
ACCOUNTING FOR TURBULENCE DESTRUCTION IN THE FLOW
OVER FORESTS

A. Silva Lopes
asl@fe.up.pt

J.M.L.M. Palma
jpalma@fe.up.pt

J. Viana Lopes
CEsA – Centre for Wind Energy and Atmospheric Flows

Faculdade de Engenharia da Universidade do Porto
Rua Dr. Roberto Frias, s/n – 4200-465 Porto – Portugal

jvlopes@fe.up.pt

ABSTRACT

Large-eddy simulations of the flow over a long homoge-
neous forest were used to calibrate the canopy related terms in
a RaNS k−ε turbulence model. It was found that the canopy
drag always acts to decrease both the turbulent kinetic energy
and its dissipation. The flow across a forest edge was used
to see whether the model was also accurate in a more com-
plex flow, with a finite length forest. The effects of the canopy
were overestimated in an initial part, but, overall, the accuracy
approached the levels found in the case of the long forest.

INTRODUCTION

Flows over forests are of major importance in a large
range of applications, including wind energy, forest fires and
air pollution. One- and two-equation Reynolds averaged
Navier-Stokes (RaNS) turbulence models have been appraised
in the prediction of such flows (Katul et al., 2004). However,
the development of models for canopy flows still suffers from
many deficiencies, one of them being the uncertainty of the
model coefficients (Sanz, 2003; Sogachev & Panferov, 2006).
By contrast, numerical models using large-eddy simulation
(LES) and a drag-force approach for the canopy have been
able to reproduce many of the observed features of the flow
over vegetation canopies (Shaw & Schumann, 1992; Yang
et al., 2006a,b).

The objective of this work is to use large-eddy simula-
tions and the least squares method to calibrate canopy models
for RaNS with k−ε model. Using LES it is possible to change
parameters as the foliage density, which cannot always be var-
ied in field measurements. The model coefficients will be
determined mainly using the flow over a long homogeneous
canopy. The flow across a forest edge will be used to test the
conclusions in a more general configuration.

PROBLEM FORMULATION
Mathematical Model

In LES the fields are separated into resolved (large-scale)
and subgrid (small-scale) parts by a spatial filtering operation.
The filtered continuity and momentum equations for the ve-
locity field are:
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ρ and ν are the standard air density and kinematic viscosity;
τi j = uiu j − uiu j are the subgrid stresses, which were mod-
elled using an eddy-viscosity assumption:

τi j−δi jτkk/3 =−2νtSi j =−2C∆
2|S|Si j .

Here ∆ = (∆x ∆y ∆z)1/3 is the filter size, Si j =(
∂ui/∂x j +∂u j/∂xi

)
/2 is the resolved strain-rate ten-

sor and |S| = (2Si jSi j)1/2 its magnitude. As subgrid model,
we used a combination of a wall-damped Smagorinsky
near the ground (as in Mason & Thomson, 1992) with, far
away, the dynamic model with the Lagrangian averaging
technique (Meneveau et al., 1996). Further details about the
implementation can be found in Silva Lopes et al. (2007).

The canopy model adds an extra term Fi to the momen-
tum equations, which represents the drag force in the xi direc-
tion:

Fi =−Cd a(z)|u|ui . (3)

Cd is a drag coefficient, a(z) the leaf area density (LAD) and

|u| the resolved scalar velocity,
(
u2 + v2 +w2)1/2. The leaf
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area index (LAI) is generally used to characterize the foliage
density and is related to the leaf area density by

LAI =
∫ hcan

0
a(z)dz ,

where hcan is the canopy height.

Homogeneous Canopy
Physical Domain and Boundary Conditions

The computational domain is identical to Shaw & Schumann
(1992) (herein called SS92): a box with 192 m×96 m×60 m,
in the streamwise, spanwise and vertical directions. The forest
is located in the lower 20 m of the domain.

Periodic conditions were used in the streamwise and
spanwise directions. The wall-model of Marusic et al. (2001)
was used at the bottom rough surface, with z0 = 2 cm, and a
free-slip condition was used at the top surface. To maintain
a constant average wind-speed Ub = 2 m/s, the streamwise
pressure gradient was varied at each time-strep.

Grids SS92 used an isotropic grid with resolution
∆xi = 2 m (∆xi/hcan = 0.1). Our initial grid was similar, but
refined in the vertical direction near the canopy top, for im-
proved resolution of the strong shear. We found that a reso-
lution ∆zmin = 0.2 m was required to avoid oscillations (dis-
persion error) in the resolved shear 〈u′w′〉, using a hyperbolic
tangent stretching with maximum expansion factor lower than
1.1 and maximum vertical space not much larger than the hor-
izontal (∆zmax < 1.1∆x).

A grid refinement study was performed, using the initial
(coarse) grid, a fine grid, with twice the resolution in every di-
rection, and a medium grid, with intermediate resolution (ta-
ble 1).

Table 1. Homogeneous canopy grid resolution. ∆x, ∆y and
∆zmin in meters; fzmax is the maximum expansion factor in the
vertical direction.

Grid Nodes ∆x, ∆y ∆zmin fzmax

Coarse 96×48×68 2.00 0.200 1.10

Medium 136×68×96 1.41 0.141 1.07

Fine 192×96×136 1.00 0.100 1.05

Forest Edge
Physical Domain and Boundary Conditions

For the flow across a forest edge, the configuration of Yang
et al. (2006a) was considered: a computational domain with
288 m×144 m×46.5 m in the streamwise, spanwise and ver-
tical directions. The forest was located in the lower 7.5 m
of the domain and is 144 m long. Boundary conditions were
similar to the homogeneous canopy, except that the ground

roughness was z0 = 2.8 cm and the average wind speed was
Ub = 3 m/s.

Two reference simulations were also performed: one for
the flow over a forest that occupies the full length of the do-
main and another for a simple boundary-layer flow, without
forest.

Grid Results will be presented using a single grid,
with 384× 192× 71 nodes and resolution ∆x = ∆y = 0.75 m
and ∆zmin = 0.15 m. This grid had the same resolu-
tion ∆x/hcan and ∆y/hcan as the fine grid of the homoge-
neous canopy and, to limit the computational resources used,
∆zmin/hcan was the same as the homogeneous canopy coarse
grid.

VALIDATION
To assess numerical uncertainty, a comparison of results

obtained using the different grids and the various LAI con-
sidered in the homogeneous canopy flow was done. Figure 1
shows comparisons of mean velocity, resolved turbulent ki-
netic energy and shear stress profiles for LAI = 5 with results
from SS92. LAI = 5 was chosen because it is the case with
more results available and is also the most demanding, since
drag forces are larger. Turbulent kinetic energy and shear
stress are normalized by the friction velocity, calculated using
the total shear stress at the canopy top (resolved and subgrid).
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Figure 1. Mean velocity profiles, resolved turbulent kinetic
energy and total shear stress (resolved and subgrid) with
LAI = 5 obtained with different grids, compared with results
from Shaw & Schumann (1992).

The mean velocity and the normalized shear stresses
showed grid independence while, above the canopy, the re-
solved turbulent kinetic energy increased with grid resolution
(+10% in peak value between coarse and fine grids). Max-
imum shear also increased around 10% at the canopy top,
which provides an indication about the uncertainty associated
with grid resolution: doubling the grid did not change first or-
der quantities but resolved turbulence increased roughly 10%.

There are differences between our results and those of
SS92 in the mean velocity profile above the canopy top and the
shape of the turbulent kinetic energy peak (smooth vs. sharp)
that we attributed to the coarser grid resolution in the vertical
direction of the SS92 simulations. Differences in the shear
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stress are due to the smaller sample size of SS92, that aver-
aged only across homogeneous directions for a single time,
while our results are averaged across time and homogeneous
directions. Regarding the differences in the turbulent kinetic
energy in the lower part of the canopy (z/hcan < 0.5), it is
likely related to differences in the wall-stress or subgrid mod-
els.

RESULTS AND DISCUSSION
The homogeneous canopy flow will be first considered

and coefficients for the RaNS k−ε canopy model will be de-
vised. Then, the validity of the conclusions will be assessed
in the more complex configuration that is the flow across the
forest edge.

Homogeneous Canopy
Mean Flow Comparing velocity, turbulent kinetic

energy and shear stress profiles for various LAI shows an ex-
pected reduction of all the quantities inside the canopy with
increased foliage density (figure 2), due to the higher drag.
Above the canopy, mass conservation implies that higher LAI
corresponds to higher velocities, while normalized turbulent
kinetic energy showed similar peak values.

〈u’w’+τxz〉/uτ
2

-1 -0.5 0
k/uτ

2
0 1 2 3

U/Ub

z/
h ca

n

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

LAI=2
LAI=3
LAI=4
LAI=5
SS92, LAI=2
SS92, LAI=5

Figure 2. Mean velocity profiles, resolved turbulent kinetic
energy and total shear stress (resolved and subgrid) obtained
with different leaf area indices.

Turbulent Kinetic Energy Budgets In order
to improve RaNS k−ε models, we considered the transport
equation for the resolved turbulent kinetic energy (k),

∂k
∂ t

= Ck +Pk− ε +Tk +Sk , (4)

where

Ck =−〈U j〉
∂k
∂x j

, (5)

Pk =−〈u′iu′j〉
∂ 〈Ui〉
∂x j

, (6)
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(8)

Sk =−Cz
〈
|u|ui u′i

〉
(9)

are the mean convection, production, dissipation, turbulent
transport and the canopy drag action (Cz = Cd a(z)). The sub-
grid stresses contribute to both the turbulent transport (8) and
to the dissipation (7).

In the case of the homogeneous canopy, the mean con-
vection (5) is zero. An analysis of the remaining terms in (4)
showed that canopy drag contribution (9) is always negative,
i.e. it destroys k (figure 3). For z/hcan < 0.8, it is balanced
by turbulent transport; above, it is balanced by production.
Note that the peak production near the canopy top, due to si-
multaneous high shear and shear-stress, is a consequence of
the canopy, but not the result of a direct action. The higher
LAI increases the peak values and makes them narrower, but
does not affect the relative contributions. As Finnigan (2000)
finds, turbulence inside the canopy is far from local equilib-
rium: turbulent transport is positive for z/hcan < 0.9, showing
that turbulence inside the canopy is mainly transported from
above. The subgrid model dominates the dissipation, but con-
tributes less than the turbulent convection and the pressure to
the turbulent transport.
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Figure 3. Turbulent kinetic energy budgets for LAI = 2 and
5. Dissipation and turbulent transport include contributions
from both resolved and subgrid fields.

The budget of the dissipation of turbulent kinetic energy
(ε) was also analyzed, even if resolved dissipation is almost
always less than 1% of the total dissipation. Resolving a sig-
nificant part of the dissipation in an atmospheric flow with the
scales considered here (canopy height) is beyond the possi-
bilities of the available computational resources. The trans-
port equation for the dissipation of turbulent kinetic energy
includes several terms that we do not detail here. Since our
main interest is on the effect of the canopy drag and how it is
balanced, we consider a production, which has origin on the
non-linear terms of the Navier-Stokes equations, a dissipation,
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due to the subgrid stresses, and the canopy effect,

Sε =−
〈

∂

∂x j
(Cz|u|ui) ·

∂u′i
∂x j

〉
. (10)

The canopy drag acted also as a sink for the resolved
dissipation of turbulent kinetic energy (figure 4). However,
unlike the turbulent kinetic energy budget, it did not dominate
the destruction and is of the same order or less than the effect
of the subgrid model. The contribution of the pressure and the
viscous stresses was much smaller than the other terms.
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Figure 4. Dissipation of turbulent kinetic energy budgets for
LAI = 2 and 5.

RaNS k−ε Modeling Modeling the canopy effect
in the turbulence with RaNS k−ε models requires estimating
Sk (9) and Sε (10) using only the mean-flow velocity, the tur-
bulent kinetic energy and its dissipation. The models available
(e.g. Katul et al., 2004; Sogachev & Panferov, 2006) have the
general form (model 1)

S k−ε

k = Cz

(
βp|U|3−βd |U|k

)
,

S k−ε
ε = Cz

(
Cε4βp

ε

k
|U|3−Cε5βd |U|ε

)
,

where βp, βd , Cε4 and Cε5 are coefficients whose values
change according to authors’ proposals. βp represents the
fraction of mean flow kinetic energy converted to wake-
generated k by canopy drag (a source term) and βd is the frac-
tion of k dissipated by short-circuiting of the energy cascade
(a sink term). Terms in the ε transport equation have little
physical basis, beyond dimensional arguments (Sanz, 2003).

One of the goals of this work is to find appropriate val-
ues for the coefficients βp, βd , Cε4 and Cε5 using results from
the large-eddy simulations and the least squares method. To
draw valid conclusions using the resolved dissipation, which
is much smaller than the total dissipation, we have to consider
that the effect of the canopy drag in the dissipation budget is
proportional to the dissipation itself. This seems a reasonable
assumption, since it is already used in the k−ε model for the
production and destruction terms. In addition, it adds an al-
ternative approach to a subject where dimensional arguments
prevail.
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Figure 5. RaNS k−ε canopy model 1 coefficients function
of the LAI for each grid resolution.

The coefficients depend on grid resolution, which is ex-
pected since the least squares method uses second-order quan-
tities that have the same dependence (figure 5). However, the
coefficients depend as much on the leaf area index, which
is undesirable when the goal is to have a simple model that
should consider the LAI effect only through Cz. The quality
of the fit is good for the effect of the canopy in the turbu-
lent kinetic energy (figure 6): considering all the grids and all
the LAI, the maximum error is 70%, near the ground, where
Sk approaches zero; for z/hcan > 0.4, the error was always
lower than 30%. Regarding the dissipation of turbulent ki-
netic energy, the error is maximum near the ground, but even
for z/hcan > 0.4 it can be larger than 100%. Another prob-
lem of the Sε model is that it predicted positive values near
the ground, whereas the large-eddy simulations showed that
the effect of the canopy was always destroying both turbulent
kinetic energy and its dissipation.
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Figure 6. Comparison between large-eddy simulation re-
sults and RaNS k−ε fit with model 1 for the canopy effect
of turbulent kinetic energy and its dissipation (LAI = 2).

The “sink” effect of the canopy is not a surprise: in-
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creased turbulent production occurs at the foliage scale and
is due, for instance, to horizontal heterogeneity (Finnigan,
2000). As such, it cannot be reproduced in our large-eddy
simulations. However, such small-scale motions dissipate
quickly and contribute little to the turbulent kinetic energy
(Shaw et al., 1988). As a result, one can argue that the “sink”
effect of the canopy in the turbulent kinetic energy and its dis-
sipation should be enforced in the RaNS k−ε model, which
can be done with a model with only a negative part and two
coefficients (model 2),

S k−ε

k =−Czβd |U|k ,

S k−ε
ε =−CzCε5βd |U|ε .

The uncertainty associated with the determination of the
model coefficients by the least squares method was smaller for
model 2 than for model 1, considering the range of values ob-
tained for the different grid resolutions and LAI, especially for
Cε5. The fit also showed smaller relative errors with model 2:
in the turbulent kinetic energy, the error was always smaller
than 25% and in the turbulent kinetic energy dissipation it is
larger then 20% only for z/hcan > 0.9 (figure 8).
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Figure 7. RaNS k−ε canopy model 2 coefficients function
of the LAI for each grid resolution.
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Figure 8. Comparison between large-eddy simulation re-
sults and RaNS k−ε fit with model 2 for the canopy effect
of turbulent kinetic energy and its dissipation (LAI = 2).

Considering that the least squares method usually pro-
vided higher values for βd and Cε5 when higher grid reso-

lutions were used and that, in practical cases, we find more
frequently lower leaf area indexes, our proposal of values for
the model 2 coefficients is (βd ,Cε5) = (4.0,0.9). These values
were already suggested for RaNS k−ε canopy models (Green,
1992; Liu et al., 1996; Sanz, 2003), but here it is the first time
they are associated in a model with only a negative part.

Forest Edge
The objective of the simulation of the flow across a for-

est edge is to test the applicability of the canopy model de-
rived from the results of the homogeneous canopy to a slightly
more complex configuration. The mean flow is no longer only
horizontal, there are pressure gradients besides the required to
balance the wall-stress and the canopy effect depends not only
on the distance to the ground but also on the distance to the
edge.

A comparison of the mean velocity profiles between our
results and those of Yang et al. (2006a) showed some dif-
ferences for z/hcan > 2, most likely due to different forcing:
our flow was driven by a pressure gradient, while Yang et al.
(2006a) applied a force for z/hcan ≥ 5, which is transmitted
down by the shear-stress. Also, when entering the forest, the
flow seems to decelerate slightly slower near the ground in
our simulation, which can be caused by a different wall-stress
condition. Comparing with the long forest, we can see that by
x/hcan = 14.5 the mean velocity profile is almost completely
developed. It is near the ground that the flow takes longer to
develop, probably because of the lower drag force there.
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Figure 9. Streamwise velocity profiles in the forest edge
flow, compared with long forest, boundary-layer and Yang
et al. (2006a) results.

A comparison between canopy models 1 and 2 in the for-
est edge flow showed a better approximation with model 2, as
in the homogeneous canopy. The maximum error with both
models is similar, for both turbulent kinetic energy and dis-
sipation budgets, but errors larger than 40% are rare with
model 2, while they exist in zones longer than hcan with
model 1. However, the most relevant comparison is with
the coefficients of each model: whereas the coefficients for
model 1 were highly case dependent, the coefficients for
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model 2 were similar to the values obtained in the homoge-
neous canopy flow and for the long forest with the same con-
figuration (table 2).

Table 2. Least squares fit of canopy model coefficients to the
large-eddy simulation results.

Model 1

βp βd Cε4 Cε5

Long forest 0.018 4.18 310.7 5.73

Forest edge 0.073 4.31 0.53 0.75

Model 2

βd Cε5

Long forest 4.11 0.68

Forest edge 3.80 0.79

The coefficients listed in table 2 are the “best” (in a least
squares sense) for the whole forest, but not necessarily the
“best” at each vertical section. Not surprisingly, during the
initial length the coefficients can change significantly (fig-
ure 10) and the model overpredicts the effect of the canopy
on both k and ε budgets. However, after x/hcan ≈ 5 they ap-
proach the values for a long forest.
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Figure 10. Evolution of model 2 coefficients along the forest
in the forest edge flow.

As a final comment, the values found here for Cε5 are
lower than what was proposed based on the homogeneous
canopy flow. Further studies should check the reason of this
discrepancy and see if, for instance, it was due to the lower
vertical resolution of the grid.
CONCLUSIONS

Large eddy simulations of the flow over a long forest
were used to find coefficients for a RaNS k−ε canopy model.

The results showed that the effect of the drag force due to
the forest was destroying both the turbulence kinetic energy
and its dissipation. As such, an appropriate canopy model
can be S k−ε

k = −Czβd |U|k, S k−ε
ε = −CzCε5βd |U|ε , with

(βd ,Cε5) = (4.0,0.9). A priori test of this model showed er-
rors usually lower than 25%, which seems appropriate for the
k−ε turbulence model.

In the case of the flow across a forest edge, it was found
that it overestimates the effect of the canopy on both turbulent
kinetic energy and dissipation budgets in the initial part of the
forest (with length about five times the tree height), but then
approaches the accuracy obtained in the long forest.
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