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ABSTRACT
The interaction between a turbulent supersonic bound-

ary layer and an impinging shock wave is investigated nu-
merically and analytically. The reflected-shock low-frequency
motions are well captured even when using a narrow simula-
tion domain, supporting the argument that one underlying key
mechanism for the low-frequency shock motions is two di-
mensional. Based on a two-dimensional approach, a stochas-
tic ordinary differential equation for the low-frequency cou-
pling between the reflected shock and the boundary layer is
obtained. The system is closed and applied to a wide range
of input parameters. It is argued that the low-frequency shock
motions are not necessarily a property of the forcing, either
from upstream or downstream of the shock, but are simply an
intrinsic property of the coupled dynamical system.

INTRODUCTION
The physical mechanisms at the origin of the observed

low-frequency shock motions in shock wave/turbulent bound-
ary layer interactions (SBLI) are not fully understood. A
number of tentative explanations have been proposed, usu-
ally falling into one of two categories: the first relates the
low-frequency motions to specific events or flow structures
from the upstream turbulent boundary layer, whereas the sec-
ond looks for causal mechanisms within the interaction itself
(i.e. downstream of the shock). In both cases, the difficultyre-
sides in identifying a mechanism that can span timescales of
the order of 101δ0/ū1 to 102δ0/ū1, whereδ0 is the upstream
boundary-layer 99% thickness and ¯u1 the upstream freestream
velocity.

The variety of the mechanisms proposed in the literature,
together with the subsequent debate about the merits of one
approach relative to another is symptomatic of the difficulty
one has in identifying and then separating individual events
from a (supposedly) non-linear (chaotic) system, where ac-

tual causal events may well be impossible to detect. Instead
of reasoning about the relevance of one assumed mechanism
against numerical/experimental data, an attempt to charac-
terise in a useful way the properties of the dynamical system
arising from the coupling between the shock and the boundary
layer is sought.

The paper is organised as follows. The next section high-
lights the main steps for the derivation of a low-order model
for the shock-foot low-frequency motions. Next, some impli-
cations of the model and its sensitivity to modelling errorsare
discussed.

A STOCHASTIC LOW-ORDER MODEL FOR
THE SHOCK-FOOT MOTIONS
The momentum integral equation

Starting from the Navier–Stokes equations, and upon in-
tegrating the streamwise component of the momentum equa-
tion in the wall-normal direction (denotedy), one can derive
a general form of the Momentum Integral Equation (MIE)
where none of the classical assumptions (e.g. constant pres-
sure in the wall-normal direction, steady state . . . ) are used.
The resulting MIE is then expressed in the following moving
coordinate system:

ξ ≡
x+ l0− ε
l0− ε +s

(1)

where all notations are described in figure 1. Hence, in what
follows, ξ = 0 is the instantaneous shock-foot position,ε the
shock-foot displacement with respect to its mean position and
ξ = 1 the instantaneous location of the shock crossing. Note
that due to the presence of the boundary layer, the shock does
not reach the wall and the foot is defined as the linear exten-
sion of the shock to the wall.

The following assumptions are made to simplify the
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Figure 1: Sketch of the interaction with the definition of the notations in use

MIE:

1. the governing equation is written forξ < 1
2. the potential flow is assumed constant (e.g. the acoustic

field is neglected) so thatu1, ρ1, andp1 are true constants
(ρ1 = ρ̄1, u1 = ū1, p1 = p̄1, where the overbar denotes
time averaging)

3. the top boundary (delimited byh in figure 1) is assumed
to be always inside the potential flow, i.e.h > δ0 at all
times

4. the shock system is considered two-dimensional (i.e.
spanwise variations are not considered) so thath= h(t),
s= s(t), ε = ε(t)

Using the above assumptions, the MIE (expressed in the mov-
ing coordinate system) reads:

1
u1l0

[

(1−ξ )
dε
dt

+ξ
ds
dt

]

∂
∂ξ

[

δρ −δ1
]

+
1
l0

∂δ2

∂ξ

+
p1

ρ1u2
1l0

∂δp

∂ξ
=

1
2

(

1−
ε
l0
+

s
l0

)

Cf

−
1

ρ1u2
1l0Re

∂
∂ξ

[

∫ h

0
τxxdy

]

(2)

whereρ1, p1 are the upstream freestream density and pres-
sure, respectively (in this study, the temperature is related to
the fluid density and pressure assuming the ideal-gas law to
be applicable). The displacement, momentum, pressure and
density thicknesses are defined (respectively):

δ1 =
∫ h

0

(

1−
ρu

ρhuh

)

dy (3)

δ2 =
∫ h

0

ρu
ρhuh

(

1−
u
uh

)

dy (4)

δp =
∫ h

0

(

1−
p
ph

)

dy (5)

δρ =
∫ h

0

(

1−
ρ
ρh

)

dy (6)

with ρ the fluid density,u the streamwise velocity component
and p the pressure. Finally,Cf is the skin friction (i.e.
[2µw/(Reρhu2

h)] ∂u/∂y|w with the subscriptw denoting that
the quantity is evaluated at the wall andµ is the dynamic
viscosity),τi j is the usual viscous stress tensor andRe is the
Reynolds number (i.e.ρ1u1ℓ/µ1 with ℓ the reference scale
used forx andy).

Similarity solution and reduced-order system
Starting from (2), a governing equation forε is sought.

To achieve this goal, the partial differential equation is trans-
formed into an ordinary one by invoking the following hy-
pothesis:

Hypothesis 1. There exists a similarity function (F) that
describes the streamwise evolution of the various boundary-
layer thicknesses independent of the time variable, i.e.

{

F(ξ )≡ δi(ξ )−δi (ξ = 0)
∆i

∆i(t)≡ δi(ξ = 1)−δi(ξ = 0)
(7)

where the subscript i is any of the following:1, 2, ρ, p.

Mathematically, hypothesis 1 corresponds to the supposed ex-
istence of a separation of variables, an assumption which is
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reasonably well supported by simulation results (see Touber
and Sandham, 2011). The MIE becomes:

1
u1l0

[

(1−ξ )
dε
dt

+ξ
ds
dt

]

(

F ′∆ρ −F ′∆1
)

+
1
l0

F ′∆2+
p1

ρ1u2
1l0

F ′∆p

=
1
2

(

1−
ε
l0

+
s
l0

)

Cf (8)

with F ′ ≡ dF/dξ .
Next, (8) is evaluated at the shock foot (ξ = 0). Func-

tions s, ∆i and the slow-varying part ofCf (ξ = 0) are ex-
pressed in terms of linear functions ofε. By retaining the
leading-order terms only, a first-order stochastic ordinary dif-
ferential equation (ODE) for the reflected-shock-foot motions
is obtained (please see Touber and Sandham, 2011, for de-
tails), resembling the equation proposed by Plotkin (1975),
who postulated that the shock displacement was obeying a
first-order stochastic ODE with an associated characteristic
timescale, which needs to be determineda posteriori from
existing data. In the present work, an expression for the char-
acteristic timescale is readily available.

Closed form of the system
After some modelling efforts, combined with series ex-

pansions of the shock-jump relations, the system is closed so
that the following dynamical equation for the shock-foot mo-
tions may be written (see Touber and Sandham, 2011):

1
ū1

dε
dt

+φ
ε
L
= ΠC′′

f0(t) (9)

with:

Π =
tanβ

2F ′(0)(tanα + tanβ )
(10)

φ =
2γ+γ(γ−1)M2

1
(γ+1) [1+(1− r)P2− rP3]

{

Π
[(

1
tanα

+
1

tanβ

)

(

C̄ f0 −Λ
)

+C̄ f0
tanα
tanβ

]

+

(

1−
tanα tanβ

tanα + tanβ

)

[

r ′′
γM2

1C̄ f0

P2−1
− r ′D− r

P2κ
γ+1

(

M2

M1

)2
]}

(11)

κ =
tanα + tanβ

tanβ (1−1/ tanα)−1
sin(2α)sin[2(α +θ )] (12)

D =
M3

M1

{(

1
2

√

R3

P3
−

M3

M1

)

A+
1
2

√

P3

R3
B

+

(

M1

M3

√

R3P3−2P3

)

C

}

(13)

A=
γκM2

2
1+γ

P2 (14)

B= κR3

[

1

2sin2(α +θ )

−
(γ−1)M2

2

4+2(γ−1)M2
2 sin2 (α +θ )

]

(15)

C=
M3

M1

{

κ

[

(γ−1)M2
2

8+4(γ−1)M2
2 sin2 (α +θ )

−
γM2

2

2(1−γ)+4γM2
2 sin2(α +θ )

]

−
(tanα + tanβ )cos2 α

tanβ (1−1/ tanα)−1

}

(16)

whereα, β , P2 ≡ p+2 /p1, P3 ≡ p̄3/p1, R3 ≡ ρ̄3/ρ1, M2 and
M3 are computed from the inviscid shock reflection problem
for a given pair of wedge angleθ and upstream Mach number
M1. FactorsF ′(0), r, r ′ andr ′′ are assumed to take the values
of 0.12, 0.2, −0.14 and 0.2, respectively. Term̄C f0 is an in-
put parameter, together with the upstream Mach number M1
and wedge angleθ . The coefficientΛ, although of the same
order asC̄ f0 , is not an input parameter and is not generally
known. In this work, it is taken to be 3×10−3 (based on sim-
ulation data). The termC′′

f0
corresponds to the skin-friction

turbulence-related variations at the reflected-shock footand
therefore constitutes the dynamical-system input signal.

Equation (9) is a first-order linear stochastic differential
equation resembling the Langevin equation for Brownian mo-
tion. It is possible to show that the autocorrelation function
of the shock-foot motions in response to a white-noise forc-
ing with amplitude 2q is an exponential if computed after the
initial transients from starting up the flow (see Touber and
Sandham, 2011, for details). Therefore, the Power Spectral
Density function (PSD), which is the Fourier transform of the
autocorrelation function, may be explicitly written:

S (St) =
A0

1+(St/φmax)
2 (17)

where A0 ≡ q[L/(ū1φ)]2, φmax ≡ φ/(2π) and St is the
Strouhal number (St = f L/ū1). The PSD being more eas-
ily given for the wall pressure, the above expression which
is valid for the shock-foot motions may be converted to wall
pressure at the shock foot using:

Sp(St )≈
A0

(

dp̄w/dx|x̄0

)2

1+(St/φmax)
2 (18)

where dp̄w/dx|x̄0
is the mean wall-pressure gradient at the

mean shock-foot position.

IMPLICATIONS AND SENSITIVITY OF THE
MODEL

First, the model is tested against both the experimental
and simulation results for the 8-degree shock-reflection con-
figuration of Dupont et al. (2006), as shown in figure 2. Both
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Figure 2: Premultiplied wall-pressure power-spectral-density
distributions at the reflected-shock foot: model, large-eddy
simulation (LES) and experimental results. The LES spec-
trum is taken from figure 17 in Touber and Sandham (2009)
and the experimental data from Dupont et al. (2006)

the broadband nature and the frequency of the most ener-
getic low-frequency pressure fluctuations in the vicinity of the
shock foot location are reasonably well predicted.

The fundamental property of the shock/boundary-layer
system indicated by (18) is its low-pass filter behaviour. As
such, a transfer of energy from higher (turbulence-related)
to lower frequencies is not required to explain the spectra
in figure 2. Instead, the shock/boundary-layer system sim-
ply damps fluctuations greater than the cutoff frequencyφmax
while any existing fluctuations smaller than this cutoff fre-
quency are amplified.

The use of white noise to force (9) may not seem ideal, as
this is not,a priori, representative of turbulence fluctuations.
However, it is argued that at low frequencies, skin-friction
fluctuations solely associated with the contribution from the
turbulence resembles that of a white noise, i.e. the spectrum
of C′′

f0
(t) is “flat” at low frequencies, where (9) is to be ap-

plied.
One great advantage of the model is the possibility to

use it for any given values of M1 andθ . For a constant wedge
angle,φmax increases with increasing Mach number and for
a constant upstream Mach number,φmax decreases with in-
creasing wedge angle. The latter trend can be tested against
the experimental results of Dupont et al. (2006), as shown in
figure 3. The agreement is well within the model and mea-
surement uncertainties. Figure 4a shows the map ofφmax for
M1 ranging from 1 to 6 andθ from 2◦ to 30◦, whenever a reg-
ular reflection exists. Most values are within the range 10−2 to
10−1, which is consistent with the experimental observations
of SBLI (see Dussauge et al., 2006).

Although the final model is described by a linear equa-
tion, it does not mean that none of the non-linearities of the
coupled shock/boundary-layer system are accounted for. Sig-
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Figure 3: Predicted Strouhal-number valueφmax≡ fmaxL/ū1
of the most energetic shock oscillations (at frequencyfmax)
for different upstream Mach numbers M1 and wedge angles
θ . Experimental and LES data are from Dupont et al. (2006)
and Touber and Sandham (2009), respectively. For all cases,
a variation of±0.1 in the upstream Mach number value is ap-
plied. Upstream skin-friction levels are the same as in Dupont
et al. (2006)

nificant non-linear effects are mechanically embedded in the
timescaleφ−1. Looking at the constituents ofφ , one can see
that even if the model is expressed in the form of point-particle
dynamics (i.e. the shock-foot position), it does not conveya
direct relation between a given velocity fluctuation and the
shock response to it, as linearised Euler would do (the result-
ing spectrum would then be similar to the forcing), but in-
stead it accounts for integrated effects by means of the differ-
ent thicknesses which are non-linear functions of the velocity
perturbations.

As discussed earlier, the model describes the coupled
shock/boundary-layer system as a low-pass filter with char-
acteristic timescaleτs ∼ φ−1. One remarkable result is that
this timescale is significantly larger than any characteristic
timescales of the incoming boundary layer (φ/(2π) is in the
10−2 to 10−1 range givingτs ∼ 10 to 100L/ū1, to compare
with δ0/ū1 ∼ L/ū1, assuming that the interaction length scales
with δ0). This conforms to experimental observations (e.g.
Dupont et al., 2006), and the known issue in numerical sim-
ulations that such flows have long initial transients, even for
laminar cases (indeed, in the absence of forcing, the conver-
gence to the steady solution would be as exp(−t/τs)).

The low-pass filtering property of the system indicates
that, strictly speaking no transfer of energy from the higher
to the lower frequencies is occurring. Instead, any high fre-
quency is damped and any low frequency is amplified, with
the frontier between high and low being determined byφ .
Therefore, the system itself is simply amplifyingexisting
low-frequency fluctuations, even if energetically insignificant,
while it filters out any high-frequency content. Moreover,
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Figure 4: Predicted most energetic low frequencyφmax for different (M1,θ ) pairs and sensitivity to variations in the model con-
stants. Thesolid white linegives theφmax= 0.035 contour. Thedashed lineanddash-dotted linedelimit two regions, labelled 1
and 2. Region 1 corresponds to Mach reflection cases and region 2 to cases where no oblique incident shock is formed.White dots
indicate the position of theφmax= 0.035 contour when using the reference values of (a)

the resulting broadband spectrum about a particular Strouhal
number is not a property of the forcing but a characteristic of
the shock/boundary-layer system itself (figure 2).

Based on the preceding discussion, it is inferred that
the origin of the low-frequency oscillations is not in the
forcing but in the dynamics of the system formed by the
shock/boundary-layer interaction. Of course, if one applies
any specific forcing below the natural frequency of the system,
such forcing will be picked up and magnified. A specific forc-
ing could be any significantly-long upstream coherent struc-
tures (see Ganapathisubramani et al., 2007, and references
therein) or particular flow features within the interactionitself
(see Dussauge and Piponniau, 2008; Piponniau et al., 2009;
Pirozzoli and Grasso, 2006, and references therein). However,
we stress that, mathematically speaking, these are not neces-
sary and the low-frequency motions can simply arise from a
background (white) noise, as successfully demonstrated infig-
ure 2.

The robustness of the model to modelling errors is par-
tially investigated in figure 4. First, the sensitivity of the

model to the mean boundary-layer properties is weak forC̄ f0
and insignificant forr ′′, suggesting that the map in figure fig-
ure 4a is a good estimate for other mean boundary-layer prop-
erties (as long as the hypotheses used to derive the model
hold). The mean boundary-layer properties thus play a major
role in setting the interaction length (see the steady-state equa-
tion in Touber and Sandham, 2011) but their effect on the final
dynamical equation is only weak. Second, the accuracy of the
model for∆2 and to a lesser extent for∆p is crucial. While
r can be easily determined to a relatively good accuracy,r ′

is the most critical aspect of the present model and further
improvements could be sought in the future. Nevertheless,
the overall monotonicity of the map ofφmax and the order of
magnitude of the predictedφmax are maintained even for these
sensitive cases. This demonstrates that the Strouhal-number
value for the most energetic low-frequency shock motions is
robust with values remaining below 0.1 for a wide range of
configurations, as argued by Dussauge et al. (2006).

Finally, it is important to bear in mind that the model
is based on an approximate form of the momentum integral
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equation which itself relies on four assumptions (see ear-
lier section), among which two are of primary importance.
First, the interaction must be sufficiently large for the shock-
crossing point to be above the incoming boundary layer.
Therefore, one does not expect the model to be correct for
weak interactions (i.e. for the smallest(p+2 − p1)/τw values).
Second, the interaction was considered to be two dimensional.
Thus, any large spanwise wrinkling of the shock is not consid-
ered. In both cases, it would be possible to extend the model
and release those constraints but this is left for future work.

SUMMARY
Starting from the Navier–Stokes equations and based on

some assumptions that were checked using LES results, a
stochastic ODE for the reflected-shock foot motions was pre-
sented. The general form of the governing equation relies on
the assumed existence of a separation of variables, which is
well supported by the LES data, allowing a transformation of
what was initially a partial differential equation into an ordi-
nary one. The derivation assumes two-dimensional motions
(i.e. the spanwise wrinkling of the shock was not considered)
with the shock crossing point located above the incoming
boundary-layer heightδ0. Under such conditions, a govern-
ing equation for the shock-foot motions is obtained and lin-
earised on the basis of sufficiently small shock displacements
combined with the analysis of LES data. This final form of
the governing equation is mathematically identical to the one
postulated by Plotkin (1975), and capable of reproducing the
wall-pressure low-frequency spectrum in the vicinity of the
mean shock-foot position.

Upon modelling the constituents of the derived govern-
ing equation, the dynamical system can be closed and ex-
pressed in terms of its input parameters: the upstream Mach
number M1, the wedge angleθ and the upstream boundary-
layer properties (i.e. skin friction and momentum thickness).
Although the upstream boundary-layer properties are foundto
be important at setting up the interaction length, the dynami-
cal system is mainly controlled by M1 andθ . A wide range of
input(M1,θ ) pairs was tested and the predicted most energeti-
cally significant low-frequency motions, expressed in the form
of the Strouhal numberSt , were shown to remain in the range
0.01 to 0.1, confirming the experimental evidence collected
in Dussauge et al. (2006). The most energetic Strouhal num-
ber was found to increase with increasing M1 for a constant
wedge angleθ , whereas it decreased with increasing wedge
angle for constant M1.

Mathematically speaking, the derived governing equa-
tion corresponds to a first-order low-pass filter and the analyti-
cal spectrum derived from forcing the system with white noise
is in excellent agreement with the available experimental and
numerical spectra. This result is consistent with the findings
of Plotkin (1975); Poggie and Smits (2001, 2005) and leads
to the suggestion that the low-frequency motions observed in
SBLI need not be a characteristic of the forcing but simply
the result of the low-pass filtering property of the dynamical
system formed by the coupling between the boundary layer
and the reflected shock, as demonstrated by the white-noise
forcing. This does not mean that specific forcing from up-
stream (see Ganapathisubramani et al., 2007, amongst others)
or downstream (see Pirozzoli and Grasso, 2006; Piponniau

et al., 2009; Robinet, 2007; Touber and Sandham, 2009) does
not play a role, but that they are not necessary. Obviously,
if present and acting below the system cutoff frequency, they
will inevitably be picked up by the system.

Further improvements to the proposed model are clearly
possible and could be considered in the future: include span-
wise shock wrinkling, derive better models for∆2, extend the
derivations to compression ramps and/or hot/cold walls.
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