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ABSTRACT 

Velocity and temperature measurements are carried out in 

a mixing layer of a heated turbulent round jet with the aim of 

investigating how the large scale vortical structures that 

characterize the mixing layer affect both the energy and scalar 

variance transport terms. The assessment is performed through 

the measurements of the second and third-order velocity and 

temperature structure functions.  

 Compared with the jet centreline, the structure functions for 

both velocity and temperature are altered in the mixing layer. 

The modification is consistent with the presence of large scale 

coherent structures in the mixing layer. For example, the 

approach to the limiting value of 2 for the second-order 

structure functions, which is monotonic on the jet centreline, 

undergoes an oscillation in the mixing layer. An oscillation is 

also observed for the third-order structure functions in the 

mixing layer. The scale-by-scale energy budgets suggest that 

the non-homogeneity in the mixing layer contributes more to 

the budget than on the jet centreline. 

  

 

PAPER TITLE AND AUTHOR(S) 

  Transport equations for second-order (longitudinal) velocity 

(u)2 (= (u(x+r) –u(x))2),  and temperature ( (= ((x+r) –

(x))2) structure functions were written for homogeneous 

isotropic turbulence by Danaila et al. (1999) and tested using 

measurements in slightly heated grid turbulence. These 

equations, shown below  
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(   and    are the mean turbulent kinetic energy 

dissipation rate and mean temperature dissipation rate 

respectively,  is the kinematics viscosity, k the  molecular 

diffusivity, r is the longitudinal increment; the angular 

brackets denote time averaging), correspond to the equations 

for two-point velocity and temperature correlation functions 

first written by Karman and Howarth (1938) and Corrsin 

(1951) respectively and effectively represent scale-by-scale 

budgets of the turbulent energy and temperature variance at a 

location in the flow. At a sufficiently large Reynolds number, 

these equations reduce to the equations of Kolmogorov (1941) 

and Yaglom (1949) (i.e. the third term on the left hansd side of 

each equation is zero). However, unlike the latter equations, 

they can describe the effect of the non-stationarity in 

homogeneous isotropic turbulence (through the intregral terms 

of Eqs. (1) and (2)) at finite Reynolds numbers and hence 

predict the approach to the asymptotic “4/5” and “4/3” laws as 

the Reynolds number increases (e.g. Antonia and Burattini, 

2006).  Indeed, at large r, the integral term becomes the major 

contributor, while the first and second terms on the left hand 

sides become negligible. 

  Modified forms of these equations have been written for 

more complicated flows (e.g. Danaila et al., 2001 for a 

turbulent channel flow and Burattini et al., 2005 for a self-

preserving turbulent round jet) to account for the effects that 

different types of non-stationarity or non-homogenity can 

have on the magnitude of the energy transfer term represented 

by the third-order velocity structure function. Danaila et al. 

(2004) showed that equation (1) is closely satisfied by data in 

grid turbulence and a turbulent round jet (along the axis). 

Burattini et al. (2005) provided further confirmation for a 

turbulent round jet. They also pointed out that equation (1) 

may not be approriate in the region away from the centerline, 

and that extra terms accounting for the production and decay 

of the turbulent energy should be added to the equation.  

 The objective of the present work is to extend the above 

approach to a slightly heated mixing layer in order to identify 

the effect that the large scale vortical structures which  

characterize this flow has on both on the energy and scalar 

variance transport terms. Experimental results are given for 

both second and third-order velocity structure functions as 

well as second-order  temeperature structure functions and 

third-order mixed velocity-temperature structure functions in 

the mixing layer of a turbulent round jet. They are compared 

with corresponding results on the jet centerline at  a distance 

of 20 nozzle diameters from the nozzle exit plane.  We also 

present preliminary scale-by-scale velocity and temperature 

variance budgets. 
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EXPERIMENTAL SETUP 

Mesurements are made in a low speed axisymmetric jet with a 

of a circular nozzle of diameter D = 55mm. Air is supplied  by 

a variable speed centrigugal blower to a diffucer, settling 

chamber followed by a 9:1 contraction (Figure 1). A mixing 

layer develops downstream of the exit section. At the jet exit, 

the velocity Uj is 5m/s while the temperature Tj (relative to 

ambient) is 13.7 deg C. Heat, treated here as a passive scalar, 

was introduced via an electric fan heater  placed at the inlet of 

the blower. The jet exit tempertaure could be varied by 

changing the heater current.  The boundary layer at the nozzle 

has not been tripped for this study. A pair of parallel single 

wires have been used – with the hot wire (wollaston diameter 

= 2.5m) operated in constant temperature mode and the cold 

wire (wollaston diameter = 0.63m) by a constant current 

(100A) circuit. The separation between the hot and cold 

wires was approximately 0.75 mm. Mean and rms velocity 

and temperature distributions between x/D=2 and x/D = 5 have 

confirmed that the flow is self-preserving, with an effective 

origin at x = 0. Longitudinal (x-direction) movement of the 

probe was achieved  with a motorised traversing unit while the 

lateral (y-direction) movement was achieved by using a height 

gauge with a resolution of 0.01 mm. Velocity and temperature 

fluctuation signals were filtered at 5 kHz and sampled at 10 

kHz using a 12 bit data logger. 
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Figure 1. Stetch of the jet and the coordinate system. 

 

 

RESULTS 

Mean and fluctuation components   

Figure 2 shows the mean velocity and temperature profiles 

across the mixing layer at x/D = 4 and 20.  The origin y = 0 

corresponds to the radial location of the nozzle lip and y = -

25mm  is the jet centreline (see Figure 1).  

The mean velocity and temperature at x/D = 4 are 

maximum at the centreline and decrease with increasing y, as 

expected in a jet flow. For x/D = 20, both the velocity and 

temperature profiles are almost flat, reflecting the spreading of 

the jet wake. However, although not clearly visible in the 

figure due the plotting scale, both profiles have their 

maximum shifted at around y = 12mm for the velocity and y = 

0 for the temperature. The main feature of Figure 2 is the 

change in the rate of decrease of the mean temperature profile 

around y = 0. This change is reflected in the rms temperature 

profile  (Figure 3) which exhibits a minimum at the same y 

position.    
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  Figure 2. Mean velocity and temperature profiles  

                   across the mixing. 
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                 Figure 3. Profiles of u' and '  across 

                                 the mximg layer  and at x/D=20[ 

 

Interestingly, a local minimum in ' occurs almost at the 

location where the velocity rms, u', is maximum. At x/D = 20, 

both the rms velocity and temperature distributions are almost 

flat.  

 

Dissipation parameters 

Figure 4 shows radial distributions of the normalized 

dissipation parameters  C = <> Lu/u'3 and  C = <> 

Lu/(u''2) at x/D = 4 (Lu is the integral length scale inferred 

from the autocorrelation of u by assuming that Uj is the 

appropriate convection velocity; angular brackets denote time 

averaging). The isotropic values of <  
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      Figure 4. Radial distributions of  C and C


in the mixing 

layer (x/D = 4) 
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have been used for these estimates. The magnitude of both 

parameters is approximately constant over the high speed side 

(y < 0) of the layer, although C is consistently larger than 

C


. This difference would be increased further if Lu were 

replaced by L in the definition of C


.   

Second and third-order  structure functions 

   The second and third order structure functions are shown in  

Figures 5 and 6, where the normalization is by u' and ' since 

<  >iso and < >iso  are unlikely to be sufficiently accurate 

approximations for <  > and < > for x/D = 4. The second-

order moments of the increments u = <u(x+r) – u(x)> and  

 = <(x+r) – (x)> (Fig. 4) differ significantly between the 

high speed side of the mixing layer and the axis of the jet 

(x/D=20). In particular, < (u)2> and < ()2>  approach 2, the 

expected limit when r is sufficiently larger than Lu, differently. 

In the mixing layer, both < (u)2> and < ()2>  have a 

maximum near  r/Lu  2.5 prior to reaching 2. In the self-

preserving jet, 2 is approached in a monotonic manner. For the 

third-order moments < (u)3>  and < (u)()2 >  (Fig 5.), the 

difference between the mixing layer and the self-preserving jet 

is more emphatic. In the former case, the distribution is quasi-

periodic with a strong change of sign, reflecting the presence 

of the relatively large scale coherent structures whereas there 

is no change of sign at x/D =20.  
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Figure 5. Second-order structure functions. Top: mixing layer 

(x/D = 4, y/x = -0.027), bottom: jet axis(x/D = 20). 

 

While the non-monotonic approach to 2 has been observed 

(Antonia et al. 2002) for < (v)2> (v is the lateral velocity 

fluctuation) in a turbulent wake (at a distance of 70d 

downstream of a circular cylinder of diameter d), there is no 

indication of a change of sign for < (u)3>, implying a much 

stronger inhomogeneity for the mixing layer.  
 

Velocity and temperature variance scale by scale  

budgets  

It has already been stated that equations (1) and (2) are not 

valid for the mixing layer. Extra terms are likely to be required 

to account for the production and diffusion terms which are 

absent in a grid turbulence. Nonetheless one can write these 

equations in the following simplified manner   
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Figure 6:  Third-order structure functions.  Top:  

mixing layer (x/D = 4,  y/D= -0.027), 

bottom: jet axis (x/D = 20) 
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where Iu and I include contributions from production, 

diffusion and non-stationarity of the second-order moments. Iu 

and I can be deduced from equations (5) and (6) if the first 
and second terms on the left hand side as well as the terms on 

the right hand side of these equations are available. The 

reliable determination of the latter terms, which contain the 

dissipation rates, represents a major experimental   challenge 

since several velocity and temperature fluctuation derivatives 

are required in order to obtain <> and <> accurately.  

Crude estimates for these quantities are provided using local 

isotropy , viz. eqs. (3) and (4). It is also worth emphasizing 

that the quality of the data and data processing are important.  

For example, one can recall the errors caused by the finite 

spatial resolution of the probe, and the need to apply  a 

spectral correction before the “correct” values of <  >iso and < 

>iso can be obtained. In the present work we use a relatively  

 

 
 

Figure 7:  Velocity and temperature spectra in the 

mixing layer, x/D = 5,  y/D= 0. 

 

 
 

Figure 8:  Velocity and temperature spectra in the jet 

axis, x/D = 20. (Same symbols as in Fig 7) 

 
simple way to bypass these difficulties. The measured spectra 

normalised by Kolmogorov scales are compared with  

reference spectra which are known to be relatively accurate in 

both the dissipative range and the upper end of the inertial 

range. Local isotropy was first used to normalise the spectra 

before the matching process is carried out. The reference 

spectra are those measured in slightly heated grid turbulence 

(Antonia et al., 2004), where  the  actual values of <  >  and < 

>  were inferred from 
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and are therefore know with reaonably good accuracy. 

Using a trial and error procedure, the present values of <  >  

and < > are adjusted until the measured spectra agree as 

closely as possible with the reference spectra in part of the 

dissipative range as well as the upper end of the scaling range. 

Figures 7 and 8 illustrate the approach and show the 

“adjusted“ velocity and temperature spectra at x/D = 4 and 20.  

As well as the grid turbulence spectra, we show spectra 

obtained in a large Reynolds number plane jet (Pearson and 

Antonia, 2001) and a slightly heated fully developed turbulent 

channel flow (Antonia and Abe 2009). One can notice the 

relatively good collapse between the grid turbulence data and 

both the jet and DNS channel flow data, suggesting that the 

spectra present a quasi-universal behaviour in the higher end 

of the inertial range and over part of the dissipative range, at 

least for the Reynolds numbers used in these studies. This 

provides some confidence in our methodololgy for estimating 

the dissipation rates.   
  While for x/D = 5 (Figure 7) the value of < >adjusted, the 

adjusted temperature variance dissipation rate, is about 1.35 

< >iso, that of < >adjusted is found to be equal to <  >iso (i.e. 

no adjustement was required). For x/D = 20 (Figure 8) we 

obtained   <>adjusted = 0.50 < >iso and < >adjusted = 0.20 < 
>iso.  It is clear that the measurements at this x/D location, 

where values of both velocities and temperature are quite low, 

suffer from noise contamination which affects both the 

velocity and temperature gradients. This leads to poor 

estimates of   <  >iso and < >iso .  through expressions (3) 

and (4). 
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Figure 9:  Terms in equation (5) and 6) for x/D = 4,  

in the mixing layer (y/D = 0) 

 

  The adjusted values are used for displaying the terms of the 

scale-by-scale budgets. All terms of equations (5) and (6) are 

displayed in Figure 9 for x/D = 5 and Figure 10 for x/D = 20. 

Terms Iu and I are calculated from the equations using the 

measured values of the remaining terms. The terms of 

equation (5) and (6) have been normalized by 4/5<>r and 

4/3<>r, respectively. As expected, the viscous term of equ.  

(5) dominates the budget for small separations and drops to 

zero as the separation becomes large. While its temperature 

counterpart term appears to be behave as expected, i.e. 

becoming dominant as r/ decreases, that for x/D = 20 reflects 

the spectral attenuation (see Figure 8). The third-order term 

for both the velocity and temperature reaches a maximum at 

r/ of about 100 and 40 for x/D = 5 and 20, respectively. 

Providing support for the validity of our methodology for 

estimating the dissipation rates, is the fact that the present 

velocity scale-by-scale budget on the jet axis is similar to that 

of <q
2
 > (q

2
 = iui

2
, i = 1, 2, 3) shown by Burattini et al. 

(2005). Interestingly, these authors showed that the major 

contributor to Iq stems from the decay of large scale energy. 

They also showed that the production is not negligible. 
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Figure 10:  Terms in equs. (5) and (6) on  the jet axis 

at x/D = 20. Same symbols as in Fig 9. 

 

 

  Comparing the velocity budget in the mixing layer with that 

on the jet axis (Figure 11) one can notice some interesting 

features. Firstly, the viscous terms (6d(<(u)2>)/dr) collapse 

remarkably well into a single curve. This certainly reinforces 

the universal behaviour of this term at small separations. 

Secondly, the third order term (<(u)3>) in the mixing layer 

deviates from that in the jet axis in the region 10 < r/ < 100, 

where it is smaller. Such deviation, within this separation 

range, would reflect structural differences between the mixing 

layer and the jet flow, at least on the jet axis. This is consistent 

with the idea that the production term should be stronger in 

the mixing layer than on the jet centreline. This would not be 

surprising considering that the mean velocity gradient and the 

Reynolds shear stresses are larger in the mixing layer than on 

the jet axis which should results in a stronger production of 

energy. Finally, structural differences between the mixing 

layer and the jet flow on the axis should also be reflected in 

the various components contributing to Iu. This term exhibits a 

hump at about r/ = 40 in the mixing layer (Figure 7), whilst it 

increases monotonically on the jet axis (Figure 8). At this 

stage, it is not clear whether the behaviour of Iu in the mixing 
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Figure 11:  Terms of equs. (5) in the mixing layer 

(symbols) and  the jet axis (lines) . 

 

layer is genuine or not. Clearly, more measurements not only 

at the same x/D and y/D locations as in this study but also 

across the mixing layer are required to adequately shed light 

onto the behaviour of the velocity scale by scale budget in the 

mixing layer and off-axis region. 

  While the measured velocity scale-by-scale budgets seem 

plausible, those of the temperature variance, at least for the 

mixing layer, display an anomalous behaviour, as reflected by 

the maximum value of 3<(u)()2>/(4<>r), which exceeds 

the value of one. This overshoot, while unexpected, may not 

be impossible nor incorrect. This issue is currently being 

investigated. 

 

CONCLUSIONS 

Velocity and temperature measurements are carried out in a 

mixing layer developing in a heated axisymmetric jet with the 

view to assess how the coherent structures in the mixing layer 

affect the scale-by-scale budgets of the velocity and 

temperature variances. The results are compared with those 

obtained on the axis of the self preserving jet. It is observed 

that the second and third-order structure functions in the 

mixing layer reflect the presence of strong coherent structures. 

For example, both the second and third-order structure 

functions show oscillations at relatively large scales which are 

absent on the axis of the jet. This clearly highlights the non-

homogeneity of the mixing layer. Further, the data seem to 

indicate that this non-homogeneity has a stronger contribution 

to the scale-by-scale energy budget in the mixing layer than on 

the jet centreline. Interestingly, this confirms Burattini et al.’s 

(2005) argument that extra terms, reflecting  inhomogeneities 

in the region away from the jet centreline, need to be 

formulated and added to their scale-by-scale energy budget 

equation (eq. 29 in their paper). It is therefore of interest to  

further investigate both the mixing layer and the region away 

from the jet centreline to appraise the contributions from  

terms in the velocity and temperature variance transport 

equations which are associated with the inhomogeneity. 
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