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ABSTRACT 

Large eddy and direct numerical simulations of 

incompressible turbulent flows were performed over an open 

cavity with or without self-sustained oscillations possessing 

thin or thick incoming boundary layers (ReD = 12000 and 

3000). The influence of the incoming turbulent boundary layer 

on the cavity was investigated using dynamic mode 

decomposition (DMD). The cavity length to depth ratio of 2 

was selected for both cases. In the case of thick boundary 

layer, the dynamic modes extracted using the DMD algorithm 

shows that the upcoming boundary layer structures and the 

structures generated due to the shear layer oscillations differs 

in wavelength space. The upcoming BL structures larger than 

the cavity dimensions convect over the cavity. On the other 

hand, in the case of thin boundary layer both of the upcoming 

and the shear layer structures possess comparable dimensions. 

This may lead to the condition of resonance causing self-

sustained oscillations. This result suggests that the 

hydrodynamic resonance causing self-sustained oscillations 

occur when the upcoming boundary layer structures and shear 

layer structures coincide both in the frequency and 

wavenumber space. The structures of the cavity perturbations 

change with the cavity size and upcoming momentum 

thickness. 

 

INTRODUCTION 

In turbulent cavity flows, the coherent features are 

observed along the shear layer possessing wide range of 

wavenumbers. However, in many situations, the flow 

complexity actually reduces to very coherent features together 

with few characteristic structures possessing self-excited 

global modes in space and time. The dynamic information 

becomes quite significant in the cases where the local absolute 

instability prevails in the finite region. In such situations, the 

systems may exhibit self-sustained resonant modes at specific 

complex frequencies. The global stability analysis results in 

large stability matrix size and implying the Arnoldi method it 

may be computationally expensive due to iterative schemes 

adopted. Schmid (2010) introduced a method known as 

dynamic mode decomposition (DMD) to extract dynamic 

mode information from the flow fields. The extracted dynamic 

modes, which may be interpreted as a generalization of global 

stability modes, can be used to describe the underlying 

physical mechanism captured in the data sequence. The 

mathematics underlying this decomposition is related to the 

Koopman operator which provides a linear representation of a 

nonlinear dynamical system (Rowley et al. 2010). 

Flows over an open cavity occur in many engineering 

applications, for example landing gear wells and bomb bays in 

aircraft and sunroofs in automobiles. The presence of the open 

cavity generates strong self-sustained oscillations of velocity, 

pressure and, occasionally, density. To understand the 

mechanism underlying such oscillations and prevent 

undesirable effects, numerous experimental and numerical 

studies have been carried. Pereira & Sousa (1995) observed 

periodically oscillating shear layers in the flow of a turbulent 

incoming boundary layer over an open cavity. Lin & Rockwell 

(2001) also observed self-sustained oscillations in water-

tunnel experiments, and suggested that the oscillations are 

related to large-scale vortical structures. Chatellier, Laumonier 

& Gervais (2004) observed self-sustained oscillations of the 

mixing layer in their experiments, and suggested that the 

oscillating process is not governed by periodic shedding of 

coherent structures but by convective waves of naturally 

unstable mixing layer. However, Ashcroft & Zhang (2005) 

observed the shedding of large-scale vortical structures by 

Galilean decomposition of the instantaneous and fluctuating 

velocity fields. The coherent vortical structures were present 

in the majority of PIV images, although well-defined 

structures were not always observed. The authors pointed out 

small peaks in the pressure spectra as evidence of weak tonal 

components; however strong self-sustained oscillations were 

not observed. The work of Lee et al. (2008) was the large 

eddy simulation (LES) of high-Reynolds number 

incompressible turbulent flows over an open cavity. An 

analysis of raw data, including instantaneous velocity or 

vorticity distributions, usually requires that structural analysis 

of separated shear layers is instantaneous and qualitative. 

Therefore, application of an analysis approach such as DMD 

is required for a quantitative and dynamic characterization of 

large-scale vortical structures. The objectives of the present 

study are to identify large-scale vortical structures responsible 

for hydrodynamic oscillations by employing the DMD to the 

pressure fluctuations of incompressible turbulent flows over 

an open cavity; and obtain the dynamic information of the 

extracted structures. To elucidate the quantitative 

characteristics of large-scale vortical structures, the oscillating 

behaviours of a separated shear layer are compared with those 

of a non-oscillating system. The two different data of cavity 

flows (ReD = 12000 and 3000) with and without self-sustained 
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oscillations have been analyzed under the influence of 

upstream thin and thick boundary layers (Reθ = 300 and 670), 

respectively.  

 

DYNAMIC MODE DECOMPOSITION 

Dynamic mode decomposition is a recent extension of the 

classical Arnoldi technique. A temporal sequence of N data 

fields, consisting of column vectors, vj, that are equispaced in 

time, can be written as 

V1
N
={v1, v2, v3,……, vN}.   (1) 

 The basic premise of the method is that each snapshot in 

time is assumed to be generated by a linear dynamical system, 

vj+1=Avj. The eigenvalues and eigenvectors of the matrix A 

completely characterize the behaviour of the dynamical 

system. DMD is a method for computing the approximate 

eigenvectors or Ritz vectors of a system matrix. A high-degree 

polynomial is fit to a Krylov sequence of flow fields. As the 

number of snapshots increases, the flow is assumed to 

approach a linear dependency after a sufficient number of 

snapshots such that the last image is the linear combination of 

the previous images. It represents an over-determined system 

of equations. The coefficients may be obtained using the least 

squares method. The number of required snapshots, N, may 

increase until the residual converges. Following Ruhe (1984), 

the least squares description of the full system matrix A may 

be written as 

AV1
N-1

 = V2
N
 = V1

N-1
C+ reN-1

T
.      (2) 

The matrix C is of the companion type which simply shifts 

the snapshot index from 1 through N–1. This matrix, extracted 

from the data sequence, represents a low-dimensional system 

matrix representation of the full system matrix. The 

characteristic solution to the matrix C approximates some of 

the eigenvalues (λj) of the full system matrix A. These 

eigenvalues provide the growth and frequency information. 

The empirical Ritz values lying on the unit circle represent the 

modes with zero growth rate, whereas the eigenvalues lying 

inside and outside the unit circle represent the damped and 

undamped modes respectively. The eigenvectors provide a 

linear combination of basis coefficients that may be used to 

extract the corresponding dynamic modes as, 

       Φ       Φ       Φ       Φj = V1
N-1

Tj.     (3) 

To attain the time behaviour of each dynamic mode, the 

coefficients may be shifted along the data sequence.  

The companion matrix may be a highly non-normal 

matrix, which yields an ill-conditioned eigenvalue 

decomposition problem. To improve the accuracy of the DMD 

method, Bagheri (2010) suggested that the matrix should first 

be balanced by a similarity transformation, followed by 

reducing to an upper Hessenberg form via a second similarity 

transformation, and finally, the eigenvalues should be 

computed using the QR algorithm. In the present work, the 

modifications proposed by Bagheri (2010) were included. The 

modes (ΦΦΦΦj) of the companion matrix were constructed from 

the data sequence V1
N-1, and its L2-norm yielded the energy of 

the respective modes, which were found to be representative 

of the scales of the turbulence in the cavity flows. 
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Figure 1. Schematic diagram of the computational domain. 

 

 

NUMERICAL SIMULATION 
For an incompressible flow, the non-dimensional governing 

equations are 

 

             (4) 
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u ,                                       (5) 

where xi are the Cartesian coordinates and ui are the 

corresponding velocity components. The free-stream velocity 

U∞ and the cavity depth D were used to non-dimensionalize 

the equations. The Reynolds number was defined as ReD= 

U∞D/ν, where ν is the kinematic viscosity. The governing 

equations (4) and (5) were integrated in time using the fully 

implicit decoupling method proposed by Kim et al. (2002).  A 

schematic diagram of the computational domain is shown in 

Figure 1. In the present simulations, a turbulent boundary 

layer with realistic velocity fluctuations, which were generated 

using the method of Lund et al. (1998), was provided at the 

inlet. Two cavity flow data sets, with or without self-sustained 

oscillations and possessing thin or thick incoming boundary 

layers (ReD = 12000 and 3000), were simulated. The ratios 

between the cavity depth and the momentum thickness (D/θ) 

were 40 and 4.5, respectively, and the cavity aspect ratio was 

L/D = 2. A direct numerical simulation (DNS) of 

incompressible flows over an open cavity was performed at 

ReD = 3000, where the DNS data were provided at the inlet 

with Reθ = 670. The cavity flows at high Reynolds number 

(ReD =12000) were simulated using a large eddy simulation 

(LES) with a dynamic subgrid-scale model. The simulation 

conditions used in the present study are summarized in Table 

1. The computational details are given in Lee et al. (2010). 

 

 

Table 1 Simulation conditions. 

 

ReD Reθ zyx NNN ××  +
∆ minx , +

∆ maxx   +
∆ miny

 

3000 670 513×213×257 1.09, 17.7 0.18 

12000 300 897×169×257 1.4, 40 0.56 
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Figure 2. Ritz values λj and their magnitudes at ReD = 3000. 

 

 
 

Figure 3. DMD modes inside the cavity full domain at ReD = 3000. 

 
 

RESULTS AND DISCUSSION 
 

The flows corresponding to each of the two cases 

considered in the present study, ReD = 3000 and 12000, were 

simulated. After a long initial transient period, a sequence of 

images was saved. An initial transient time of more than 10 

“flow-through” cycles was discarded to allow the passage of 

unphysical fluctuations. Nevertheless, the snapshots by 

themselves do not represent an objective and quantitative 

means to gain insight into the prevalent perturbation 

dynamics. Moreover, only the most dominant features can be 

observed, whereas more subtle and smaller-scale instabilities 

may be missed. For this reason, the temporal sequences of the 

system snapshots were processed using the DMD algorithm to 

extract pertinent dynamic characteristics of the flow. The 

algorithm is applied over the entire physical domain, including 

both the upstream region of the leading edge and the 

downstream region of the trailing edge. The sequences of 

pressure snapshots equi-spaced in time are processed. One 

hundred fifty instantaneous snapshots of the pressure 

fluctuations were used for the ReD = 3000 condition, and 124 

snapshots were used for the ReD = 12000 condition. The 

residuals rapidly converged over these images, and the 

eigenvalues of the subspace C were expected to converge 

toward some of the eigenvalues of the full system matrix A.   

 

 

 

A.    ReD = 3000 and D/θθθθ=4.5 

The flow fields for cavity with thick incoming boundary 

layer at each of the 150 time-step will be reshaped into the 

columns of a data matrix V1
150. The empirical Ritz values λλλλj 

and the empirical Ritz vectors Tj of a sequence of flow fields 

V1
150 are computed using the algorithm described earlier. The 

eigenvalues extracted from the low-dimensional matrix C is 

shown in Fig. 2(a), where the symbol color indicates norm of 

mode. Nearly all the Ritz values are on the unit circle ||λj|| = 1, 
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indicating that the sample points vi lie on or near an attracting 

set. The norm of each mode indicates the energy in the 

corresponding mode. The energies of the extracted modes are 

shown as a function of frequency in Fig. 2(b), where each 

mode is displayed with the vertical line scaled with its 

magnitude at its corresponding frequency. The eigenvalues 

obtained over a low-dimensional subspace were found to be in 

complex conjugate pairs. As a result, the DMD spectrum was 

symmetric about the frequency ω = 0, as shown in Fig. 2(b). 

The eigenvalue marked 1 that typically appears at the origin 

(ω = 0) with the maximum energy accounts for the steady 

state and represents the mean flow as such depicted by a black 

symbol in Fig. 2(a). The corresponding dynamic mode is 

shown in Fig. 3(a), where the low-pressure region observed in 

the cavity indicates the primary vortex. A high-pressure region 

is also observed at the trailing edge, possibly due to the 

impingement of shear layer vortical structures. Five distinct 

frequency peaks are marked 2–6, and their corresponding 

modes are shown in Figs. 3(b)–(f). The eigenvalue marked 2 

in the spectrum indicates a very low frequency mode. The 

pressure fluctuations of the corresponding mode, shown in 

Fig. 3(b), indicate the presence of a very large-scale structure 

relative to the size of the cavity which convects over the 

cavity. The mode marked 3 is shown in Fig. 3(c). In addition 

to the upcoming boundary layer structures, the structures 

generated due to shear layer oscillations could be observed 

along the cavity lip line, which further impinged on the 

trailing edge. The eigenvalue marked 4 is shown in Fig. 3(d). 

The structures that appear in this particular mode suggest that 

at this frequency, the wavenumber corresponding to the 

upcoming boundary layer structure and the perturbation 

generated by shear layer oscillations are equal. The modes of 

two other eigenvalues marked 5 and 6 are displayed in Figs. 

3(e) and 3(f). The modes observed in all Figs. 3(b)–(f) 

correspond to the structures of the upcoming boundary layer. 

Note that all the modes in Fig. 10 represent the incoming 

viscous boundary layer structures. 

B.    ReD = 12000 and D/θθθθ=40 

LES of incompressible cavity flow over an open cavity were 

performed at ReD = 12000. Realistic velocity fluctuations of 

Reθ = 300 were provided at the inlet. One hundred twenty-four 

images of the instantaneous pressures were processed using 

the DMD algorithm, and a low-dimensional subspace was 

extracted. The extracted spectrum, i.e., the spectrum of C, is 

displayed in Fig. 4(a), where all the Ritz values are on the unit 

circle. The symbol color indicate the global energy norms of 

the modes. The spectra displayed a dominant peaks, marked 2 

and 4 with two leading modes at ω= 3.5 Hz and 4.6 Hz 

respectively.   Some of the selected modes from the spectrum 

in Fig. 4(b), marked 1–4, are shown in Fig. 5(a)-(d). The 

eigenvalue at the origin, marked 1 in the spectrum, represents 

the steady state component of the pressure, and its respective 

mode is shown in Fig. 5(a). The modes marked 2 and 3 with 

dominant peak are shown in Figs. 5(b) and 5(c) respectively. 

One pair of negative and positive distributions represents the 

low-pressure fluctuations of a large-scale vortical structure 

and the high-pressure fluctuations of induced rotational 

motions. Three pairs are clearly observed between the leading 

and trailing edges. This was consistent with the spectral 

characteristics of self-sustained oscillations corresponding to 

NR=3, reported by Lee et al. (2008). The streamwise length 

scale of the coherent structures gradually increases from 0.3D 

in the region immediately downstream of the leading edge to 

0.8D in the region that impinges on the trailing edge. To avoid 

ambiguity, the length scale of the coherent structure was 

determined to be twice as long as the streamwise distance 

between the central locations of the positive and negative 

distributions. The transverse length scale was not sufficiently 

large to affect the pressure fluctuations on the bottom wall 

inside the cavity. These modes suggest the presence of self-

sustained oscillations in the cavity. The symbol marked 4, and 

its respective mode is shown in Fig. 5(d). 

    The size of structures along the shear layer is comparable to 

that of the upstream boundary layer structures. The modes in 

Figs. 5(b)–(d) indicate that the structures along the shear layer 

coincide with the wavenumber spectra of the upstream 

boundary layer structures. This coincidence may have 

produced self-resonant modes. Although alternating pressure 

fluctuation patterns were regularly observed in the first and 

second modes, the distributions in the other modes were 

irregular. The other modes most likely describe the fluctuating 

behaviour of a separated shear layer with a high wavenumber, 

albeit with slight variations. In previous studies of laminar 

cavity flows, the oscillating behaviour of a separated shear

 

 
Figure 4. Ritz values λj and their magnitudes at ReD = 12000 
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Figure 5. DMD modes inside the cavity full domain at ReD = 12000. 

layer was represented only by the first two modes, whereas the 

next higher modes were associated with recirculation of the 

primary vortex inside the cavity. The simple modes of a 

separated shear layer produce a single peak frequency in the 

power spectra of laminar cavity flows. In the present study of 

turbulent cavity flows, however, the fluctuating behaviour of 

the separated shear layer was represented in the higher modes 

as well as in the first two modes. The complex mixture of 

several modes produces a broad spectrum, corresponding to 

the pressure fluctuations in the fluctuating behaviour of the 

separated shear layer, although the first two modes are 

responsible for the peak frequency corresponding to NR =3. 

For each mode, the average wavelength of the structures 

was measured along the shear layer. To avoid ambiguity, the 

wavelength (λx) of the coherent structure was determined to 

be twice as long as the streamwise distance between the 

central locations of the positive and negative distributions. 

Figure 6 plot the wavelength as a function of the frequency for 

both cases. The DMD algorithm extracted a wide range of 

structures. We found that the large structures were associated 

with lower frequencies, and the frequency increased as the 

wavelength of the structures decreased. This result agrees well 

with equation Rossiter’s equation, which describes the 

wavelength as the reciprocal of the frequency of structures 

with the same convection velocity. Figure 6 show the 

frequency on a log–log scale. The slope –1 indicates that the 

wavelength and frequency follow a reciprocal relationship. A 

drop in the frequency was observed for those structures with a 

smaller scale. This drop in frequency may have been due to 

the presence of small-scale structures along the shear layer in 

the high velocity gradient region and, hence, the shear layer 

may be characterized by a lower convection velocity. In both 

cases, ReD = 3000 and 12000, the reciprocal law holds well for 

structures larger than the wavelength λx /D= 0.2. This suggests 

that structures larger than λx /D= 0.2 convect downstream with 

the same velocity. 

All modes extracted using the DMD algorithm indicated 

that the flow was characterized by turbulent structures. The 

L2-norm of the modes yielded the energies in the associated 

modes. The energy (||Φ||) is plotted against wavenumber on a 

log–log scale in Fig. 7 for both cases analyzed in the present 

work. The Kolmogorov power law (–5/3) is also plotted (solid 

line) in the same figure. The high value of the power law 

prefactor at ReD = 12000 shows that it contains higher energy 

modes than the cavity flow at ReD = 3000. The region in 

which the data agree well with the Kolmogorov power law 

corresponds to the turbulence cascade region called the inertial 

range. The inertial range was broader for the higher Reynolds 

number flows, ReD = 12000, than for the thick boundary layer 

flow (ReD = 3000). The modes extracted using the DMD 

algorithm showed a turbulent energy cascade, thus supporting 

the turbulent nature of the flow. 

 

CONCLUSIONS 

In the present study, we identified large-scale vortical 

 
 

Figure 6. Wavelength of structure against frequency. 

 
 

Figure 7. Wavenumber spectrum. 
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structures responsible for self-sustained oscillations by 

employing a dynamic mode decomposition of the pressure 

fluctuations of turbulent flows over an open cavity. DMD was 

applied to incompressible turbulent flows over an open cavity 

at ReD = 3000 and 12000, with upstream turbulence of Reθ = 

670 and 300, respectively, provided at the inlet. The influence 

of the incoming turbulent boundary layer on the self-sustained 

oscillations was investigated. A wide range of structures was 

extracted using the DMD algorithm. The dynamic information 

obtained from DMD algorithm identified the dynamic mode 

and its behaviour in time. The cavity with thick incoming 

boundary layer represented the viscous boundary layer 

structures, whereas the thin incoming boundary layer showed 

a dominant peak in the spectrum which represented the cavity 

dynamics. A mode with the dominant peak in DMD spectrum 

at ReD = 12000 represents the structure responsible for self-

sustained oscillations. This mode shows three pairs of 

alternating patterns of pressure fluctuations. These structures 

were consistent with the spectral characteristics of self-

sustained oscillations corresponding to NR = 3. The dynamic 

modes extracted from the thick boundary layer (ReD = 3000) 

showed that both the boundary layer structures and the shear 

layer structures coexist in similar frequency space but with 

different wavenumber space.  These results suggest that the 

hydrodynamic resonance that produces self-sustained 

oscillations occurs when the upcoming boundary layer 

structures and the cavity shear layer structures coincide not 

only in frequency space, but also in wavenumber space. 

Hence, the upcoming boundary layer thickness was found to 

be a significant parameter for describing self-sustained 

oscillations. The parameter D/θ for flows over an open cavity, 

was, therefore, found to be important. The DMD energy 

spectra agreed well with the Kolmogorov power law, 

supporting the conclusion that the extracted modes represent 

the turbulence scales.  
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