratified

layer in which the gradient Richardson number is larger than

0.25. Holmboe instability is observed to grow at the base

of the mixed layer, eject thin wisps of heavy fluid into the

mixed layer and subsequently generate turbulence. Holmboe

instability also excites internal waves into the linearly strati-

fied region. The waves propagate downward in the stratified

sheared medium and are reflected upward when the back-

ground velocity is too large to support propagating internal

waves according to linear wave theory. Intermittent bursts

of turbulence with the dissipation rate of at least two orders

of magnitude larger than that of the waves are observed in

the linearly stratified region. Horseshoe vortices originated

from the mixed layer penetrating downward are found to

cause the bursts.

MOTIVATION

Shear instability, internal waves and turbulent mixing

are intertwined in many geophysical flows. The breaking of

large-scale internal waves due to shear instability when the

waves steepen can result in significant mixing. On the other

hand, shear instability due to background flow conditions

can excite internal waves and simultaneously cause mixing.

Understanding how these events relate to one another is of

fundamental interest in fluid dynamics and is the subject of

this paper.

Previous studies have shown that the nonlinear evolu-

tion of the Kelvin-Helmholtz instability (Smyth et al., 2001)

and the Holmboe instability (Carpenter et al., 2007) at an

interface between two fluid of constant density can induce

significant turbulent mixing. Pham et al. (2009) further

show that the Kelvin-Helmholtz instability can also excite

strong internal waves when the fluid is continuously strati-

fied. The energy flux carried by the waves can be up to 33%

of the amount expended for mixing. In the present study,

we investigate the characteristics of internal waves and tur-

bulent mixing as results of the nonlinear evolution of the

Holmboe instability at a density interface between a mixed
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Figure 1: Initial mean profiles. The velocity consists of two

streams moving in opposite direction with velocity difference

∆U and shear layer thickness, δω . The maximum shear is

at z = −1.25δω . The density variation corresponds to a hy-

perbolic tangent profile in the squared buoyancy frequency

N2(z). At z = −δω , N2(z) transitions from an upper mixed

layer to a linearly stratified lower region with the value of

N2 equal to 0.3. The gradient Richarson number Rig is less

than 0.25 above z = −1 and greater than 0.25 in the region

below.

layer and a layer of linearly stratified fluid with background

shear.

FORMULATION

A schematic of the simulated flow is given in Fig. 1: a

shear layer between two layers of fluid moving in opposite

directions with a velocity difference ∆U and a vertical den-

sity stratification owing to a temperature variation. The

flow statistics evolve temporally with the assumption that

the statistics are homogenous in the streamwise (x) and

spanwise (y) directions. The streamwise velocity varies con-

tinuously in the vertical cross stream direction (z) with a

hyperbolic tangent profile,

〈u〉 (z, t = 0) = −
∆U

2
tanh

„

z − 1.25δω

0.5δω

«

,

where δω is the shear layer thickness. The center of the

shear layer is put at z = −1.25δω below the surface z = 0

to mimick the ocean surface. Here, the bracket 〈·〉 denotes

a horizontal average over the x − y plane. The density

ρ (z, t = 0) corresponds to a mixed layer that extends from

the surface to depth z = −δω where it transitions into a

linearly stratified region. The squared buoyancy frequency

profile, defined by N2 = − (g/ρ0) d 〈ρ〉 /dz, has a hyperbolic



tangent profile,

N2 (z) =
N2

d

2
tanh

„

z − δω

0.5δN

«

,

where N2

d
is a measure of stratification in the region below

the shear layer. The thickness, δN , of the N2 profile is 1/4

of the shear layer thickness and the center of N2 profile is

offset 0.25δω above the center of the shear layer. Profiles of

the squared shear rate S2, the squared buoyancy frequency

N2 and the gradient Richardson number Rig are given in

Fig. 1 where S = d 〈u〉 /dz and Rig = N2/S2. Linear sta-

bility theory indicates that shear instability occurs in region

where Rig < 0.25. In our setup, shear instability is expected

to occur at z ≈ −δω where the shear is strongest in the re-

gion with Rig < 0.25. Below z = −δω , although the shear

increases, instability is prevented since Rig > 0.25.

The shear layer thickness δω , the velocity difference ∆U

and the stratification in the deep region Nd are used for

nondimensionalization. We solve the Navier-Stokes equa-

tions under the Boussinesq approximation with the follow-

ing nondimensional parameters: Reynolds number Re =

∆Uδω/ν = 5000, Prandtl number Pr = ν/κ = 7, and

Richardson number Jd = N2

d
δ2
ω/∆U2 = 0.3. Here, ν is

the kinematic viscosity, and κ is the molecular diffusivity.

Hereafter, the results will be discussed in nondimensional

units.

The dimensionless domain size is 8π x 3π x 19.6 and the

number of gridpoints in x, y, z directions is 512 x 192 x 256,

respectively. The grid is uniform in the streamwise and span-

wise directions. In the vertical direction, the grid is stretched

from the surface to depth z = −0.75 at a ratio of 3% with the

smallest grid size of 0.008 at the surface. The grid is uniform

in the region −0.75 > z > −2.5 with the spacing of 0.02. Be-

low this region the grid is again stretched with a ratio of 3%.

A second-order finite difference method on a staggered grid

is used for spatial derivatives and a third-order low-storage

Runge-Kutta method is used for time advancement. The

flow is initialized with low-amplitude velocity perturbations

at the density interface. Periodic boundary conditions are

used in the x and y directions. A free-slip rigid-lid condition

is enforced at the surface z = 0 and a Neumann condition

is used at the bottom of the domain. A sponge region is

employed in the region z < −10 to damp out internal waves

propagating out of the domain. The simulation includes

the linear growth and nonlinear evolution of the Holmboe

shear instability resulting in large-scale internal waves and

small-scale three-dimensional turbulence. In the following,

we discuss these events at length.

HOLMBOE INSTABILITY

The density fields in the vertical plane at y = 4.7 in Fig. 2

illustrate the development of Holmboe instability. Carpenter

et al. (2007) observe that Holmboe instability has slower

growth rate compared to Kelvin-Helmholtz instability. In

the present study, not until approximately t = 250 is the

amplitude of the instability large enough to be seen in the

density field at z = −0.9. The instability has a horizontal

wavelength of 8.4 moving with a phase speed of 0.3 in the

negative x direction. It is noted that the phase speed is

equal to the background velocity 〈u〉 at the time of instability

growth. Hereafter, z0 = −0.9 is used to indicate the depth

at which the instability grows.

The nonlinear evolution of the instability is illustrated

in Fig. 2(a) with the density field at t = 346. On the crests
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Figure 4: Profiles of Gradient Richardson number Rig at

various times.

of the instability, thin wisps of heavy fluid are ejected up-

ward into the mixed layer along the direction of the upper

stream. Different from Carpenter et al. (2007) where the

wisps grow freely in the vertical direction, the upward ejec-

tions are limited by the presence of the surface at z = 0

in the current study. At later time t = 560 as shown in

Fig. 2(b), the Holmboe instability grows to larger amplitude

and the mixed layer becomes turbulent with broadband fluc-

tuations. The interface between the upper turbulent region

and lower non-turbulent region is sinusoidal with wavelength

of the instability. The vertical location of the interface varies

greatly in the x direction. At x = 10 the interface is shallow

at z = −0.4 and at x = 15 it reaches deep to z = −1. The

sinusoidal interface persists even when the turbulence in the

mixed layer vanishes at the end of the simulation.

It is interesting to contrast the turbulence interface in

the present study with the deepening of a mixed layer by

wind-generated or grid-generated turbulence into a stably

stratified deep region. In the latter cases, small-scale turbu-

lence erodes the interface and internal waves are radiated.

The spatial scales of the radiating waves and that of the

largest turbulent eddies are approximately of the same or-

der. As the turbulence subsides, so does the internal wave

generation. In the present study, there is a large separation

between the two scales. The small-scale turbulent eddies are

observed on top of a large-scale sinusoidal interface and the

interfacial waves persist longer than the eddies.

The growth of the Holmboe instability extracts momen-

tum from the background mean shear as shown in Fig. 3(a).

Between the initial profile in Fig. 1 and one at t = 234 in

Fig. 3(a), the peak values of S2 have dropped by 40% due to

viscous diffusion of momentum and the instability has not

yet grown to finite amplitude. At t = 346, the S2 profile

indicates a redistribution of momentum in the mixed layer.

In the region −1.25 < z < −0.6, S2 decreases and it is noted

that the decrease is due to both viscosity and the Holmboe

instability. The difference in S2 due to viscosity in the region

−2.5 < z < −1.25 between t = 234 and t = 346 is smaller

than the difference observed in the region above z = −1.25.

At t = 346, the Holmboe instability extracts momentum

from the mean shear at z0, deposits a fraction into the re-

gion above and loses a portion in exciting internal waves into

the region below. Profiles of S2 between t = 346 and t = 560

indicate a significant loss of momentum in the region above

z = −1.25 while the region below shows insignificant change.

Beside the extraction of momentum, the evolution of the

Holmboe instability also alters the background density as



Figure 2: Density fields in the x-z plane at y = 4.7 illustrate the evolution of Holmboe instability: (a) at t = 346 and (b) t =

560.
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Figure 3: Profiles of squared shear S2 and squared buoyancy frequency N2 at various times.

shown in the profiles of N2 in Fig. 3(b). The formation of

the thin wisps ejecting fluid at depth z0 upward so that the

upper region, initially mixed, becomes heavier and N2 in-

creases. The increase in N2 in this region also indicates that

the turbulence shown in Fig. 2(b) is not strong enough to

keep the region well-mixed. Between t = 346 and t = 560

the stratification in the region −1.4 < z < −0.9 decreases

suggesting mixing events. The N2 profiles at t = 460 and

t = 560 have an overshoot in the region −2.0 < z < −1.4.

An overshoot in N2 profiles is usually observed when mix-

ing occurs in the immediate vincinity (Sutherland & Linden,

1998; Taylor & Sarkar, 2008). Mixing events in region below

z0 are particularly interesting because the gradient Richard-

son number Rig in this region is always greater than the

critical value for linear shear instability as shown in Fig. 4.

Over the entire simulation, Rig is less than 0.25 only in the

mixed layer during the early time. After the Holmboe in-

stability has fully developed and the mixed layer becomes

turbulent, Rig is greater than 0.25 at all depths. The mix-

ing events in the strongly stratified region are not directly

driven by shear instability nor by breaking internal waves

and is discussed further in a later section after the following

description of internal waves.

INTERNAL WAVES

Internal waves with horizontal wavelength and phase

speed equal to that of the Holmboe instability are observed

in the sheared region below the depth z0 as well as in the

non-sheared region below z = −2.5. The structure of the

wave field is shown in Fig. 5 with the fluctuating density ρ′.
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Figure 6: Vertical energy tranpsort by internal waves 〈p′w′〉

at various times.

Here, the fluctuating field is computed by substracting the

horizontally-averaged value from the total value. At t = 346,

alternating wave crests (red) and troughs (blue) are observed

in the region below z0. The wave structure is vertically co-

herent with the amplitude being largest near z0 and followed

by rapid decay in the region below z = −2. At later time,

stronger waves are observed although the structure and the

phase speed remain the same. At t = 560, the waves reach

as deep as z = −5 although the amplitude decays quickly

with depth.

Linear internal waves can be either propagating or

evanescent. Propagating internal waves are known to be able



Figure 5: The fluctuating density fields ρ′ indicates the presence of internal waves at (a) t = 346 and (b) t = 560.
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different time t = 346 and t = 560.

to distribute momentum and energy in space while evanes-

cent waves have their fluxes decay exponentially in space. It

is important to identify the mode of the waves so that the

importance of the wave momentum and energy fluxes can

be analyzed. The wave energy flux, typically quantified by

the pressure-velocity correlation 〈p′w′〉, is plotted in Fig. 6

at various times. At t = 346 and t = 435, 〈p′w′〉 is negative

below z0 indicating that the waves carry energy generated

by the Holmboe instability downward. The energy fluxes

peak approximately at z = −1.9 below which there is no

wave propagation. At t = 489 and t = 560, 〈p′w′〉 changes

signs in the region below z0, and therefore, the direction of

energy tranport is upward during this period. The positive

〈p′w′〉 in the region −1.9 < z < z0 is indicative of waves

reflected at z = −1.9 below which linear wave propagation

is not possible. The non-negligible values of 〈p′w′〉 below

z = −1.9 at late time are associated with the evanescent tail

of the internal waves.

Linear wave theory can be used to identify the mode and

explain the propagating direction of the internal waves. The

theory indicates that for internal waves to propagate in a

medium with stratification N , the intrinsic frequency Ω of

the waves has to be less than N . When Ω exceeds N , the

waves become evanescent. For waves propagating in a con-

tinuously sheared medium as in the present study, Ω is equal

to (c − 〈u〉) kx where 〈u〉 is the mean current, c is the wave

phase speed in the fixed simulation frame and kx is the hor-

izontal wavenumber. The horizontally-averaged spectra of

the streamwise velocity u′ at two different depth and various

times in Fig. 7 indicates that kx is equal to −0.75 where the

negative sign corresponds to the wavenumber vector point-

ing in negative x direction. The phase speed of the wave

is equal to the phase speed of the Holmboe instability and

thus c = −0.3. Since 〈u〉 varies with depth, the frequency Ω

ranges from 0 at z0 to N at approximately z = −1.9 where

〈u〉 = c − N/kx. Therefore, the waves are propagating be-

tween the depth z0 down to z = −1.9 below which the waves

are evanescent. Linear wave theory suggests the following:

the Holmboe instability grows and excites internal waves at

z0; the waves propagate downward in the stratified sheared

medium until z = −1.9 where they are reflected upward;

below z = −1.9 they are evanescent. Later in time, the

Holmboe instability decays and the excitation of the inter-

nal waves weakens. The signal is dominated by the reflected

upward propagating waves. The evolution agrees with the

observations in Fig. 5 and 6. It is noted that the waves do

not break and they persist until the end of the simulation

since they are trapped in the region −1.9 < z < z0.

INTERMITTENT TURBULENCE

The nonlinear evolution of Holmboe instability gener-

ates turbulence in the mixed layer as discussed in Car-

penter et al. (2007); however, in the current study we

further observe intermittent bursts of turbulence in region

−1.75 < z < z0 where propagating internal waves are ob-

served. Fig. 8 illustrates the dissipation field ε in x-y planes

at different depth. Here, the dissipation rate, defined as

ε = −ν
˙

∂u′

i/∂xj∂u′

i/∂xj

¸

, is used to indicate the presence

of turbulence. There are localized patches of turbulence in

which the dissipation inside the patches is at least two orders

of magnitude stronger than in the region outside. The size

of the patches are significantly smaller than the wavelength

of the internal waves and they are swept by the current in

the positive x direction opposite to that of the propagating

waves. Although there are more turbulence patches in the

plane at depth z = −1.25, the patches at depth z = −1.5 and

−1.75 are correlated with the patches at depth z = −1.25

suggesting vertical coherence between the patches. For ex-

ample, the patches at x = 12 and y = 8 can be identified

at all three depth, and so can the patches at x = 18 and

y = 1.5.

The intermittent bursts of turbulence are not directly re-

lated to either linear shear instability or to breaking internal



Figure 9: Green horseshoe vortex is shown with λ2 = −5 criteria. The red isosurface depicts internal wave with an isopycnal

surface of ρ = .0021 at t = 560.

Figure 8: Dissipation rate ε in the x-y plane at t = 463 at

three depth (a) z = -1.25, (b) z = -1.5 and (c) z = -1.75.

waves. The bursts are results of the ejections of horseshoe

vortex tubes similar to those seen in Pham & Sarkar (2010).

Fig. 9 shows the three-dimensional structure of the vortex

using the λ2 criteria which locates the pressure minimum in

a plane perpendicular to the vortex axis and accurately de-

fines vortex cores (Jeong & Hussain, 1995). In the figure, the

red isosurface is the isopyncal surface of ρ = 0.0021 located

approximately at depth z = −1.75 and the green isosurface

of λ2 = −5 illustrates the horseshoe vortex. The vortex

is formed inside the mixed layer above z0 and penetrates

downward into the region with stable shear below z0. As

the vortex moves downward, it is stretched in the positive

x direction forming the horseshoe shape. It is the pene-

tration of these vortices that creates the vertically-coherent

intermittent patches of turbulence. In Fig. 9, the tip of the

vortex intersects the isopycnal surface creating small-scale

turbulence but the structure of the intenal wave is not af-

fected by the vortex. Different from Pham & Sarkar (2010)

in which the internal waves disappear after the penetration

of the vortices, the internal waves live through in the present

study.

The energy budgets of the fluctuating velocities are

shown in Fig. 10. In the present study which involves both

internal waves and turbulence, the budget is quantified as

follows:
dk

dt
= P − ε + B −

dT3

dz
. (1)

Here, k = 1/2
˙

u′

iu
′

i

¸

is the fluctuating energy,

P = −〈u′w′〉 d 〈u〉 /dz is the production rate, B =

− (g/ρ0) 〈ρ′w′〉 is the buoyancy flux, and ε is the previously-

defined dissipation rate. The transport term dT3/dz is de-

fined with

T3 =
1

2

ˆ˙

w′u′u′
¸

+
˙

w′v′v′
¸

+
˙

w′w′w′
¸˜

−
2

Re0

ˆ˙

u′s′31
¸

+
˙

v′s′32
¸

+
˙

w′s′33
¸˜

+
〈p′w′〉

ρ0

.

In Fig. 10(a), at t = 346 the production is the largest source

in the budget with a peak at z0. The Holmboe instability

extracts energy from the mean shear and deposits it into

the fluctuating fields. The production extends upward to

z = −0.5 and downward to z = −2.5 where the mean shear

vanishes. It is important to point out that, at this time

when the penetration of the horseshoe vortices has not yet

occurred, the production above z0 is of turbulence while

the production below is a signature of internal waves prop-

agating in a sheared medium. Turbulence production has

broadband velocity correlation 〈u′w′〉, also called Reynolds

stress, and the background shear is decreased during the

turbulence generation as shown in Fig. 3(a). When internal

waves travel in a sheared background, their momentum flux,

i.e. narrow-band velocity correlation 〈u′w′〉, in combination

with the shear S gives rise to the production. In this case,

energy is not extracted from the mean shear and therefore

the mean shear is not affected. At t = 346, the dissipation

is smaller than other components in the budget. The time

rate of change in energy dk/dt is positve at all depth. En-

ergy is extracted at z0 and redistributes in space through

the buoyancy flux and the transport.

The budget at t = 560 in Fig. 10(b) shows production

with negative sign. At late time, the Holmboe instability is
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Figure 10: Energy budgets of the fluctuating velocities at (a) t = 346 and (b) t = 560.

shut off since the gradient Richardson is greater than 0.25

and the mixing stabilizes the flow. Energy can no longer be

extracted from the mean shear. The negative production in-

dicates that the wave momentum flux 〈u′w′〉 changes sign as

a result of internal wave reflection. As discussed previously,

at this time internal waves are reflected at depth z = −1.9

carrying energy upward. The dissipation is larger compared

to that in Fig. 10(a) with a peak at z0. The dissipation

extends down to depth z = −1.75 because the penetration

of the horseshoe vortices creates patches of intense turbu-

lence in this region. The source of energy for the dissipation

in the region below z0 can be from the turbulent transport

from the region above (turbulent fluxes arriving with the

vortices) and the wave energy flux from reflected waves be-

low. Results from Pham & Sarkar (2010) also shows that

the horseshoe vortices can further extract energy from the

background shear. In the present study, since the inter-

nal waves are significantly stronger and persist longer than

the turbulence patches, it is difficult to differentiate the en-

ergy extracted from the waves from that extracted from the

mean shear. The interaction among the vortices, the inter-

nal waves and the mean shear deserves more attention in

future studies.

CONCLUSIONS

We have used Direct Numerical Simulation to investigate

the relationship between shear instability, internal waves and

turbulence below a well mixed layer in a stably stratifed

shear layer bounded by a free-slip surface. The flow is unique

because the stratifcation within the shear layer is set such

that there is a small surface mixed layer on top of a larger

linearly stratified region. The gradient Richardson number is

larger than 0.25 in the linearly stratified region so that linear

shear stability is probibited. A Holmboe instability grows

at the interface between the mixed layer and the linearly

stratified region. The evolution of the Holmboe instability

includes Holmboe waves, the ejections of thin wisps of fluid

into the mixed layer and finally the generation of turbulence.

The instability also excites internal waves. The waves prop-

agate downward from the density interface. At the bottom

of the shear layer where the velocity becomes too large to

support internal waves, they are reflected upward. Nonlin-

ear evolution of the Holmboe instability creates vortices in

the mixed layer. These vortices penetrate down into the lin-

early stratified region with the background shear. As the

vortices come downward, they are stretched into prolonged

horseshoe vortex tubes and generate intermittent patches of

turbulence. The dissipation inside the turbulence patches

is at least two orders of magnitude stronger than that cor-

responding to the propagating waves. No breaking of the

internal waves was observed. The internal waves persist

over the entire simulation while the turbulence bursts are

short-lived.
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