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ABSTRACT

In this research, we report a numerical and experimen-

tal study of the turbulent dispersion of a passive scalar

released from a continuous ground-level point-source in a

staggered array of 16 × 16 cubic obstacles. The numerical

simulation of the flow and scalar fields was based on the

Reynolds-averaged Navier-Stokes method and experimental

measurements of the flow and dispersion were obtained in

a boundary-layer water channel. Results of a detailed com-

parison between the water-channel experiment of flow and

dispersion and model predictions of the mean flow, turbu-

lence kinetic energy, mean concentration and concentration

variance are presented.

INTRODUCTION

Turbulent dispersion of passive scalars in an environ-

ment with complex geometries represents a challenging topic

with vast applications in thermal-fluids engineering, chemi-

cal processing, urban atmospheric pollution monitoring, and

boundary-layer meteorology. The major challenge associ-

ated with this subject involves obtaining a deeper under-

standing of the interaction of the dynamically evolving flow

structures with the complex boundaries, as well as the cou-

pling of the momentum and scalar transport processes.

In order to develop an effective methodology for pre-

dicting turbulent dispersion in an urban complex, significant

efforts have been made over the past decade based on both

experimental and numerical approaches. Recent advances

in the study of turbulent dispersion in an urban environ-

ment involve a wide range of scales, including field trials

conducted at very large regional scales and laboratory simu-

lations conducted in small water channels and wind tunnels.

Large-scale urban field studies in the United States have in-

cluded the Mock Urban Setting Trial (MUST) conducted at

U.S. Army Dugway Proving Ground in northwestern Utah

in September 2001 (Yee and Biltoft, 2004), the Joint Urban

2003 Experiment conducted in Oklahoma City (Flaherty et

al., 2007), and the Urban Dispersion Program (UDP) con-

ducted in New York City over the period from 2004 to 2007

(Allwine et al., 2007). Owing to the need for high-quality

data sets for validating numerical models for the prediction

of passive scalar dispersion within an urban environment,

a number of laboratory studies that measure urban flow

and dispersion within idealized building arrays have recently

been conducted in wind tunnels (MacDonald et al., 1998;

Yee et al., 2006; Pascheke et al., 2008) and water channels

(Yee et al., 2006).

The development of numerical models for the concen-

tration variance (second-order moment of concentration) for

urban plumes have been undertaken recently, including the

work of Andronopoulos et al. (2002), Hsieh et al. (2007),

Milliez and Carissimo (2008), Wang et al. (2009) and Yee

et al. (2009). In the model of Wang et al. (2009), the

dissipation length scale for concentration variance is deter-

mined by the characteristic motions of eddies smaller than

the local plume scale in the initial meandering stage of plume

development, and is limited by the integral length scale of

turbulence when the local plume scale becomes larger than

the energy containing eddies of the flow in the turbulent

diffusive stage of plume development. In comparison with

the model of Wang et al. (2009), the model of Yee et al.

(2009) improves the formulation for the concentration vari-

ance dissipation rate by relating it to an inner time scale

associated with relative dispersion. To date, this new model

of Yee et al. (2009) has been validated only against two sets

of experimental data on a dispersing plume resulting from a

continuous release of a passive tracer within regularly aligned

arrays of rectangular obstacles (Wang et al., 2010).

As a further advancement of our previous studies, we

report a new set of high-quality water-channel data for tur-

bulent dispersion of a passive scalar released from a localized

source in a staggered array of cubic obstacles. In addi-

tion, we apply a Reynolds-averaged Navier-Stokes (RANS)

method to numerically simulate the physical processes of

turbulent dispersion in this staggered array of obstacles, and

compare these predicted results with the experimental data

reported herein in order to provide further validation of the

physically-based model of Yee et al. (2009) for the scalar

variance dissipation rate.

EXPERIMENTAL MEASUREMENTS

The water-channel simulations of flow and dispersion in stag-

gered obstacle arrays were conducted at Coanda Research

& Development Corporation (Burnaby, BC, Canada). The

water-channel experiment for various obstacle arrays is fully

described in Hilderman and Chong (2007), and only the im-
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portant details of the experiment are summarized here. The

test section of the water channel is 10 m × 1.5 m × 0.9 m,

in the streamwise, spanwise and vertical directions (denoted

by x, y and z), respectively. In this paper, we will also use

a tensor notation, so these three directions will also corre-

spond to indices 1, 2 and 3, respectively. Fig. 1 shows the

staggered array of cubical obstacles in the water channel.

This array consists of 16× 16 cubes, each with a side length

H = 31.75 mm. The Reynolds number of the flow was ap-

proximately ReH =12, 005 (based on H and the free stream

velocity Ub = 0.38 m s−1).

The velocity field was measured using a 4-beam 2-

component TSI fibre-optic laser doppler anemometer (LDA)

powered by an argon-ion laser. Titanium dioxide was used

as seed particles. The LDA data were collected over a sam-

pling time of 500 s at each position. The data rate for the

LDA measurements depended upon the flow velocity, parti-

cle seeding density, and optical properties of the lenses, but

was typically 50-500 Hz. The measurement volume at the

crossing point of the LDA beams ranged in size from 90 μm

diameter by 1.3 mm long for the 350 mm focal length lens,

to 125 μm diameter by 2.5 mm long for the 500 mm focal

length lens.

Detailed measurements were taken at 13 locations in

two cells near the centerline of the staggered array of cubes.

Fig. 2 exhibits the coordinate system used in the problem

definition and Fig. 3 shows the locations for the velocity

measurements in the two unit cells. Here, a “cell” repre-

sents the basic repeating unit used to construct the obstacle

array. A cell of the array occupies an area of 2H ×2H in the

x-y plane with the obstacle occupying one (shown shaded

in Figs. 2 and 3) of the four quadrants of the cell. Mea-

surements of the vertical profiles of velocity were made in

the first (cell 1) and sixth (cell 6) cells in the downstream

direction along the eighth column in the array of cubes (i.e.,

near the centerline of the array).

A 1-D laser induced fluorescence (LIF) linescan system

was used for measuring the instantaneous concentration field

in the dispersing plume. Sodium fluorescein dye was contin-

uously released from a point source at a rate of 12 ml min−1,

and illuminated using a laser beam powered by an argon-ion

laser. The dye source was released from a small vertical

stainless steel tube (with an inner diameter d0 = 2.8 mm).

A Dalsa monochrome digital linescan CCD camera (1024×1

pixels), 12-bit (4,096 gray levels) was used to measure the

intensity of the dye fluorescence at a sampling rate of 300 Hz

for a sampling time of 1,000 seconds at each measurement

position. Although a number of ground-level and elevated

point-source locations were used in the experiment, we will

focus here on only one particular ground-level point-source

located midway between rows 1 and 2 along the central col-

umn of obstacles (see Figs. 2 and 4 for more details).

NUMERICAL ALGORITHM AND MODELS

The velocity and concentration fields are described by the

conservation laws for mass, momentum and concentration

for a neutrally-stratified incompressible flow, expressed in

the usual ensemble-averaged form. In addition to these con-

servation laws, the transport equations for turbulence kinetic

energy (TKE) k, the rate of dissipation ε of TKE and concen-

tration variance c′2 are also used. These governing equations

assume the following form in a Cartesian coordinate system:

∂ūi

∂xi
= 0, (1)

∂ūi

∂t
+

∂(ūiūj)

∂xj
=− ∂p̄

∂xi
+

∂

∂xj

(
ν

∂ūi

∂xj

)
−

∂ u′
iu

′
j

∂xj
, (2)
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Figure1: Arrangement of staggered cubic obstacles in the water-

channel experiment.
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Figure 2: Geometry of the obstacle array in the water channel:

central (or, 8th) column of obstacles (with H = 31.75 mm).
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Figure 3: Velocity measurement (or, sampling) locations in

cells 1 and 6 (with H = 31.75 mm). The x-coordinate in these

two subfigures specifies the streamwise location with respect to

the coordinate system defined in Fig. 2.

∂k
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∂
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]
+

ε

k
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∂c̄

∂t
+

∂(ūj c̄)

∂xj
=

∂

∂xj

(
D

∂c̄

∂xj

)
−

∂ u′
jc′

∂xj
+ S, (5)

∂c′2

∂t
+

∂(ūjc′2)

∂xj
=

∂

∂xj

(
D

∂c′2

∂xj
−u′

jc′2
)
− 2u′

jc′
∂c̄

∂xj
− εc. (6)

Here, ūi is the mean velocity in the i-th direction, p̄ is the

kinematic pressure, c̄ is the mean concentration, S is the

source density function of the scalar, D is the molecular dif-

fusivity of the scalar, ν is the kinematic viscosity of the fluid,

and νt
def
= Cμk2/ε is the kinematic eddy viscosity. Eqs. (1)–

(4) represent the standard k–ε model for the prediction of a

turbulent velocity field. The closure constants are given as

follows: Cμ = 0.09, σk = 1.0, Cε1 = 1.44 and Cε2 = 1.92.

The numerical simulations were performed using two

in-house computer codes: namely, urbanSTREAM for pre-

diction of the turbulent velocity field and urbanEU for the

prediction of the turbulent dispersion of the scalar field.

Both codes apply a general curvilinear, second-order accu-

rate, fully conservative and implicit finite-volume method for

the discretization of the transport equations for momentum

and scalar quantities. The flow solver in urbanSTREAM

is based on numerical algorithms described by Lien and
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Leschziner (1994). The SIMPLE algorithm was used for the

pressure correction. Checkerboard oscillations in the pres-

sure field arising from a state of pressure-velocity decoupling

on a collocated grid were removed using a nonlinear mo-

mentum interpolation scheme. Detailed descriptions of the

algorithms underlying urbanSTREAM and urbanEU can be

found in Yee et al. (2007).

The computational domain consists of 16 rows and 9

central columns of cubes, with a spatial extent of 61H ×
18H × 11H in the streamwise, spanwise, and vertical direc-

tions, respectively. A non-uniform coarse grid of 245×149×
48 control volumes was used for the discretization of the do-

main. Fig. 4 shows the grid used in our simulations. As

shown in Fig. 4, the grid lines have been refined close to the

source location and near every solid surface.

At each solid surface, wall boundary conditions were

applied for the velocity field (i.e., for the mean velocity and

turbulence quantities k and ε), and zero-flux boundary con-

ditions were used for the concentration and concentration

variance fields. At the inlet, Dirichlet boundary conditions

were used for both the mean velocity and concentration

fields. The inlet flow conditions for the mean velocity and

TKE were obtained from the experimental measurements.

The values of concentration and concentration variance at

the inlet were set to zero. An upstream fetch of 15H (dis-

tance between the inlet plane and the windward face of the

first row of obstacles) was used in our simulations. For all

flow variables, zero-flux boundary conditions were applied at

the upper free surface of the computational domain. Neu-

mann boundary conditions were used at the outlet plane,

and periodic boundary conditions were applied in the span-

wise direction for the velocity field.

Turbulent Stress and Scalar-Flux Models

In order to close the governing equations, the kinematic

Reynolds stresses (i.e., u′
iu

′
j) and turbulent fluxes of con-

centration and concentration variance (i.e., u′
jc′ and u′

jc′2,
respectively) need to be modelled. The Reynolds stresses

are modelled using the conventional linear eddy-viscosity as-

sumption, from which it follows

u′
iu

′
j =

2

3
kδij − νt

(
∂ūi

∂xj
+

∂ūj

∂xi

)
. (7)

For the turbulent scalar fluxes, we used the tensor diffusivity

model of Yoshizawa (1985), viz.

u′
jc′ = −Djk

∂c̄

∂xk
and u′

jc′2 = −Djk
∂c′2

∂xk
, (8)

where the tensor diffusivity Djk is defined as

Djk = Cs1
k2

ε
δjk + Cs2

k3

ε2

(
∂ūj

∂xk
+

∂ūk

∂xj

)
. (9)

Here, Cs1 = 0.134 and Cs2 = −0.032 are two model coeffi-

cients.

Concentration Variance Dissipation Model

The critical term in the closure of Eq. (6) is the scalar dis-

sipation: εc
def
= 2D ∂c′

∂xj

∂c′
∂xj

. The modelling of εc determines

effectively the rate at which internal concentration fluctua-

tions in the dispersing plume are destroyed by the molecular

diffusion. Recently, Yee et al. (2009) proposed an advanced

modelling for εc based on the concept of inner-plume time-

and length-scales of turbulent diffusion associated with the

process of relative dispersion. This model has been pre-

viously successfully validated against turbulent dispersion

within regularly aligned arrays of rectangular obstacles (Yee

et al., 2009; and Wang et al. 2010). In this study, we further

test this advanced model of Yee et al. (2009) against a new
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Figure 4: Part of the grid system. The red dot indicates the

source location.

set of experimental data on turbulent dispersion within a

staggered array of obstacles. The model of Yee et al. (2009)

assumes that:
εc = c1

Δv(Λd)

Λd
c′2. (10)

Here, c1 = 1.4 is a closure constant and Δv(Λd) is the char-

acteristic velocity scale for turbulent eddies whose “size” is

Λd. The dissipation time scale td ∝ Λd/Δv(Λd) corresponds

to the eddy turn-over time for eddies that are comparable

in size to the mean width of the instantaneous plume, as it

is these eddies that are responsible for the in-plume concen-

tration fluctuations and the concomitant scalar dissipation.

Here, the characteristic velocity scale is modelled as

Δv(Λd) = k1/2 min
(
(Λd/ΛI )1/3 , 1

)
, Λd ≥ σ0, (11)

where ΛI
def
= k3/2/ε is the integral scale of turbulence and σ0

is the initial source size. The dissipation length scale Λd for

the concentration variance is determined using the following

blending function:

Λ2
d =

l2e
1 +

(
l2e − σ2

0

)
/
(
σ2
0 + c2Dtt

) , (12)

where c2 = 2.7 is a closure coefficient, t is the travel time, Dt

is the turbulent eddy diffusivity, and le is the characteristic

turbulent eddy size whose growth is determined using the

Richardson-Obukhov 4/3-law for relative dispersion.

RESULTS AND ANALYSIS

Before we compare the numerical and experimental re-

sults on the velocity and concentration fields in a detailed

quantitative manner, it is beneficial to describe qualita-

tively the general characteristics of these two fields. Fig. 5

displays isopleths of the normalized vorticity magnitude

Ω
def
= (2Ω̄ijΩ̄ij)1/2/(Ub/H) in a partial horizontal plane

through the obstacle array at the height z/H = 0.211. Here,

Ω̄ij
def
= 1

2
(∂ūi/∂xj − ∂ūj/∂xi) is the resolved mean rotation

rate tensor. Fig. 5 provides a qualitative visualization of

the complex vortex shedding pattern in the staggered obsta-

cle array predicted using the RANS approach. It is observed

that as the flow passes by the cubic obstacles, different types

vortical structures are generated. As in the case of the well-

known single-cube bluff-body flow case, it is observed that

two separation bubbles are formed on both vertical side faces
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Figure 5: Vortex shedding visualized using the normalized vor-

ticity magnitude Ω
def
= (2Ω̄ij Ω̄ij)

1/2/(Ub/H) (at z/H = 0.211).

Figure 6: Isopleths of normalized mean concentration field (at

z/H = 0.211).

of all cubes, as well as a pair of counter-rotating vortices in

the wake region on the leeward side of the cubes. These

vortical features are the most prominent within the first five

rows of the array, although the strength of these vortices

is seen to decrease significantly with increasing streamwise

distance within the array. Owing to the staggered arrange-

ment of the obstacles, counter-rotating vortices in the wake

region of a cube are seen to interact directly with the side

face separation bubbles of the two neighbour cubes in the

succeeding row immediately downstream of this cube. This

represents an interesting dynamic feature in the vortex in-

teraction and evolution in the staggered obstacle array. As

is evident from Fig. 5, such wake vortex – separation bub-

ble interactions are the strongest between the first two rows

of cubes. From Fig. 5, it is also interesting to observe that

owing to the symmetry of the computational domain, there

exists a stagnation line in the leeward region of each cube,

exactly located along the central streamline of the domain

(y/H = 0).

Closely related to the special features of vortex dy-

namics described above, the dispersion of the passive scalar

exhibits a very interesting pattern in Fig. 6. In the first

5 rows, the width of the mean plume from the ground-

level point-source grows very rapidly in the crosswind (or

spanwise) direction. However, in between the 5-th and the

15-th rows, it is seen that the concentration plume exhibits a

quasi-periodicity (with a period of 2 rows) in the streamwise

direction. This dispersion pattern in the staggered array is

in sharp contrast to that shown in the regularly aligned ob-

stacle arrays (Yee et al., 2009; Wang et al., 2009, 2010). In

Wang et al. (2009, 2010), it has been shown that the flow

field (as well as the vortical structures) become quasi-self-

similar in the downwind direction after the first several rows

and the crosswind plume spread increases monotonically in

the streamwise direction. We believe that this interesting

streamwise quasi-periodicity pattern in the plume spread

observed here is due to complex interactions between the

counter-rotating vortices in the wake region of a cube in a

row and the side face separation bubbles of the two cubes on

both sides of the cube in the succeeding downstream row.

Figs. 7 and 8 compare the predicted mean velocity pro-

files with two sets of 2-D LDA measurements (i.e., the u-v

and u-w configurations) at four locations (see Fig. 3 for the

stencil of sampling locations) in cells 1 and 6. The agreement

(a) Location A (b) Location C

(c) Location L (d) Location J

Figure 7: Comparison of vertical profiles of the mean velocity at

four locations in cell 1.

(a) Location J (b) Location L

(c) Location C (d) Location A

Figure 8: Comparison of vertical profiles of the mean velocity at

four locations in cell 6.

between the predicted and experimental results is excellent.

From Figs. 7(a) and 8(a) , it is observed that the numerical

simulations have successfully captured the very strong shear

layer near the top of the obstacles (at height z/H = 1).

Furthermore, as shown in Figs. 7(b), 8(b) and 8(c), the

magnitude of the reverse flow (ū1 < 0) downstream of the

leeward face of the obstacle (within the canopy for z/H < 1)

is correctly reproduced by the simulation. With respect to

the stencil of measurement sampling locations, the four lo-

cations A, C, L and J in cell 1 correspond geometrically to

locations J, L, C and A in cell 6, respectively (see Fig. 3).

However, the flow pattern is different between these two
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(a) Location A (b) Location C

(c) Location L (d) Location J

Figure 9: Comparison of vertical profiles of the TKE at four

locations in cell 1.

(a) Location J (b) Location L

(c) Location C (d) Location A

Figure 10: Comparison of vertical profiles of the TKE at four

locations in cell 6.

cells. By comparing Fig. 7(b) with Fig. 8(b), it is observed

that the size of the reverse flow region (or, the recirculation

region) is different in these two cells. This is because the

inlet flow condition upstream of cells 1 and 6 is different in

a sense that cell 6 is, comparatively speaking, more deeply

submerged in the internal boundary-layer that is generated

over the obstacle array and the flow is much more disturbed

due to the cubes upstream of it. There is also a significant

difference between the flow patterns shown in Figs. 7(d) and

8(d), although these two sampling locations in cell 1 and 6

are geometrically similar. This difference is expected simply

(a) x/H = 5.5 (b) x/H = 11.5

Figure 11: Mean concentration at half-canopy height (z/H =

0.5) at two streamwise locations.

(a) x/H = 5.5 (b) x/H = 11.5

Figure 12: Mean concentration above the canopy (z/H = 1.25)

at two streamwise locations.

because there are no cubes upstream of location J in cell 1,

as there are of location A in cell 6.

Figs. 9 and 10 show the predicted TKE (k) profiles

in comparison with the experimental results in cells 1 and

6. The transport of k is dominated by the vertical spread-

ing of the shear or mixing layer near the top of the canopy

(z/H = 1), where a large velocity gradient is present (see

Figs. 7 and 8). Due to the strong shear production on

the top of the obstacles, the TKE level peaks near the top

of the canopy. By comparing the numerical results with

the water-channel measurement data, it is evident that this

physical feature has been correctly reproduced in general by

the model predictions. It is especially satisfying to see in

Figs. 9(a) and 10(a) that both the vertical location (at or

near the top of the canopy) and magnitude of the maximum

in the TKE has been correctly reproduced in the simulations.

Figs. 11 and 12 compare predictions and measurements

of the mean concentration at two fixed sampling locations

downwind of the source (i.e., x/H = 5.5 and x/H = 11.5, re-

spectively) at half-canopy height (z/H = 0.5) and above the

canopy (z/H = 1.25), respectively. It is seen from the figures

that the shapes of the mean concentration profiles are cor-

rectly predicted by the model. By comparing Fig. 11(a) with

Fig. 12(a), it is observed that the crosswind mean concentra-

tion profile below the canopy top tends to be non-Gaussian

(and, more specifically, is seen to exhibit a bimodal form

due to the bifurcation of the plume as it sweeps around

the sides of an obstacle). However, the crosswind profile

of the mean concentration above the canopy tends to be

Gaussian. The bifurcation of the concentration surround-

ing the cubes relates to the divergence of the flow around

an obstacle shown in Fig. 5, and the effect of this flow di-

vergence on dispersion is the strongest within the canopy

and diminishes quickly in the region above the canopy as

the elevation from the top surface of the obstacles increases.

Figs. 13 and 14 compare the standard deviation of concen-

tration (c′2)1/2 [or, root-mean-square (RMS) concentration],

at the same measurement locations for the mean concentra-
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tion. From Figs. 13 and 14, it is observed that the numerical

predictions of (c′2)1/2 are in quite good conformance with

the measurements.

CONCLUSIONS

The continuous release of a passive tracer from a ground-

level point-source in a staggered array consisting of 16 × 16

cubic obstacles has been studied using both the numeri-

cal and experimental methods. The numerical simulation

is based on a RANS model which uses the standard eddy

viscosity closure model for the Reynolds stresses, the tensor-

diffusivity closure model of Yoshizawa (1985) for the scalar-

fluxes, and a recent model of Yee et al. (2009) for the

concentration variance dissipation rate. In comparison with

the 2-D LDA and 1-D LIF measurements conducted in the

water channel, the RANS-based simulation predicted suc-

cessfully the highly disturbed mean velocity, the turbulence

kinetic energy, the mean concentration and concentration

variance both within and above the obstacles. The strong

shear rate and shear production near the top of the canopy

have been correctly captured by the model predictions.

Owing to the direct interaction between the counter-

rotating vortices in the wake region of a cube in a row and

the separation bubbles on the side faces of the two neigh-

boring cubes in the immediate successive downstream row,

the crosswind profile of the mean concentration exhibits a

quasi-periodicity in the streamwise direction with a period of

2 rows. These special vortex dynamics and passive scalar dis-

persion patterns are unique to the staggered obstacle array,

and are distinctively different from those similar observa-

tions in regularly aligned arrays of obstacles (Yee et al., 2009;

Wang et al., 2009, 2010).

Conceptually, the concentration variance dissipation

rate model of Yee et al. (2009) is very attractive since it

embodies the basic physics of in-plume concentration fluc-

tuations related to relative dispersion that are responsible

for turbulent mixing and dissipation. This model of Yee et

al. (2009) has been previously validated based on cases of

flow and dispersion in regularly aligned obstacles (Yee et al.,

2009; Wang et al., 2010). In this paper, we further confirm

the good performance of this relatively new model by testing

it against a new set of high-quality water-channel measure-

ment data on dispersion in a staggered array of cubes.
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