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ABSTRACT
Drag reduction by wall oscillations in turbulent flows has

recently been shown to be a promising technique. The reduc-
tion of the near wall streaks amplitude is known to play a sig-
nificant role in the drag reduction mechanism. To gain a better
understanding of the effect of wall oscillations on the streaks,
the Generalised Optimal Perturbation (GOP) approach, based
on the linearised Navier-Stokes equation, is used. Resem-
blance between drag and certain quantities arising in the GOP
context is observed. It is found that for harmonic wall oscilla-
tions the streaks have an approximately constant angle to the
main flow direction, with a jump in sign twice in the period.
The mechanism of this phenomenon is clarified. The results
are in a reasonable agreement with direct numerical simula-
tions.

INTRODUCTION
Recent results have shown that the turbulent friction drag

reduction by transverse wall oscillations is a promising tech-
nique. It has been shown that drag reduction of up to 40%
and energy gain up to 18% can be achieved (Quadrio et al.,
2009). However, the mechanisms leading to drag reduction
are not yet well understood. To make a step towards improv-
ing the understanding of these mechanisms, this work focuses
on the organised structures in turbulent flow past a transverse-
oscillating wall and particularly on the near-wall streaks.

The near wall streaks in turbulent flow are well known
to have an important role in sustaining turbulence. Streaks
are structures elongated in the streamwise direction and com-
posed of regions of low instantaneous velocity as compared to
its mean value. In the present work the Generalised Optimal
Perturbation (GOP) approach is used to study the near-wall
streaks in turbulent flow with wall oscillations. The GOP ap-
proach was developed by Chernyshenko and Baig (2005) and
used to explain the existence of streaks and to predict their

spanwise spacing in turbulent channel flow without wall os-
cillations. The flow past an oscillating wall is considerably
more complicated, and whether GOP can predict some of the
features of the streaks in this case is an interesting question.
Another important question is whether there is a correlation
between the parameters of the solutions arising in GOP and
the drag reduction, since, if such a correlation is confirmed,
GOP can be used to improve the drag reduction techniques.
The present work answers the first question and gives a pre-
liminary indication of what the answer to the second question
can be.

GOP APPROACH
For clarity, we will consider the case of a fully devel-

oped turbulent flow in a plane channel, as usually calculated
in direct numerical simulations, that is in a finite domain with
periodic boundary conditions. Generalisation of GOP to many
other cases is straightforward.

The GOP theory is based on a particular idea of the rea-
son why the linearised part of the Navier Stokes equation has
the well-known ability to predict some of the turbulent struc-
tures, and particularly the near wall streaks in fully turbulent
flows. If the turbulent velocityu is represented as the sum
of the mean flowU and a fluctuationu′, the Navier-Stokes
equation can be written as

∂u′

∂ t
+(U.∇)u′ +(u′.∇)U+∇p−

1
Re

∆u′ = F (1)

where the left-hand side is the linearised Navier-Stokes op-
erator andF contains all the remaining terms including the
terms nonlinear inu′. The main idea of GOP is that the linear
part of (1), on the left hand side, has strong enough selectivity
properties to predict the streaks almost independently of the
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form of the right hand sideF. If the nonlinear termF is re-
placed by any reasonable representation, the streaks will still
be present as a result of the simulation. Once this observation
is made, only the selectivity properties of the linear opera-
tor need to be studied in order to predict the streaks. GOP
then assumes that for the quantity of interest given (say, for
the spanwise spacing of streaks at a certain distance from the
wall) the selectivity properties will be reflected by the solution
of the optimisation problem where the appropriate measure of
the magnitude of the solution of (1) is maximized over all pos-
sible forms ofF of a unit amplitude. Crucially, the measure of
the solution should be selected in such a way that it measures
the amplitude of that part ofu′ that determines the quantity of
interest (thus, for streak spacing at a given distance to thewall
this might be the energy||u′||2 averaged over a plane at this
distance to the wall.)

The same simplification as in (Chernyshenko and Baig,
2005) is used in the present study, namely, instead of optimis-
ing over all possibleF(t,x) the optimisation is performed only
over right hand-sides of the formF = u′

0(x)δ (t − ti). Then the
optimal perturbation is the solution of an initial value prob-
lem for (1) with F = 0 such that it experiences the biggest
possible transient growth (for such optimal perturbationsto
exist it is necessary that the base profileU is linearly stable).
The perturbation starts at an initial timeti, and its maximum
magnitude will be attained at the ”final time”t f . To define
the magnitude a quantity has to be used to measure the am-
plitude of the perturbation at any timet > ti. The problem
being linear, this quantity will be the ratio of a certain norm of
the solution taken at timet to the (in general different) norm
of the initial condition imposed at the initial timeti. In the
present study, as the structures to be predicted are the near
wall streaks, and as their characteristics vary with the distance
to the wall, a volume energy norm‖ ‖i is used for the ini-
tial condition, and a surface energy norm‖ ‖ f is used for the
solution. If x, y, and z are the streamwise, wall normal and
spanwise coordinates respectively, with the corresponding ve-
locity vectoru′ = (u,v,w), the initial and solution norms are:

‖u′‖i =
1
V

∫

V

(

u2 +v2 +w2
)

dx dy dz (2a)

‖u′‖ f =
1
S

∫

y=y0

u2 dx dz (2b)

whereV is the volume of the flow domain andS is the area of
the cross-sectiony = y0 of the flow domain.

The choice of the surface energy norm as the solution
norm means that more importance is given to the structures
which have high energy in the planey = y0 and which, there-
fore, will dominate the flow in this plane. If, instead, both
the solution norm and the initial value norm were chosen as
the volume average ofu′2, the resulting problem would be the
widely known optimal perturbation problem, but then there
would be no reason for the corresponding structure to domi-
nate in the particular planey = y0. The GOP at a given dis-
tance to the wall is a solution of the maximisation problem

A(t f ) = max
u′(ti),ti

‖u′(t = t f )‖ f

‖u′(t = ti)‖i
(3)

The optimisation is performed here over all possible ini-
tial conditions and all possible initial timesti. If the base
profile is independent of time then the optimal perturba-
tion is essentially independent oft f . This was the case in
(Chernyshenko and Baig, 2005), but the case of oscillating
wall is more general. The structure predicted by the GOP is
considered as the most probable streak at timet f . Of course
other structures will also be present in a real flow, but the flow
structure in each of the planesy = y0 will resemble the most
prominent features of the corresponding GOP.

GOP in the spanwise-oscillating wall case
To apply the GOP approach to the flow with wall oscil-

lations the mean velocity profileU was taken to be the sum
of the mean profile in a turbulent flow in a plane channel
along a non-oscillatory wall (Reynolds and Tiederman, 1967)
and the time-dependent velocity profile corresponding to lam-
inar Stokes layers due to the spanwise-oscillating walls ofthe
channel oscillating in phase. Using Stokes layer as a represen-
tation of the phase-averaged spanwise velocity components
is justified by the observations of the behaviour of the solu-
tion obtained using direct numerical simulations (DNS) for
regimes when the drag reduction is substantial, see the com-
panion paper (Touber and Leschziner, 2011). The transverse
component of the wall velocity is given by the formula

wwall = Wm cos(2πt/T ) (4)

whereT is the period of oscillations. The resulting phase-
averaged mean velocity depends on time and the wall-normal
coordinate, but is independent ofx andz.

The optimisation for (3) is done in two steps. First,ti and
t f are fixed, and the most amplified initial perturbationu′(ti)
for this set of parameters is calculated. Then the optimisa-
tion overti is performed. The first step of the optimisation is
calculated using an adjoint optimisation algorithm. A descrip-
tion of the adjoint optimisation procedure is not given here, as
an abundant literature on this subject exists (Hill, 1995; Far-
rell and Moore, 1991). The turbulent incompressible Navier-
Stokes solver (Laizet and Lamballais, 2009) was modified to
solve the linearised and adjoint equations and to perform the
adjoint optimisation.

Since the mean flow is independent of the transverse co-
ordinate, the solution of the linearised Navier-Stokes equation
can be expanded into the Fourier series inz, and the numeri-
cal problem can be solved in 2D for each wavelength inz. The
adjoint loop finds the optimal solution for given initial time ti,
final time t f , and spanwise wavelengthλz. Then, the second
step the optimisation is performed overti and λz. The code
was thoroughly validated by comparisons with Chernyshenko
and Baig (2005) and by other means.

For the wall velocity given by (4) a similar decomposi-
tion is also possible inx. Hence, the optimal solution should
have specific wavelengths both in transverse and streamwise
directions. Therefore, the GOP will be an infinitely long struc-
ture in a direction that has a given angle with the mean flow
axis.
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RESULTS
The GOP was calculated for different oscillation periods

and Reynolds numbers. The results are compared with DNS
results obtained in the equivalent configuration by Touber and
Leschziner (2011). Three cases are considered: the baseline
case of no wall oscillation, the case with a period of oscillation
T+ = 200,1 in which case prominent organised structures and
moderate drag reduction are observed in DNS, and the case
T+ = 100, for which the drag reduction is close to the maxi-
mum but the structures can hardly be seen.

Comparison of the oscillating and non-
oscillating wall cases
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Figure 1. Maximum ratio‖u′‖ f /‖u′
0‖i after adjoint opti-

misation, t f = 0, Reτ = 180, wall distancey+
0 = 11, non-

oscillating wall case.

In the case of non-oscillating wall the optimal perturba-
tion is the same (up to a shift in time) for anyt f , but in the
case of an oscillating wall optimal perturbations for differ-
ent values oft f differ. To illustrate an important point, we
first arbitrarily fix t f = 0, thus determining the phase of the
wall oscillation at which the final time is. The features we
are going to discuss are similar for all values oft f . An ad-
joint optimisation is performed for a range of values of the
initial time ti < t f and the spanwise wavenumberλz. The ob-
tained maximum ratio‖u′‖ f /‖u′

0‖i as a function ofti andλz

is plotted in figure 1 for non-oscillating wall and in figure 2
for oscillating wall. The GOP corresponds to the points on
these plots at which the ratio‖u′(0)‖ f /‖u′

0‖i attains its max-
imum. For non-oscillating wall the maximum ratio is about
180 and it is attained at(λ+

z ,t+i ) = (80,−50). Note how dif-
ferent the gain plots are. In the non-oscillating wall case there
is only one well defined maximum which corresponds to the
GOP. In the oscillating wall case the figure shows two local
maximums. The highest one corresponds to the GOP, but the
maximum ratio for the second one is not much different from
the first. This means that even if the structure corresponding
to the GOP is more likely to be seen in the turbulent flow,
the likelihood to see the structure corresponding to the sec-
ond maximum is close to the likelihood of seeing the GOP.
Hence, att equal to thist f it is likely that in the turbulent flow

1Subscripts+ denotes quantities expressed in wall units (non-
dimensional units based on wall shear, density and viscosity)

two structures will be seen at the same time; the one corre-
sponding to the GOP and the one corresponding to the second
maximum. Many simulations have been run in wall oscilla-
tion configurations with an oscillation period ofT+ = 100 and
T+ = 200, for different distance to the wall and for different
t f . This kind of behaviour with two maximums is found in
many cases, and the presence of two dominant structures will
be compared with DNS results in a later section.
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Figure 2. Maximum ratio‖u′‖ f /‖u′
0‖i after adjoint opti-

misation, t f = 0, Reτ = 180, y+
0 = 11, oscillations period

T+ = 100, and amplitudeW +
m = 12.

Correlation with drag reduction
It is well known that when drag reduction is achieved by

wall oscillations streaks also become weaker. However, while
GOP was successful in predicting the existence and spanwise
scale of the streaks (Chernyshenko and Baig, 2005), its ability
to predict the response of the streak amplitude to wall oscil-
lation and thus to predict drag reduction is far from obvious.
Indeed, since GOP is a solution to a homogeneous problem for
a linear equation, its amplitude is arbitrary. If one would nev-
ertheless try to find a link between GOP and drag one might
expect that there will be a correlation between the drag and the
maximum amplification factor‖u′‖ f /‖u′

0‖i. The results ob-
tained in the present study show that this is definitely not the
case. For example,‖u′‖ f /‖u′

0‖i = 180 for the non-oscillating
wall case in figure 1, whereas in the oscillating wall case, the
maximum ratio can be sometimes as high as 400. Comparing
figures 1 and 2 suggests an explanation: the maximums in fig-
ure 2 are narrower. If there could be a link between optimal
perturbations and drag it should be a link between the drag and
some integral characteristics of optimal perturbations rather
than the height of a local maximum. Also, averaging int f of
the amplification factor over a period of the wall oscillation
should be made. This implies introducing a measure

Atotal =
1
T

∫ t f =T

t f =0

∫ ti=t f ,λ +
z =∞

ti=−∞,λ +
z =0

‖u′‖ f /‖u′‖i dλ+
z dti dt f (5)

the behaviour of which can be compared with the behaviour
of the drag. It turns out that in the three cases calculated inthe
present study the behaviour is indeed similar:Atotal = 6.4·104

3



and the drag reduction is 0% for non-oscillating case,Atotal =
5.1 ·104 and the drag reduction is 24.6% forT+ = 200, and
Atotal = 2.5 ·104 and the drag reduction is 31.7% forT+ =
100, that is a decrease inAtotal corresponds to a decrease in
drag. This, however, is only the very first preliminary result,
and the appropriate way of estimating drag reduction on the
basis of GOP, if such a way exists, is yet to be found.

Note that the drag reduction values given above were
obtained from DNS by Touber and Leschziner (2011) for
Reτ = 500, while most of the GOP calculations described here
are forReτ = 180. However, for the value ofy+

0 considered
here GOP, if expressed in wall units, appears to be almost in-
dependent ofReτ .

Energy spectrum and GOP
The characteristic transverse scaling of the structures

in a turbulent flow can be estimated by considering a pre-
multiplied energy spectrumΦ(λz) = λzE(λz) at a given dis-
tance to the wall, whereE is the standard energy spectrum
depending on the transverse wavelengthλz. In the case of
non-oscillating wall and for small distances to the wall,Φ(λz)
has usually a maximum aroundλ+

z = 100, which corresponds
to the dominant structure at this scale, the near wall streaks. In
the case of an oscillating wall it makes sense to consider the
phase-averaged spectrum, which then is a periodic function
of time. This provides an interesting opportunity for compar-
isons with GOP, as it also depends on the timet f , so that even
if the amplitude of the solution to the linearised equation is
determined up to a constant factor, its behaviour as a function
of time can be compared. The small width of the peaks, of
course, represents the same difficulty as in the previous sub-
section, and it can be resolved by similar means, namely, by
introducing

AGOP(λz,t f ) =

∫

ti<t f

A0(ti,λz,t f )dti (6)

with A0(ti,λz,t f ) = max
u′

0

(‖u′‖ f /‖u′
0‖i) being the result of an

adjoint optimisation for the giventi, t f , andλz. This quantity
is plotted as a function of the transverse wavelengthλz to-
gether withΦ(λz) scaled for convenience of comparison. Nu-
merous such plots were made for different values oft f andy+

0
for each of the casesT+ = 100 andT+ = 200. Two represen-
tative examples are given in figures 3(a) and 3(b). Figure 3(a)
shows the behaviour typical forT+ = 200 and for some part
of the period forT+ = 100. In these cases the streaks are
well defined and a maximum in the pre-multiplied spectrum
corresponding to these structures is always present around
λ+

z = 200. For the oscillations atT+ = 100, the streaks are
more difficult to see in the DNS, and at some points in the
period they seem to disappear completely. Figure 3(b) is rep-
resentative for these cases. In figure 3(a) there is a clear local
maximum of the pre-multiplied spectrum at relatively small
scales, but in figure 3(b) the pre-multiplied spectrum increases
with λz within the plot range, showing that a large part of the
energy is concentrated in structures having much larger scale
than the typical streak spacing. GOP, on the other hand, does
not show this, may be because the mechanism responsible for

generation of large-scale structures is different from themech-
anism of formation of near-wall streaks, so that GOP does not
describe it. From these two examples, we expect that the GOP
and DNS results should be compared only in the case when
there is a local maximum in the DNS pre-multiplied spectrum
(as in figure 3(a)), but no comparison will be possible when
there is no local maximum in the pre-multiplied spectrum (as
in figure 3(b)).

Once again it is worth to point out that comparing quan-
tities related to the amplification factor in GOP with quantities
related to the magnitude of the turbulent fluctuations, as itis
done in this section and the previous section, is new and quite
different from comparing quantities linked only to the form
but not the amplitude of the linearised solution, as for exam-
ple the comparison between the spanwise period of GOP and
the observed streak spacing. The comparisons of this and the
previous section are only tentative, but the results appearto be
promising, and further research in this direction is needed.

Figures 3(a) and 3(b) represent only a small fraction of
such comparisons. In order to give a general idea of the de-
gree of agreement or disagreement between the GOP and DNS
curves in these figures we first discard all those cases when the
DNS results do not exhibit the local minimum. Then we de-
termine the values ofλz at which the maximums are attained
in the GOP and DNS curves, and plot all such values against
each other. The result is shown in figure 3(c). If the positions
of the maximums of the GOP and DNS curves were exactly
the same, all the points would lie on the diagonal shown with
the solid line. One can see, however, that the discrepancy can
be as large as 70%. The positions of these maximums can be
considered as a measure of streak spacing, and the agreement
for streak spacing was noticeably better in (Chernyshenko and
Baig, 2005). This might be due to several reasons. First, the
mean profile of the longitudinal velocity used in the present
work is the mean profile of the flow past a non-oscillating
wall, while the prediction is attempted for the case of an os-
cillating wall. Second, Chernyshenko and Baig (2005) used
the weighted initial condition norm requiring the knowledge
of the normal Reynolds stresses in the flow. Third, the pa-
rameter compared in Figure 3(c) is based on the maximum of
AGOP as given by (6), rather than on the wavelength of GOP,
as it were in (Chernyshenko and Baig, 2005). This last point
is technical, but the first two are the result of the decision of
using only the information on the non-oscillating wall flow for
predictions about the oscillating-wall case.

Comparison for streak angle
After comparing the flow globally, it is interesting to fo-

cuss on the most probable streak itself, and particularly its
evolution in time. As it has already been discussed, in the
case of oscillating wall the GOP is an infinitely long struc-
ture inclined at a certain angle to the main flow direction in
x − z plane. DNS atT+ = 200 shows streaks with a rela-
tively well defined angles at most phases in the period (Touber
and Leschziner, 2011). In the caseT+ = 100 the streaks are
more difficult to see. To obtain the streak angle at a given dis-
tance to the wall, the distance between streaks in the stream-
wise and spanwise direction is obtained by extracting the local
maximums corresponding to the streak in the streamwise and
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Figure 3. Comparison between the premultiplied energy spectrum Φ = E(λz)λz and the correspoding GOP parameterAGOP =
∫

ti A0(ti,λz,t f )dti. The maximum of each function represents the streaks spacing. In (c) the positions of the maximums for the DNS
and the GOP are compared.

spanwise pre-multiplied energy spectra calculated in DNS2.
Then a simple calculation gives the magnitude of the angle,
and the sign of the angle has to be visually confirmed. As in
the previous section, it is not always possible to extract the
angles, particularly when there is no local maximum in the
pre-multiplied spectrum, which explains the gaps in the DNS
data in figures 4(a) and 4(b). These figures give two repre-
sentative cases, with comparisons between GOP and DNS for
other distances to the wall and periods of oscillations giving
various degrees of agreement in between the levels of agree-
ment in these two figures.

An obvious comment can already be made. In the case
T+ = 100, there are more phases in the period where the angle
cannot be properly extracted. This is directly linked to the
fact that in more cases in theT+ = 100 simulations the pre-
multiplied spectrum doesn’t have a local maximum. Because
of this issue, we will concentrate more on the observations in
the caseT+ = 200, as the comparison are more meaningful.

To obtain the angles of the most probable streaks using
the GOP approach, the GOP has to be calculated for different
t f over the period. As the mean flow is symmetric over half
a period, there is also symmetry of the structures predictedby
the GOP over half a period. Because of that, it is possible to
calculate the result over only the first half of the period, and
the value of the angle will be opposite during the next half
period. The angles plotted in figures 4(a) and 4(b) correspond
to the GOP for eacht f , that is to the higher of the peaks in
figures similar to figure 1.

Figure 4 shows that in both the DNS simulations and
GOP prediction, the streak angle remains relatively close to
two values of the same magnitude but of opposite sign, and
that at some phase in the period the streak angle jumps be-
tween these two values. There is a relatively good agreement
between the angles predicted and calculated, but the more im-
portant fact is that the position of the jump is predicted with
a relatively good accuracy by the GOP. As the jump exists
in the DNS results and in the GOP predictions and is at a
similar position, it shows that some of the important physi-
cal mechanisms leading to the streaks formation are captured

2This was done in collaboration with Prof. M.A. Leschziner and
Dr. E Touber (Imperial College London), whose work is also pre-
sented at this conference.
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Figure 4. Angles extracted from DNS simulations (o), and
calculated using the GOP approach (+-)

by the GOP. The jump in the GOP result might be surprising,
but it can relatively easily be explained by looking at figure
2. In this figuret f = 0, which is just after the jump. It has
already been pointed out that this figure shows two local max-
imums corresponding to two dominant structures, one being
the GOP, and the other one being less likely than the GOP
to be seen but with a large enough energy growth to be a very
probable structure. In the figure for the slightly earliert f there
also would be two local maximums, but the GOP would corre-
spond to another maximum. This shows that each maximum
presents a dominant structure, and depending on which maxi-
mum is higher the GOP will be one or the other of these domi-
nant structures. The jump happens when the global maximum
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switches from one local maximum to the the other. From this
result, the two dominant structures would be expected to be
present in the DNS around the position of the jump. Two
structures present at the same time can be expected to interfere
and make the DNS picture difficult to analyse. This could ex-
plain why the angle of the structures cannot be calculated with
a good accuracy in the DNS around the position of the jump.

There remain to be explained why the angle remains ap-
proximately constant between the jumps. To do this we will
analyse the growth pattern of GOP corresponding to differ-
ent values oft f . In figure 5, the growth patterns for several
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Figure 5. Growth pattern for the GOP for several values of
t f . Circles are place on each curve at the correspondingt f .

T+ = 200 andy+
0 = 11.

GOPs in the first half-period are given. It can be seen that
for three of them the growth pattern is similar. Even though
the values oft f differ, the initial instants of these GOPs are
within a rather narrow area, and the entire curves are close.
This shows that the structures predicted for these different fi-
nal times are essentially the same. As the same structure is
present for almost half a period the angle remains almost con-
stant and there is a discontinuity at the instant when the dom-
inant structure switches from one to the other. More detailed
analysis, which cannot be presented here because of the space
limit showed that the period of intensive growth of this struc-
ture corresponds to the period when the phase-averaged mean
flow has large wall-normal gradient of the velocity compo-
nent parallel to the direction in which the structure is elon-
gated while at the same time the wall-normal gradient of the
velocity component parallel to the wall but transverse to the
structure is small.

CONCLUSION
The Generalised Optimal Perturbation (GOP) approach

of Chernyshenko and Baig (2005) was shown to give promis-

ing results for turbulent channel flow in the presence of trans-
verse wall oscillations in the regime when these oscillations
give drag reduction.

The calculated values of a certain measure of the streak
energy obtained in the GOP context for three cases (the non-
oscillatory wall case and two cases of wall oscillations) and
the drag values calculated in DNS for these cases correlate.

The GOP approach predicts that in the flow past an os-
cillating wall the near wall streaks are elongated structures
inclined to the streamwise direction at a certain angle. The
angle remains approximately constant during certain partsof
the period and suddenly switches sign twice in the period. The
angle jump position and the value of the angle are in a reason-
able agreement with direct numerical simulations.

The streak angle remains roughly constant between the
jumps because there is a relatively short part of the period
when a significant amplification of a particular initial pertur-
bation occurs, so that this perturbation dominates over a large
part of the remaining time within the period.
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