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ABSTRACT
With a view to “nowcasting” of depth-scale flow fields in

rivers, estuaries, and the near-coast, this work develops em-
pirical “measurement models” that correlate velocity at a wa-
ter surface to subsurface flow fields. Free-surface flow over
a backstep, as simulated by LES, is chosen as a test case.
Proper Orthogonal Decomposition (POD) is first applied to
both subsurface and surface velocity fields from a “training
data set”, whence we develop regression models between the
vectors of surface and subsurface POD coefficients. These
models are then applied to estimate the subsurface flow field
outside the training data based on virtual “measurements” of
streamwise velocity along a streamwise line at the water sur-
face. Good predictive capability is obtained in a region some
20 step heights downstream of the step that is characterized
by strong upwellings.

INTRODUCTION
This paper applies measurement models developed

by Mokhasi et al. [1], who were motivated by “micro-
nowcasting” and back-casting of chemical release in a city,
and the “multi-time” extensions reported by Nguyen et al.
[2]. “Nowcasting” referred originally to detailed, short-term
weather forecasting, e.g. to predict the development of thun-
derstorms. The mathematics are the same as a “traditional”
forecasting system, and typically include a nonlinear Kalman
Filter (KF) that continually updates the “current estimate” for
the vector of variables that specify the state of the system (at-
mosphere, ocean, etc.) in the chosen dynamical model. Since
such physical systems are chaotic, monitoring data must be
continually fed back to keep the current estimate close to re-
ality; in the KF this data is compared with the “current state”
via a “measurement model”. In the scenario of [1], data from
sensors distributed through a cityscape would feed back on a
KF designed to track the turbulent flow; then, based on the
estimated flow field, chemical concentration measurements
would be “back-tracked” to estimate release location(s). As
a prototype problem, they considered unidirectional flow past
a surface-mounted cube. The measurement models proposed
in [1] develop an idea from the fluids engineering literature
known as “stochastic estimation”, in which one estimates a

flow field, via its POD coefficients, based on a limited num-
ber of measurements, typically pressure at one or more surface
points. The dominant example has been Linear Stochastic Es-
timation (LSE). For example, Taylor and Glauser [3] built a
low dimensional pressure sensing and control system via POD
and LSE for a flow between a backward facing ramp and an
adjustable flap; Durgesh and Naughton [4] applied a multi-
time delay LSE-POD that used pressure to estimate POD co-
efficients of an unsteady near wake flow.

We are motivated by nowcasting of environmental flows
with a free surface, notably estuaries and rivers. Existing sys-
tems (e.g. the NYHOPS network, [5]) are typically based
on sparse point measurements, and cannot resolve horizon-
tal variations much finer than the river width. For the future,
we expect that High Frequency radar and/or imaging methods
will be able to monitor surface velocity over a certain area. In-
deed, highly-resolved data on surface velocity were obtained
as early as 1967 by large-format aerial photography when ris-
ing flood waters generated surface bubbles as “PIV tracers”,
and the patterns of surface divergence even allowed Kinoshita
[6] to infer the instantaneous spatial structure of subsurface
bedforms. With this justification we investigate here the use
of data measured over a portion of free surface as input for
stochastic estimation. In the context of stochastic estimation,
the introduction of a free surface was the key novelty in our
recent communication [7]. That work considered simulated
flow over a sinusoidal bed, with a free surface modeled as
a stress-free lid. To simplify analysis, we confined attention
to the flow velocity in three vertical-streamwise planes, and
built POD-based correlations for the subsurface flow based on
“measured” surface velocity.

In this paper, we also use information on free-surface ve-
locity as input for estimation models. However, we instead
study the flow past a backstep as a prototype for a subaqueous
dune. Such “bedforms” are important because of their form
drag, and because of their key role in sediment dynamics. In
addition, the current work applies the correct dynamical con-
ditions at the free surface. The LES of the backward-facing
step flow with a free-surface is followed by a brief mathemat-
ical introduction of POD. Next, single-time and multi-time
POD-based estimations are described and the performances
of the POD-based estimations are discussed.
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Figure 1. (a) LES simulation domain. POD decomposition
to 1000 sub-surface velocity snapshots, (b) Averaged U , V ve-
locity components, colour shows averaged W velocity compo-
nent, (c)-(e) POD mode 2, 3 and 4, colour shows vorticity cal-
culated from corresponding POD velocity basis function and
normalized with the step height, ω

′
z = ωzh, (f) energy spectra,

(g) cumulative energy.

LARGE EDDY SIMULATION OF BACKWARD-
FACING STEP

Let us first consider the specifications of the large eddy
simulation of backward-facing step flow.

Figure 1(a) shows the simulation domain of the
backward-facing step. The commercial software FLUENT
12.1 is used with the volume-of-fluid (VOF) to handle free-
surface in this simulation. Step height h is 16.5 (mm). Com-
putational domain has a streamwise length Lx = 40h includ-
ing an inlet streamwise length Li of 10h prior to the edge.
A spanwise width Lz = πh and a vertical height Ly of the
domain after the step is 7h, of which a water flow depth
Ly,water is 4h. A coordinate system is at the edge with the
stream, vertical and span directions denoted by x, y and z
respectively. The Reynolds number based on step height h
and maximum mean inlet velocity Um is 4400. A mean ve-
locity profile U(y) imposed at the inlet boundary of water-
phase is taken from a flat-plate turbulent boundary layer [8],
of which Um is a maximum mean inlet velocity while a mean
velocity profile for air-phase is linearly interpolated. A spec-
tral synthesizer algorithm is applied to model the fluctuat-
ing velocity at the velocity inlet boundaries for this simula-
tion. A pressure outlet condition is assigned for the down-
stream boundary. The top boundary condition of the simu-
lation domain is shear-free while the bottom boundary con-
dition is a no-slip, stationary wall. A periodic condition is
assigned for the spanwise direction. The number of Carte-
sian grid points of the upstream domain is 50×61×18 while
that of the downstream domain is 151× 78× 18. A uni-
form grid spacing is used in the spanwise direction while a
non-uniform grid spacing is used in the vertical and hori-
zontal directions with a finer mesh near the lower wall, the
free-surface and the step. The range of grid spacings in wall

units are 4x+
min/4x+

max = 10/90, 4y+
min/4y+

max = 0.14/6.7,
and 4z+ = 34 respectively based on the wall shear velocity
uτ0 taken at x/h = −1. The numerical simulation starts with
3D Reynolds-Averaged Navier-Stokes (RANS) with standard
k − ε , SIMPLE pressure-velocity coupling and second or-
der discretization. A converged flow field from RANS is
then used as an initial condition to pursue the LES with
Smagorinsky-Lilly model. A time step in this simulation is
fixed at ∆t = 0.008h/Um which keeps the CFL number less
than unity over the majority of the solution domain. The total
simulation time of LES is ttotal = 555 eddy turn-over times,
where an eddy turn-over time is defined as h/Um. About 273
eddy turn-over times, approximately 7 flow-through times,
have been discarded for the passage of initial transients. A
data set corresponding to 256 eddy turn-over times has been
recorded to compute statistics. This data set consists of
1000 instantaneous snapshots of the three-component veloc-
ity fields of a vertical xy plane, with x/h ranging from 15 to
25 and y/h ranging from−1 to 3, in the mid-plane of the sim-
ulation domain. The time interval between each snapshot is
0.256h/Um.

PROPER ORTHOGONAL DECOMPOSITION
The proper orthogonal decomposition (POD) is applied

to the data set of instantaneous velocity snapshots of the BFS
to reveal the dominant flow structures which capture most of
the kinetic energy of the flow. The proper orthogonal decom-
position of a velocity field u(x,0≤ t ≤ T ), where T is a finite
time interval, is given by

u(x, t)∼=
N ′

∑
k=1

ζk(t)ψk(x), (1)

where the maximal value of N′ is the number of velocity fields
N, ζk(t) are called the temporal POD coefficients and ψ(x) are
called the POD basis functions which are the eigenfunctions
of the two-point correlation function R(x,x′) defined as

R(x,x′) =
1
T

∫
u(x, t) ·u(x′, t)dt. (2)

The basis functions are computed via an optimization problem
leading to a Fredholm integral equation

∫
R(x,x′) ·ψ(x′)dx′ = λψ(x). (3)

The eigenvalue λ associated with each POD mode is pro-
portional to the kinetic energy contained in that mode. The
decomposition yields statistically dominant flow structures in
the few lowest-order POD modes, which capture most of the
flow kinetic energy and are typically associated with large-
scale structures.

In practical applications, the flow data are normally dis-
crete; so integrals are computed by discrete summations.
When the number of spatial sampling points exceeds the num-
ber N of velocity fields, as often encountered in computational
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Figure 2. POD decomposition to 1000 free-surface velocity
snapshots. (a) Energy spectra, (b) cumulative energy, (c) av-
eraged velocity Us,mean, (d)-(f) POD mode 2, 3 and 4.

fluid dynamic (CFD) and experimental applications, the snap-
shot POD [9] is more computationally efficient to determine
the POD modes. In such circumstances, a set of instantaneous
flow fields, often named “snapshots”, is collected from ex-
perimental velocity fields (e.g. PIV) or CFD simulation. A
correlation matrix is calculated as

Ci j =
1
N

∫
u(x, ti) ·u(x, t j)dx, (4)

where N is the number of PIV velocity snapshots. In order to
compute the POD basis functions and temporal coefficients,
let us first define αki as

αki =
υk

i√
N ∑

N
m=1 ∑

N
r=1 υk

mυk
r Cmr

(5)

where υk
i is the ith element of the eigenvector υk correspond-

ing to the eigenvalue λk of the correlation matrix C. The POD
basis functions are then computed as

ψk(x) =
N

∑
i=1

αkiu(x, ti), (6)

and the temporal coefficients as

ζk(t) =
∫

u(x, t) ·ψk(x)dx = N
N

∑
i=1

αkiCit . (7)

The eigenvectors and temporal coefficients of the POD de-
composition satisfy the following orthogonality:

∫
ψ i(x) ·ψ j(x)dx = δi j, (8)

1
T

T∫
0

ζi(t)ζ j(t)dt = λiδi j. (9)

where δi j is Kronecker delta.We perform a POD analysis to
the data set of 1000 sub-surface velocity snapshots and ex-
amine the dominant flow structures. In addition to the three-
component velocity fields, a strictly analogous POD of free-
surface velocity is performed. The free-surface velocity is
streamwise component while the sub-surface velocity field is
three-component instantaneous velocity vectors correspond-
ing to a vertical plane at the middle of the simulation domain.

In figure 1(b), vectors are averaged U , V velocity compo-
nents while colour is W velocity component computed from
the data set. Figure 1(c-e) show mode 2, 3 and 4 of the POD
sub-surface velocity decomposition. In figure 1(f), the first
POD mode contributes more than 97% the total kinetic en-
ergy of the flow while the second and the third POD modes
have almost equal eigenvalues. In addition, a pair of vorticity
structures revealed in mode 2 and mode 3 of POD basis func-
tions has a very large-scale (order of h), by which its influ-
ence to the fluctuation of water surface is considerable. Fig-
ure 2 presents the POD decomposition of 1000 free-surface
velocity snapshots. Except the first POD mode, POD modes
from 2 to 9 appear in pair by their almost equal eigenvalues.
Interestingly, the spatial centers of the vortices appearing in
the POD sub-surface velocity mode 2 to 4 correspond to the
streamwise locations of strong fluctuations in the free-surface
POD modes. This result may indicate an interaction between
the large-scale sub-surface turbulence structures and the free-
surface. Such phenomena have been hardly seen by experi-
ments or simulations with non-deformable top boundary.

POD-BASED ESTIMATION MODELS
In this section, we describe various POD-based estima-

tion approaches, including single-time PCR-POD and KRR-
POD [1] and multi-time PCR-POD and KRR-POD estima-
tions [2], used to build measurement models.

Single-time PCR-POD
The PCR-POD technique estimates the POD coefficients

ζk(t) through a linear relation with the events s(t)

ζ̃k(t) =
M

∑
m=1

wkmskm(t), (10)

where M is the number of measurement points, and w are
the coefficients of the PCR-POD estimation need to be de-
termined. The number of PCR-POD estimation coefficients is
equal to the number of measurement points, M. The objective
of PCR-POD is to minimize the mean square error function
C(w) between the estimated and true POD coefficients

C(w) = min.
1
2

N

∑
i=1

(wis(ti)−ζi(t))
2 , (11)

where s(ti) is the measurement event at time ti from N mea-
surements and ζi(t) is the ith POD coefficient of the velocity
fields. Instead of deriving w by conventionally solving the
linear system of derivative equation, the PCR-POD technique
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looks for the coefficients that are the functions of the princi-
pal components of the free-surface velocity. Hence, a POD is
performed on the events s,

sEN
r (t) =

Np

∑
m=1

β
EN
m (t)ΓEN

mr , (12)

where Γ and β with superscript EN are the POD basis func-
tions and POD coefficients derived from the given ensemble
measurement events respectively (fig. 2). Np is the number of
modes used in the POD decomposition; its effect on the PCR-
POD performance is discussed later. The orthogonality of Γ

and β can be described as,

β
EN
m (t) =

Np

∑
r=1

sEN
r (t)ΓEN

mr . (13)

A relationship between the POD coefficients of the velocity
fields and the POD coefficients of the measurement events is
built as

ζ̃k(t) = Mkmβm(t), (14)

where matrix of coefficients M is determined by solving the
linear equation system expressed by

Mkm =
Np

∑
s=1

ζ
EN
ks ωsm, (15)

where the coefficient ω is related to the coefficient β by

Np

∑
s=1

β
EN
ms ωsr = δmr. (16)

The final form is derived by substituting (13) and (16) into
(14)

ζ̃k(t) =
Np

∑
r=1

(
Np

∑
i=1

Np

∑
j=1

(
ζ

EN
ki ωim

Np

∑
m=1

ω jmsEN
r j

))
sr(t). (17)

This equation represents an estimation of the POD coefficients
ζk(t) of the sub-surface velocity fields from the measurements
of the free-surface velocity s through a linear relation.

Single time KRR-POD
In this technique, POD coefficients ζk(t) are approxi-

mated by a nonlinear relationship with the measurements s(t)

ζ̃k(t) =
N

∑
j=1

wk
jh j(s), (18)

where N is the number of snapshots, wk are the estimation
coefficients and h j are nonlinear basis functions, most com-
monly radial basis functions (RBF). In this application, we
use N vector values of measurement events s to make the re-
gression. Therefore, the number of KRR-POD estimation co-
efficients for each ζk is N. Details of the RBF functions can
be found in [1]. In this study, h is chosen to be a multi-quadric
function which has the form

h j(s) = φ(s,s j) =
√

1+ ε2
∥∥s− s j

∥∥2
2, (19)

where ε is a scaling parameter and
∥∥s− s j

∥∥2
2 is the Euclidean

distance between the events s and s j. The objective of KRR-
POD is to minimize a cost function defined as

C(w) =
N

∑
i=1

(ζi− ζ̃i)2 +
N

∑
j=1

β jw2
j , (20)

where regularization parameters β are added to penalize large
coefficients w that could appear due to large random fluctu-
ations in training set. These parameters need not be constant
and are often optimally determined by cross-validation. In this
work, however N is rather large, so we set β j = β∀ j. The un-
known coefficients wk are computed by taking the derivative
of (20) and setting to zero;

∂C
∂wk

j
= 2

N

∑
i=1

(ζ̃i−ζi)h j(si)+2βwk
j = 0. (21)

In terms of the RBF functions denoted as

Hi j = h j(si) = φ

(∥∥∥sEN
i − sEN

j

∥∥∥) , (22)

where the superscript EN indicates data from the ensemble,
the coefficient w can be evaluated by solving a system of linear
equations. The result written in matrix notation is

w j =
[
HT

i j Hi j +β Ii j

]−1
HT

i j ζ j, (23)

where I denotes the identity matrix. Once the w coefficients
are determined, one can substitute w into (18) to find the re-
gression form of KRR-POD technique as

ζ̃k =
N

∑
j=1

w jφ
(∥∥∥sEN

j − s
∥∥∥) . (24)

This equation shows that one can estimate the POD coeffi-
cients ζ (t) of the velocity fields from the measurements s(t).
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Figure 3. Comparison between multi-time PCR-POD and
KRR-POD, (a) MSE, (b) CC by using both of the past and
future information of free-surface velocity, (c) MSE, (d) CC
by using the past information (solid) and the future informa-
tion (dashed) of free-surface velocity.

Multi-time POD-based estimation approach
In the previous sections, the instantaneous POD coeffi-

cients of the velocity fields are estimated by using the mea-
surement events at a single time. The multi-time PCR-POD
and KRR-POD estimations [2] use the past and/or future in-
formation of measurement events to estimate the temporal
POD coefficients of velocity fields. In this case, the POD co-
efficients of the velocity fields at time t are estimated by using
conditional averages as

ζ̃k(t) =
〈
ζk(t) | s(t ′), t−T ≤ t ′ ≤ t

〉
, (25)

ζ̃k(t) =
〈
ζk(t) | s(t ′), t ≤ t ′ ≤ t +T

〉
, (26)

ζ̃k(t) =
〈
ζk(t) | s(t ′), t−T ≤ t ′ ≤ t +T

〉
, (27)

where subscript k denotes the POD mode, and T is the du-
ration of the temporal window of measurement events used
in the multi-time estimation. Equation (25) and (26) express
that the past (future) information of the free-surface velocity
is used separately, while (27) specifies that the past and future
information of the free-surface velocity are combined. The
implementations of multi-time PCR-POD and KRR-POD are
similar to the single-time approaches, except that the matrix
of event s is now expanded to include the measurement events
from the past and/or future. Compared to the single-time esti-
mations, the number of estimation coefficients of the multi-
time PCR-POD approach increases in proportion to an in-
crease in the time duration while that of the multi-time KRR-
POD approach is constant.

RESULTS AND DISCUSSIONS
The multi-time PCR-POD and KRR-POD estimations

have been applied to the BFS flow.The performances of these
estimations has been compared via mean-square errors (MSE)
and correlation coefficients (CC) between the “true” POD co-
efficients, determined from the original velocity fields by pro-

jection onto ψk, and the estimated coefficients. The POD co-
efficients are firstly standardized by applying z-score normal-
ization, which shifts and re-scales the signal to a mean of zero
and a standard deviation of one. The normalized POD coeffi-
cients the have the same standard deviation that gives an unbi-
ased estimation to any POD coefficient [1]). The mean-square
errors between the true and estimated POD coefficients, ζ and
ζ̃ respectively, are calculated by

ε
2 =

1
NNv

N

∑
t=1

Nv

∑
k=1

(
ζ̃k(t)−ζk(t)

)2
, (28)

where N is the number of snapshots in the data set, Nv is the
number of low-order POD coefficients, for example Nv is cho-
sen as 4 in our application, or 1 when considering the error of
a single mode. The correlation coefficient between the true
and estimated POD coefficients, ζk(t) and ζ̃k(t) respectively,
are calculated by

Ck =
∑

N
t=1(ζ̃k(t)−< ζ̃k >)(ζk(t)−< ζk >)√

∑
N
t=1

(
ζ̃k(t)−< ζ̃k >

)2√
∑

N
t=1 (ζk(t)−< ζk >)2

,

(29)
where k indicates the POD mode, N is the number of snap-
shots in the data set and the operator 〈.〉 stands for the ensem-
ble average.

The data set of 1000 sub-surface velocity fields and their
corresponding free-surface velocity vectors have been divided
into two sets of 500 snapshots. In this assessment, we first
perform a POD decomposition on the first data set of the ve-
locity fields, called the “ensemble”, to obtain the spatial POD
basis functions. Next, the time series of the four lowest-order
temporal POD coefficients and corresponding free-surface ve-
locity from the first set are used to build the estimation models
and compute the estimation coefficients. Next, if the estima-
tion coefficients determined from the ensemble operate on the
free-surface velocity from another data set, one can approx-
imately “predict” the values of POD coefficients of this set.
The accuracy of prediction is computed by comparing the es-
timated POD coefficients with the actual POD coefficients.
The non-dimensional duration τ∗ is given by

τ
∗ =

TUm

h
, (30)

where T is the time interval between each snapshot, Um is the
maximum inlet velocity, h is the step height of the BFS flow.

Figure 3(a) and (b) show the performances of the multi-
time estimations PCR-POD and KRR-POD in which both the
past and future information of the free-surface velocity are
used. It is seen that an increase in duration τ∗ reduces the
accuracy of the multi-time estimations while τ∗ = 0, corre-
sponding to the cases of single-times estimations, yields a
slightly higher CC for the multi-time KRR-POD estimation.
Figure 3(c) and (d) show the MSE and CC obtained by the
multi-time estimation techniques in which the information
from the past and the future of the free-surface velocity is used
separately. In our application, use of future information on
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Figure 4. Estimation of sub-surface field from free-surface velocity by multi-time KRR-POD. (a) actual (dashed) and predicted
(solid) POD coefficients, (b) original spanwise vorticity, (c) spanwise vorticity computed from predicted flow snapshots using (d)
instantaneous free-surface velocity.

free-surface velocity events reduces the accuracy of predic-
tion of all the estimation techniques. On the contrary, using
past information with τ∗ =−1.4 (I =−2) yields the best pre-
diction for PCR-POD and KRR-POD, minimizing MSE and
maximizing CC. This result reasonably suggests a phase re-
lationship between the free-surface velocity and POD coeffi-
cients of the sub-surface velocity fields. From figure 3, it can
be observed that the multi-time estimation KRR-POD, per-
forms slightly better than PCR-POD in predicting the POD
coefficients of sub-surface velocity fields if a certain dura-
tion of past information on free-surface velocity is included in
the model. These performances demonstrate the capability of
multi-time PCR-POD and KRR-POD estimations to success-
fully capture the relationship between the POD coefficients
of sub-surface velocity fields and free-surface velocity events.
Figure 4(a) compare the actual POD coefficients calculated
from the original velocity fields with those from the KRR-
POD estimation. From the predicted POD coefficients, corre-
sponding estimates of velocity fields can be calculated. As an
illustration, figure 4(b)-(c) shows five consecutive realizations
of the spanwise vorticity, starting from time/4t = 750, de-
rived from the original and predicted velocity fields by using
the low-order POD coefficients that are estimated by multi-
time KRR-POD with τ∗ = −1.4 (I = −2). The correspond-
ingly instantaneous streamwise free-surface velocity Us is also
shown. For each instant, we calculate the MSE of POD coef-
ficients, denoted as ε2

i and shown in figure 4(c), between the
true and predicted POD coefficients by applying (28) for a sin-
gle time level. Referring to the temporal MSE of ε2 = 0.73,
these samples exhibit “typical” values of ε2.

From these side-by-side comparisons, we assert that
multi-time KRR-POD can provide good approximation to
the sub-surface flow structures given the free-surface veloc-
ity events.

CONCLUSIONS
This paper develops the estimation models, based on

POD analysis, that relate the free-surface velocity to low-

order POD coefficients of the sub-surface velocity field of the
BFS flow. We test the multi-time PCR-POD and KRR-POD
estimations, in which the past and/or future information of the
free-surface velocity is used. When there is a time lag between
the POD coefficients and the given events, it is more efficient
to employ multi-time estimations. Our proposed multi-time
estimations have successfully captured the structures of the
flow given a certain past information on free-surface velocity.
Given the good predictive capability obtained from the region
characterized by strong upwellings, we suggest that the multi-
time estimations are practically useful to improve the capabil-
ity for “nowcasting”.
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