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ABSTRACT
Choi, Moin and Kim (1994) applied the opposition con-

trol, vw = −vy+s ≈10, to turbulent channel flow and obtained
about 25 % drag reduction, where vw is the blowing and suc-
tion at the wall, and v is the wall-normal velocity, and ys is the
sensing location above the wall. From the classical control
theory, the opposition control by Choi et al. (1994) is a pro-
portional (P) control with a fixed feedback gain. In the present
study, we investigate the performance of proportional-integral
(PI) control in reducing the skin friction in a turbulent channel
flow. The PI control is defined as vw = −α vys − β

∫
vys dt,

where α and β are the proportional and integral feedback
gains, respectively. The direct numerical simulation (DNS)
and linear systems approach are conducted. In the effective
sensing region, the PI control results in slightly more drag
reduction and lower transient energy growth rate than the P
control. The sensing velocity fluctuations, considered as an
error in the control, approach zero with the PI control, while
they do not go to zero with the P control.

INTRODUCTION
Control of turbulent flows, in particular the skin-friction

reduction in a turbulent boundary layer, has attracted many re-
searchers due to the high potential benefits. Various flow con-
trol strategies (active vs. passive; open-loop vs. closed-loop,
etc.) have been developed and implemented over the years,
and some of them were quite successful in achieving certain
control objectives (Gad-el-Hak, 2000; Kim, 2003; Collins,
2004; Kim and Bewley, 2007; Choi et al., 2008).

Choi, Moin and Kim (1994) applied the opposition con-
trol (Fig. 1) to turbulent channel flow and obtained about 25
% drag reduction. The blowing and suction at the wall (vw) is
given as

vw(x,z, t) =−vys(x,z, t), (1)

where vys is the wall-normal velocity at the sensing location
ys. The idea in that study was to attenuate the strength of
near-wall streamwise votices by providing a distributed blow-
ing/suction at the wall, opposite to the motion induced by
these vortices. From the classical control theory, the oppo-
sition control is a proportional (P) control with a fixed feed-
back gain, α = −1. The P control is simple and easy to ap-
ply, but its result is quite sensitive to the sensing location ys
(Choi et al., 1994; Hammond et al., 1998) and feedback gain
(Chung and Talha, 2011). Furthermore, the P control allows
steady-state error, and thus the target sensing velocity fluctu-
ations do not vanish. By adopting the integral (I) control, the
proportional-integral (PI) control may remove the steady-state
error, and result in more drag reduction.

Although turbulent flows are generally governed by non-
linear dynamics, linear systems approaches are useful to ana-
lyze and design the control method. This is because a linear
mechanism plays a key role in maintaining near-wall turbu-
lence structures responsible for high skin-friction drag in a
turbulent boundary layer (Kim and Lim, 2000; Kim and Be-
wley, 2007), and thus a successful control aiming at altering
the linear mechanism may yield significant changes in a tur-
bulent boundary layer (Farrell and Ioannou, 1996; Lim and
Kim, 2004).

In the present study, we apply the PI control to turbulent
channel flow for drag reduction. We conduct direct numer-
ical simulation of turbulent channel flow and linear systems
approach, to evaluate the performance of PI control.

NUMERICAL METHODS FOR DNS
The governing equations for the unsteady incompressible

viscous flow are given as

∂ui

∂ t
+

∂uiu j

∂x j
=− ∂ p

∂xi
+

1
Re

∂ 2ui

∂x j∂x j
, (2)
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Figure 1. Schematic diagram of the opposition control by
Choi et al. (1994).

∂ui

∂xi
= 0, (3)

where xi’s are the cartesian coordinates, ui’s are the corre-
sponding velocity components, and p is the pressure. All
variables are non-dimensionalized by the channel half-height
(δ ) and laminar centerline velocity (ul). The Reynolds num-
ber considered is Re = ulδ/ν = 3000 (Reτ = uτ δ/ν ≈ 140,
where uτ is the wall-shear velocity). A constant mass flux is
imposed throughout the computation.

A second-order semi-implicit fractional step method is
used in time, and a second-order central difference scheme is
used in space. The periodic boundary conditions are used in
the streamwise and spanwise directions, and the no-slip condi-
tion is applied to both the upper and lower walls. The compu-
tational domain size is 3πδ (x)×2δ (y)×πδ (z) and the num-
ber of grid points is 64(x)×65(y)×64(z). Uniform grids are
used in the streamwise and spanwise directions, while non-
uniform grids are used in the wall-normal direction. The grid
spacings in wall unit are ∆x+ ≈ 20, ∆y+min ≈ 0.45, ∆z+ ≈ 6.6,
respectively.

During the control, all conditions are kept the same as
in the the simulation without control except for the boundary
conditions at the wall on which the control strategies are im-
plemented. At each instant the boundary condition is defined
as

vw(x,z, t) =−αvys(x,z, t)−β

∫
vys(x,z, t)dt, (4)

where α and β are the proportional and integral feedback
gains, respectively. The skin-friction reduction is determined
from the change in the mean pressure gradient necessary to
drive the flow at a constant mass flow rate.

LINEAR SYSTEMS APPROACH
We use the collocation matrix approach used by Bewley

and Liu (1998). The linearized Navier-Stokes equations with
control output can be written in the following state-space rep-
resentation:

ẋ = Ax+Bu, (5)

y = Cx. (6)

Here, the vector x represents the state of the system, and it
consists of the wall-normal velocity (v) and vorticity (ω) at
each collocation point. The dot denotes time derivative. The
vector u is the input vector that represents the blowing and
suction at the wall.

The operator A represents the linearized Navier-Stokes
system defined as

A =

[
Los 0
Lc Lsq

]
. (7)

Here, Los, Lsq and Lc represent the Orr-Sommerfeld, Squire
and linear coupling operators, respectively, and are defined as

Los = ∆
−1(−ikxU∆+ ikxU ′′+

1
Reτ

∆
2), (8)

Lsq =−ikxU +
1

Reτ

∆, (9)

Lc = ikzU ′. (10)

Here, kx and kz are the streamwise and spanwise wave num-
bers, respectively, ∆ = ∂ 2/∂y2− k2

x − k2
z , U is the mean ve-

locity, and prime denotes ∂/∂y. The Reynolds number in the
linear system approach is taken to be Reτ = uτ δ/ν = 180.
The vector y is the output vector, which is the wall-normal ve-
locity at the sensing location. The observation operator C is
constructed once the sensing location ys is chosen.

With the P control, the control input is given as u =
−αy = −αCx. By substituting this into Eq. (5), the system
equation for the P control becomes

ẋ = (A−αBC)x. (11)

On the other hand, for the PI control, we introduce the vec-
tor z satisfying ż = y = Cx. Then the input vector becomes
u = −αy−βz. By substituting this into Eq. (5), the system
equation for the PI control is given as

[
ẋ
ż

]
=

[
A−αBC −βB

C 0

][
x
z

]
. (12)

The solutions for the P and PI controls are then expressed as

x(t) = Xexp(Λt)X−1x(0), (13)

where X is the eigenvector matrix of the system matrix in Eq.
(11) or Eq. (12) for the P or PI control, respectively, and Λ

is the eigenvalue matrix whose diagonal terms λκκ are the
eigenvalues of the system matrix.
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To analyze the transient energy growth, we consider the
growth ratio function defined as the ratio of the kinetic energy
of a disturbance (E) at a given time to that at t = 0:

G(t) =
E(t)
E(0)

, (14)

where

E ≡
∫ 1

−1

[
v∗v+

1
k2

x + k2
z

(
∂v∗

∂y
∂v
∂y

+ω
∗
ω

)]
dy. (15)

The quantity E is expressed as E(t) = x∗(t)Qx(t), where the
matrix Q is defined in terms of an inner product in discrete
space. The superscript ∗ denotes the Hermitian conjugate.
The matrix Q is further decomposed in the form of Q = F∗F.
Then,

E(t) = x∗(t)F∗Fx(t) = ‖Fx(t)‖2
2 = ‖FXexp(Λt)X−1x(0)‖2

2,
(16)

where ‖ • ‖2 represents the 2-norm (Euclidian norm). Com-
bining Eqs. (14) and (16), we obtain the growth ratio at t as

G(t) =
‖FXexp(Λt)X−1x(0)‖2

2
‖Fx(0)‖2

2
= ‖FXexp(Λt)X−1F−1‖2

2.

(17)
The 2-norm of a matrix can be easily computed from the

singular value decomposition (SVD) of the matrix. Typical
SVD provides a diagonal matrix Σ and two orthogonal ma-
trices U and V such that A = UΣV∗. The column vectors of
V and U are referred to as right and left singular vectors, re-
spectively. The diagonal elements of Σ are the singular values
(σ ’s), which represent the two-norm ratios of corresponding
column vectors of V and U. The largest value of σ2 represents
the maximum energy growth ratio at t, and the corresponding
column vectors of U and V are the flow field at t and the initial
flow field, respectively. In the following section, we apply the
SVD analysis to the channel flow system with the P and PI
controls. By comparing the largest singular values for the en-
ergy growth ratio for different control parameters, we evaluate
the performances of the P and PI controls.

RESULTS AND DISCUSSION

Direct Numerical Simulation
Fig. 2 shows the variations of drag for the P and I con-

trols with varying the control parameters. The drag variation
(∆D) is defined as

∆D(%) =
Dcontrol −Dno control

Dno control
×100. (18)

As ys increases, the drag decreases, reaches minimum and
then increases more than that of no control for both P and I
controls. With the controls, the drag reduction occurs in a
different range of sensing location depending on the control

Figure 2. Drag variation for the P and I controls.

Figure 3. Time histories of the mean pressure gradient re-
quired to drive a constant mass flow rate: ——, no control;
- - -, P control (α = 1); – - –, PI control (α = 1, β = 10).
y+s = 9.3 for the P and PI controls.

parameters. Overall, the effective sensing region for I con-
trol is narrower than that for the P control, and the maximum
amount of drag reduction is almost same for the both controls.
This result indicates that the P control alone is better than the
I control alone.

From this result, we add the I control to the P control of
α = 1 to investigate the performance of the PI control. Fig. 3
shows the time history of the mean pressure gradient required
to drive a constant mass flow rate for the PI control, together
with those of no control and the P control. With the PI control
(α = 1, β = 10), we obtain nearly 30 % drag reduction which
is 10 % more reduction than that of the P control.

Turbulence intensities for the controlled flows are shown
in Fig. 4. Turbulence intensities are significantly reduced and
shift outwards by the controls. In our PI or P control, the
wall-normal velocity fluctuations at the sensing location are
the error. With the P control, these velocity fluctuations at
the sensing location are significantly reduced, but they are not
zero. On the other hand, with the PI control, vrms becomes
nearly zero at the sensing location, as expected from the role
of the I control.

The contours of instantaneous streamwise vorticity in a
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Figure 4. Root-mean-square velocity fluctuations normal-
ized by the wall-shear velocity: ——, no control; - - -, P con-
trol (α = 1); – - –, PI control (α = 1, β = 10). y+s = 9.3 for the
P and PI controls. The dotted vertical line denotes the sensing
location.

yz-plane are shown in Fig. 5. The feedback controls signif-
icantly reduce the strength of the streamwise vorticity in the
wall region. Fig. 6 shows the energy spectra of the sensing
velocity. With the P control, the sensing velocity fluctuations
of all the frequency range are reduced. With the PI control,
on the other hand, the energy at the low frequency range is
reduced significantly possibly owing to the role of the I com-
ponent. However, the PI control does not reduce the energy at
high frequencies.

SVD Anaysis
In this section, we discuss the results from the SVD anal-

ysis. Fig. 7 shows the first 10 singular values representing
the biggest disturbance energy growth ratios for two different
wavenumber sets. We use the eddy turnover time in the near-
wall region, t+ = 80, which resulted in the optimal distur-
bance similar to those observed in turbulent boundary layers
(Butler and Farrell, 1993). The wavenumber set, kx = 0 and
kz = 10.5, represents the case of maximum G(t) without con-
trol (Figs. 7 (a) and (b)). The largest singular value indicating
G(t) is reduced with both the P and PI controls at y+s = 10.4,
whereas it increases for the PI control and decreases for the P

Figure 5. Contours of the instantaneous streamwise vortic-
ity in a cross plane: (a) no control; (b) P control (α = 1); (c)
PI control (α = 1, β = 10). y+s = 9.3 for the P and PI con-
trols. The contour levels range from ωxδ/ul = −2 to 2 by
increments of 0.2. Dotted contours indicate negative values.

control at y+s = 15.2. On the other hand, for the wavenumber
set kx = 2.6 and kz = 0.0 (Figs. 7 (c) and (d)), both controls
increase the singular values, meaning that the transient energy
at this wavenumber set increases with both controls.

The contours of G(t) for all wave-number pairs are plot-
ted in Fig. 8. Without control (the top figures), the maximum
G(t) occurs at kx = 0 and kz = 10.5. The corresponding span-
wise wavelength is l+z ≈ 110, which is approximately equal
to the wall-layer streak spacing. The maximum value of G(t)
decreases for the P control at y+s < 15, and for the PI con-
trol at y+s < 13. At higher ys, G(t) increases drastically. The
maximum G(t) occurs on the kz = 0 axis when ys is large.

The results from the present SVD analysis agree well
with the DNS results: (1) when ys is within the effective range,
the transient energy growth rate from SVD and the skin fric-
tion from DNS are reduced; (2) when ys is large, both of them
increase; (3) the PI control shows more drag reduction than
the P control when ys is very near the wall, as decrease for the
growth rate; (4) according to the control theory, the I control
eliminates the steady-state error that occurs with the P control,
but the I control may cause an overshot of the set-point value
and often make the system less stable. Hence, rapid increases
of the drag and growth rate occur at high ys’s.
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Figure 6. Frequency spectra of the sensing velocity: ——,
no control; - - -, P control (α = 1); – - –, PI control (α = 1,
β = 10). y+s = 9.3 for the P and PI controls.

CONCLUSIONS
In the present study, we investigated the performance of

the linear proportional-integral control for the drag reduction
of turbulent channel flow by direct numerical simulation and
linear systems approach. In both approaches, the PI control
showed better performance than the P control in the effective
sensing region. The wall-normal velocity fluctuations at sens-
ing location, which is considered as an error in the control the-
ory, became zero, whereas those with P control did not. Espe-
cially, the PI control significantly reduced the low-frequency
components of the sensing velocity fluctuations. However,
when ys was located outside the effective sensing region, the
I control rapidly increased both the drag in turbulent channel
flow and the transient energy growth rate in linear system.
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Figure 7. First 10 singular values for ♦, no control; 5, P control (α = 1); •, PI control (α = 1, β = 10) at t+ = 80: (a) kx = 0,
kz = 10.5 and y+s = 10.4; (b) kx = 0, kz = 10.5 and y+s = 15.2; (c) kx = 2.6, kz = 0 and y+s = 10.4; (d) kx = 2.6, kz = 0 and y+s = 15.2.

Figure 8. Contours of G(t) at t+ = 80 in the (kx,kz) plane for various sensing locations: (a) P control (α = 1); (b) PI control
(α = 1, β = 10). The contour levels range from G(t) = 0 to 50 by increments of 2.
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