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ABSTRACT
This paper consists of three parts. In the first part, we

demonstrate the performance of the explicit algebraic (EA)
subgrid-scale (SGS) stress model atReτ = 934 andReτ =
2003, based on friction velocity and channel half-width, for
the case of large eddy simulation (LES) of turbulent chan-
nel flow. Performance of the EA model is compared to that
of the dynamic Smagorinsky (DS) model for four different
coarse resolutions and statistics are compared to the DNS of
del Álamo & Jiménez (2003) and Hoyas & Jiménez (2008).
Mean velocity profiles and Reynolds stresses are presented for
the different cases. The EA model predictions are found to be
reasonably close to the DNS profiles at all resolutions, while
the DS model predictions are only in agreement at the finest
resolution. The EA model predictions are found to be less
resolution dependent than those with the DS model at both
Reynolds numbers.

In the second and third parts, we use Langevin stochastic
differential equations to extend the EA model with stochastic
contributions for SGS stresses and scalar fluxes. LES of tur-
bulent channel flow atReτ = 590, including a passive scalar,
is carried out using the stochastic EA (SEA) models and the
results are compared to the EA model predictions as well as
DNS data. Investigations, show that the SEA model provides
for a reasonable amount of backscatter of energy both for ve-
locity and scalar, while the EA models do not provide for
backscatter. The SEA model also improves the variance and
length-scale of the SGS dissipation for velocity and scalar.
However, the resolved statistics like the mean velocity, tem-
perature, Reynolds stresses and scalar fluxes are hardly af-
fected by the inclusion of the stochastic terms.

INTRODUCTION
The recent study by Rasamet al. (2011) indicates that

accuracy of LES of wall-bounded flows using isotropic eddy-
viscosity-type models, strongly depends on the grid resolu-
tion. Nonlinear models which improve LES results at coarse
resolutions, in comparison with the former models, would
make LES computationally less expensive. The EA SGS
stress model is a nonlinear model which has recently been in-
troduced by Marstorpet al.(2009). The model uses an explicit

algebraic solution of the transport equations of the anisotropy
of SGS stresses. The first part of this study extends the ear-
lier investigation of Rasamet al. (2011) to a higher Reynolds
number. The performance of the EA model is compared to
the DS model for different resolutions and two Reynolds num-
bers,

Improvements in LES predictions using stochastic mod-
eling has been reported in several early studies, e.g. Schu-
mann (1995). Langevin equations have been used for stochas-
tic modeling in turbulent flows, see e.g. Marstorpet al.
(2007). In the second part, the EA model is extended using
a stochastic model based on the Langevin equations.

PART I: PERFORMANCE ANALYSIS OF THE EA
MODEL

In this part, the performance of the EA and the DS mod-
els are compared in LES of channel flow at coarse resolutions.
Simulations are carried out using a pseudo-spectral Navier–
Stokes solver for incompressible flows. The code uses Fourier
and Chebychev representations in the homogeneous and wall-
normal directions, respectively. LES are carried out with a
constant mass flux equal to the DNS values corresponding to
Reτ = 934 andReτ = 2003. A summary of the simulations is
shown in table 1. The EA and DS SGS models are used in the
simulations and are briefly described.

The EA model uses the following formulation for the
SGS stress tensorτi j :

τi j = KSGS
[

2
3

δi j +β1τ∗S̃i j +β4τ∗2(S̃ikΩ̃k j − Ω̃ikS̃k j
)]

(1)

The model contribution consists of three parts: an isotropic
part (the first term on the right-hand side, RHS), an eddy vis-
cosity part (the second term on the RHS) and a nonlinear part
(the last term on the RHS) which generates proper anisotropy.
The filtered strain- and rotation-rate tensors are denoted by S̃
andΩ̃, respectively, andτ∗ is the time scale of the SGS mo-
tions. The model parametersβ1 andβ4 are functions of̃Ω and
τ∗, see Marstorpet al.(2009). The SGS kinetic energy,KSGS,
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Table 1. Summary of simulations for part I.∆x+ and∆z+ are
streamwise and spanwise resolutions in wall units in physical
space, respectively. The number of points in the wall-normal
direction isNy. Lx, Lz and 2h are the domain sizes in stream-
wise, spanwise and wall-normal directions, respectively.

Case SGS model Reτ Lx/h Lz/h ∆x+ ∆z+ Ny

EA1R1 938.7 8π 3π 184.3 92.2 97

EA2R1 951.0 8π 3π 124.6 62.3 97

EA3R1 966.0 8π 3π 94.9 47.4 129

EA4R1 Explicit 946.0 8π 3π 74.3 27.9 129

EA1R2 algebraic 2012 8π 3π 197.5 98.8 193

EA2R2 2031 8π 3π 133.0 66.5 257

EA3R2 2070 8π 3π 101.6 50.8 193

EA4R2 2031 8π 3π 79.8 30.5 257

DS1R1 828.7 8π 3π 162.7 81.4 97

DS2R1 873.5 8π 3π 114.3 57.2 97

DS3R1 896.5 8π 3π 88.0 44.0 129

DS4R1 Dynamic 912.8 8π 3π 71.7 26.9 129

DS1R2 Smagorinsky 1786 8π 3π 175.3 87.7 193

DS2R2 1876 8π 3π 122.8 61.4 257

DS3R2 1920 8π 3π 94.2 47.1 257

DS4R2 1958 8π 3π 76.9 28.8 257

and time scale,τ∗, are modeled as:

KSGS= c∆2|S̃|2, τ∗ =
36

|S̃|
√

c, (2)

where the coefficientc is determined dynamically using Ger-

mano’s identity,∆ is the filter scale and|S̃|=
√

2S̃i j S̃i j .
The DS model has an isotropic eddy viscosity description

of the SGS stresses

τi j −
1
3

τkkδi j =−2Cs∆2|S̃|S̃i j , (3)

whereCs is determined dynamically using Germano’s identity
andδi j is the Kronecker delta.

RESULTS FOR PART I
Mean velocity profiles are shown in figure 1. The EA

model predictions are in good agreement with the DNS profile
at all resolutions for both Reynolds numbers. In contrast, the
DS model predictions deviate from the DNS strongly at coarse
resolutions and converge to the DNS gradually with increas-
ing resolution. The EA model prediction of the mean velocity
profiles is almost resolution independent for the current cases,
while the DS model predictions vary considerably with reso-
lution. Reynolds stresses are shown in figure 2(a)–(c). The DS
model largely over-predicts the streamwise Reynolds stresses,
R+

uu, at coarse resolutions for both Reynolds numbers, see fig-
ure 2(a). In contrast, the EA model predictions are close to the
DNS profile and the relative change in its predictions with in-
creasing resolution is small. The DS model under-predictsR+

vv
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Figure 1. Mean velocity profiles in wall units. : EA
model, : DS model and· · · : DNS. Profiles are shifted
in the ordinate direction to separate the two Reynolds num-
ber predictions. Arrows point in the direction of increasing
resolution.

andR+
ww, see figures 2(b)–(c), while the EA model gives better

predictions also for these components. Also, large variations
in the DS model predictions, with increasing resolution, are
observed forR+

vv which is not observed in the EA model pre-
dictions. The better predictions of the EA model are attributed
to its nonlinear formulation.

PART II: STOCHASTIC EA (SEA) SGS STRESS
MODEL

We use the solution to the Langevin stochastic differen-
tial equation to introduce stochastic fluctuations in the instan-
taneous SGS stresses. This approach is similar to the one pro-
posed in Marstorpet al. (2007) for stochastic formulation of
the Smagorinsky model. The Langevin equation reads

dX (x, t) =−aX (x, t)dt+b
√

2a dW (x, t), (4)

or in the discretized form

X (x, t +∆t) = (1− ∆t
τX

)X (x, t)+b

√
2∆t
τX

dW (x, t), (5)

where∆t is the time step of the simulation,a = 1/τX , b is
a constant anddW(x, t) are spatially and temporally indepen-
dent random numbers with zero mean and variance equal to
one. The solution to the above Langevin equation is a statisti-
cally stationary process with zero mean andb2 variance and a
time scaleτX . The SEA model is written as

ai j =Cl (1+X (x, t))β1τ∗S̃i j +β4τ∗2(S̃ikΩ̃k j − Ω̃ikS̃k j) (6)
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whereCl is a model constant andai j = τi j /KSGS− 2/3δi j .
The time scale of the stochastic process is estimated as

τX =C

(
∆2

〈Π〉

)1/3

, Π =−τi j S̃i j =− τ∗

2
KSGSβ1|S̃|2, (7)

whereC= 1.5 is a model constant,Π is the subgrid-scale dis-
sipation and〈.〉 denotes averaging in the homogenous direc-
tions.

In order to test the performance of the SEA SGS stress
model, LES of channel flow atReτ = 590 is carried out. A
constant mass flux constraint is used in the simulations. A
summary of the numerical simulations is given in table 2, see
cases 1 and 3, and the results are compared to the EA model
and DNS, see Rasam (2011).

Table 2. Summary of simulations for parts II and III.∆x+

and ∆z+ are streamwise and spanwise resolutions in wall-
units in physical space, respectively. The number of grid
points in the wall-normal direction isNy.

Case SGS model Reτ b Cl scalar ∆x+ ∆z+ Ny

1 EA 584 – – × 57.3 28.7 65

2 EA 588 – –
√

57.7 28.9 73

3 SEA 587 2.0 0.85 × 57.6 28.8 65

4† SEA 588 2.0 –
√

57.7 28.9 73

† The EA model has been used for the SGS stresses.

RESULTS FOR PART II
Mean velocity profiles and Reynolds stresses are shown

in figures 3(a)–(b). The EA model predictions are in good
agreement with the DNS profiles both for mean velocity and
Reynolds stresses. The SEA model predictions, case 3, are
identical to the EA model predictions, case 1, which indicates
that the stochastic formulation does not affect the low-order
statistics of the resolved quantities. This is in agreementwith
the findings of Destefanoet al. (2005). They show that the
effect of the incoherrent part of the SGS motions on the low-
order statistics of a perfect LES would be negligible in the
case of decaying isotropic turbulence. However, there have
been other investigations that show improvements in the large-
scale statistics using stochastic modeling, e.g. see Mason&
Thompson (1992). All these investigations use the Smagorin-
sky model, where there are well-known problems in its formu-
lation, e.g. see Marstorpet al.(2007). However, in the case of
the EA model, large-scale statistics are already in good agree-
ment with the DNS data. Therefore, improvements in those
statistics are expected to be marginal. Nevertheless, the statis-
tics of the energy transfer at the small scales are improved.In
the following, we discuss some of these improvements.

The original EA model does not provide for backscatter
of energy,Π−, however, the SEA model provides for a reason-
able amount of backscatter, see figure 4(b). The increase in
forward scatter,Π+, by the SEA model is equal to the amount
of backscatter, see figure 4(a), therefore the total SGS dissipa-
tion, Π++Π−, is not changed by the SEA model. The root
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Figure 2. Resolved plus modeled (only for the EA model)
Reynolds stresses in (a) streamwiseR+

uu, (b) wall-normalR+
vv

and (c) spanwiseR+
ww directions in wall units. : EA model,

: DS model and· · · : DNS. Profiles are shifted in the ab-
scissa direction to separate the two Reynolds number predic-
tions. Arrows point in the direction of increasing resolution.

3



100 200 300 400 500

100 101 102

0

2

4

6

8

5

10

15

20

u+

y+

y+

(a)

(b)
R+

uu
�� R+

ww
��

R+
vv

��

Figure 3. (a) Mean velocity profiles and (b) resolved plus
modelled Reynolds stresses in wall units in streamwise,R+

uu,
spanwise,R+

ww, and wall-normal,R+
vv, directions : EA

model (case 1), : SEA model (case 3) and· · · : DNS.
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Figure 4. (a) Forward scatter and (b) backscatter for turbu-
lent kinetic energy expressed in wall units. : EA model
(case 1), : SEA mdoel (case 3) and· · · : DNS.

mean square of the SGS dissipation is shown in figure 5(a).
The SEA model predicts larger values compared to the EA
model and in better agreement with the DNS data, showing
that the SGS dissipation becomes more intermittent.

Another quantity of interest is the length scale of the SGS
dissipation which is obtained from the spatial two-point cor-
relation of the SGS dissipation

Lx [Π] =

∫ 1
2 Lx

0

〈Π′(x0)Π′(x0+x)〉〈
Π′2〉 dx, (8)

where the upper integration limit is half the simulation box
length,Lx, in the streamwise direction andΠ′ is the fluctuating
part of Π. The SGS dissipation length scale computed from
equation (8) is shown in figure 5(b), where it has been non-
dimensionalized by the filter scale∆ = 3

√
∆x〈∆y〉∆z, where
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Figure 5. (a) Root mean square of SGS dissipation in wall
units and (b) length scaleLx of the SGS dissipation normal-

ized with the grid sale∆ = 3

√
∆x

〈
∆y

〉
y−dir.∆z. : EA model

(case 1), : SEA model (case 3) and· · · : DNS.

〈.〉 denotes averaging of∆y in the wall-normal direction. The
SGS dissipation length-scale computed from filtered DNS is
slightly smaller than the mean filter scale,∆, which empha-
sizes the fact that there is a large amount of spatially uncorre-
lated noise in the SGS dissipation leading to short correlation
lengths. The prediction of the EA model is almost four times
larger than the grid scale in most of the channel with larger
values close to the wall, while there is a factor of two im-
provement using the SEA model. These results show that the
length scales are reduced and the SGS dissipation becomes
more intermittent by introducing the stochastic model.

PART III: STOCHASTIC EA SGS SCALAR FLUX
MODEL

The EA SGS scalar flux model, see Rasam (2011), has
the following formulation for the SGS scalar fluxesqi :

qi =−τ∗A−1
i j τ jk

∂ θ̃
∂xk

, (9)

whereτ∗ is obtained from equation (2),τ jk is the SGS stress
tensor and

A−1 =
(G2− 1

2Q1)I−Gτ∗(S̃+ Ω̃ΩΩ)+ τ∗2
(S̃+ Ω̃ΩΩ)2

G3− 1
2GQ1+

1
2Q2

,

G=
4.8KSGS

(0.2∆|S̃|)2
− 1

2r
, r = 0.5,

Q1 = τ∗
2
tr
(

S̃
2
+ Ω̃ΩΩ

2)
, Q2 =

2
3

τ∗
3
tr
(

S̃
3)

+2τ∗
3
tr
(

S̃Ω̃ΩΩ
2)

,

where tr (.) denotes the trace of a matrix, boldface denotes
tensors andI is the unity tensor. The EA model has the ad-
vantage, over all isotropic models based on eddy diffusivity
assumption, that its predictions are not in general alignedwith

4



the resolved scalar gradient, see Rasam (2011). The stochastic
EA SGS scalar flux model is obtained from equation (9) in the
same way as was done for the anisotropy of the SGS stresses

qi =−τ∗A−1
i j τ jk

∂ θ̃
∂xk

(1+X (x, t)) . (10)

RESULTS FOR PART III
In order to test the SEA SGS scalar flux model, LES

of turbulent channel flow is carried out with a passive scalar
(Pr=0.72). The channel walls are kept at constant but differ-
ent temperatures. We use a constant mass flux constraint with
the bulk Reynolds number equal to the corresponding DNS at
Reτ = 590, see Rasam (2011). A summary of the simulation
cases is given in table 2, see cases 2 and 4.

It was found that the large-scale statistics of velocity
are not affected by the stochastic model. We have found the
same to be true for the large-scale scalar statistics. The mean
and root mean square (RMS) of the scalar are shown in fig-
ures 6(a)–(b). The predictions of the EA and SEA models
are identical and compare well with the corresponding DNS
profiles. The scalar fluxes,〈u′θ ′〉 and 〈v′θ ′〉, are shown in
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Figure 6. (a) Mean temperature,〈θ 〉, normalized with the
mean temperature difference,∆〈θ 〉, and (b) root mean square

of temperatureθ rms normalized with ν
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: EA model (case 2), : SEA model (case 4) and
· · · : DNS.

figures 7(a)–(b). A close correspondence with the DNS pro-
file exists and the two models give identical results. The SGS
dissipation of the scalar variance for the SEA model is

χ = (1+X )τ∗A−1
i j τ jk

∂ θ̃
∂xk

∂ θ̃
∂xi

, (11)

which can be further split intoχ = χ+ + χ−. Hereχ+ and
χ− are the forward- and backscatter of the SGS dissipation of
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Figure 7. Resolved plus modeled turbulence scalar fluxes in
(a) streamwise,〈u′θ ′〉, and (b) wall-normal,〈v′θ ′〉, directions

normalized with ν
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. : EA model (case 2),

: SEA model(case 4) and· · · : DNS.

scalar variance, respectively. They are shown in figures 8(a)–
(b). The SEA model predicts slightly larger than half the
backscatter computed from filtered DNS. Its predictions of the
forward scatter also give considerable improvements in com-
parison with the EA model and practically matches the filtered
DNS data. The variance of the SGS dissipation is significantly
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Figure 8. (a) Forward scatter and (b) backscatter for scalar
variance dissipation, expressed in wall units. : EA model
(case 2), : SEA model (case 4) and· · · : DNS.

improved by the stochastic model, see figure 9(a), which re-
flects the improvement in the intermittency of the SGS dissi-
pation. The length scale of the subgrid-scale dissipation for
the scalar variance is computed as

Lx [χ] =
∫ 1

2 Lx

0

〈χ ′(x0)χ ′(x0+x)〉〈
χ ′2〉 dx. (12)
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The SGS dissipation length scale is shown in figure 9(b). The
general behavior of the SGS dissipation length scale for scalar
variance and turbulent kinetic energy is the same. Accord-
ingly, the length scale computed from filtered DNS is smaller
than the mean filter scale∆, which also indicates the fact that
the amount of spatially uncorrelated noise in the SGS scalar
fluxes is large. The prediction of the EA model is almost
three times larger than the grid scale, while there is a notable
amount of improvement using the SEA model in the outer re-
gion and close to the wall.

CONCLUSIONS
LES of channel flow at four different resolutions, rang-

ing from coarse to medium, were carried out at two Reynolds
numbersReτ = 934 andReτ = 2003. It was found that the
EA model predictions were close to the DNS profile at all res-
olutions. Its predictions of the mean velocity were almost in-
dependent of resolution for the two Reynolds numbers and its
predictions of the Reynolds stresses showed a small variation
with increasing resolution. In contrast, the DS model largely
over-predicted the mean velocity and streamwise Reynolds
stresses at coarse resolutions for both Reynolds numbers. The
DS model predictions converged to the DNS profile with in-
creasing resolution but they showed large variations with res-
olution. In conclusion, LES using the EA model leads to more
accurate results, for mean velocity and Reynolds stresses,at
less computational cost.

In the second part, the stochastic model of Marstorpet al.
(2007) has been used to introduce random fluctuations in the
EA SGS stress model of Marstorpet al. (2009) and the EA
SGS scalar flux model of Rasam (2011). LES of turbulent
channel flow atReτ = 590 is carried out including a passive
scalar (temperature) to validate the new models. The large-
scale quantities are very well predicted by the EA models
without the stochastic extensions. Inclusion of the stochastic

process does not further improve those statistics in a accor-
dance with the results of Destefanoet al. (2005). The main
part of this study was focused on the statistics of SGS dissipa-
tion, for both the velocity and scalar fields. It was found that
the stochastic explicit algebraic (SEA) model can provide for
a reasonable amount of backscatter of energy both for turbu-
lent kinetic energy and the scalar variance. The variance of
the SGS dissipation is also improved in both cases, showing
a more realistic level of intermittency of the SGS dissipation.
The length scales of the SGS dissipation were reduced by the
SEA model in comparison with the EA model and in better
agreement with the DNS, showing that the incoherent part of
the SGS dissipation is increased. The findings reported here,
are important in the sense that they show that stochastic mod-
els improve different aspects of the SGS energy transfer. This
is important in cases where the small-scale statistics are of
prime importance, e.g. see Pitsch (2006).
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