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ABSTRACT

A reduced-order modelling, based on the POD-Galerkin
approach, is developped in a probabilistic framework in or-
der to build robust low-dimensional dynamical systems able
to reproduce the dominant long-term dynamics of turbulent
flows. It combines a statistical inference procedure to deter-
mine joined probability distribution functions of the dynami-
cal system coefficients and a Monte-Carlo approach to foresee
its most probable time evolution. The method is shown to re-
produce correctly the main dynamical features of a turbulent
mixing layer.

INTRODUCTION

The concept of low-order representation of turbulence
has aroused considerable interest in the fluid mechanics com-
munity in view of addressing various practical issues, rang-
ing from reduced-cost flow control to the generation of re-
alistic turbulent boundary conditions. Dealing with reduced-
order models leads to face the fundamental issue of identify-
ing the low-dimensional deterministic order hidden by the ap-
parent high-dimensional chaotic behaviour of turbulent flows.
Among the various approaches described in the litterature, the
so-called POD-Galerkin approach still appears rather appeal-
ing to prescribe a coherent spatio-temporal dynamics. In this
framework, the large scale coherent spatial information of the
flowfield is assumed to be mainly contained in the n most en-
ergetic spatial modes ®; obtained by a Proper Orthogonal De-
composition (POD) of the fluctuating field, leading to the fol-
lowing expansion of the turbulent flowfield:

ui(x,1) = ui(x) + i‘iai(t)d%(x) (1)

where the overbar denotes the mean. By direct projection of
the Navier-Stokes equations onto this POD basis, some Low
Order Dynamical Systems (LODS) can be obtained to de-
scribe the time evolution of the POD coefficients a;(¢), which
lead to a simple quadratic function. Due to the truncation of
the expansion up to n modes, these LODS are however intrin-
sically unstable (Noack et al., 2003). Various approaches have

been proposed to overcome this problem with nuanced suc-
cess. The addition of eddy-viscosity-like corrective terms was
proposed to account for the neglected POD modes and recover
the necessary dissipation at lower scales (Aubry et al., 1988;
Rempfer and Fasel, 1994). Relevant alternatives may be found
with the addition of an artificial linear coefficient as a penalty
term in the model (Cazemier et al., 1998), a spectral vanishing
viscosity term (Karamanos and Karniadakis, 2000) or just a
dissipative term related to the numerical scheme (Iollo, 2000).
A model of the missing fine scales, based on the residual of the
Navier-Stokes operator, evaluated with the POD flow fields,
was also recently proposed by Bergmann et al. (2009) while
Noack et al. (2008) presented a Finite-Time Thermodynam-
ics (FTT) formalism to model the mode dependant internal
and external interactions and describe the long-term evolution
of each mode energy. Alternative strategies rely on the direct
calibration of the POD-Galerkin model coefficients based on
various error criteria (Cordier et al., 2009), or empirical pro-
cedures based on neural networks ( Gillies, 1998; Lorang et
al., 2006) to identify directly the temporal modes evolution.
The results obtained by using these methods on rather simple
flows are generally satisfying for short time prediction (typi-
cally of the order of the integral time length scale or a time
period corresponding to the training signal duration). How-
ever, they often fail in extrapolating the long-term dynamical
system evolution. Artificial amplification and phase-shifts of
the temporal modes are generally observed during time inte-
gration, often followed by the system blow up.

The approach presented in this paper stems from the ob-
servation that measurement uncertainty or limited machine
accuracy unavoidably limit the long-term physical represen-
tativity of purely deterministic LODS which cannot naturally
surrogate the chaotic component of turbulent flows. A long
term stabilization of LODS may be more naturally ensured
by adding stochastic contributions to correct any drifting dy-
namical evolution. The present contribution aims at suggest-
ing a new strategy in a probabilistic framework for building
both robust and reliable POD-based stochastic reduced-order
models. The key elements of the model are first presented.
The capacity of this approach to stabilize POD-based LODS
is then demonstrated on a low-Reynolds cylinder wake flow
and a mixing layer.



MODELLING STRATEGY

The principle of the proposed method is twofold. At first,
a probabistic approach is introduced in the flow calibration
procedure in order to take into account the possible bias of the
available sample collection (or, in a similar way, the data un-
certainty). A parametric bootstrap procedure is used for this
purpose, which leads to compute a full set of joined probabil-
ity functions of the LODS coefficients. Then, a Monte-Carlo
procedure is built to select probable near-future evolution of
the dynamical flow during time integration.

Calibration procedure

The essential ingredients of the model are obtained by
the application of a Snapshot POD (Sirovich, 1987) of the
whole velocity field under consideration, leading to the ex-
pansion given by Eq. (1). The identification procedure here
retained basically extends the global flow calibration method
of Perret et al (2006). The LODS structure is assumed to
have the quadratic polynomial form that would be obtained
by a Galerkin projection. At each known temporal instant #,
(n < Ny), N; being the total number of available snapshots,
each time derivative da;/dt(t,) is thus assumed to be related
to the other modes a;(#,) according to:

Ny Ny vy dai(tn)
Ci+ Y Lijaj(ta)+ Y. Y Qijeaj(tn)ay(tn) = e
= sy

This system may be written in condensed form by:
A@Y =B A3)

where A, that is constant for each modal equation, stands for
the matrix of all the instantaneous temporal mode monomials
(1,a;,a;a;), and B is the vector of the instantaneous values
of the time derivative da;(t,)/dt for the i POD mode. For
each mode i, the model coefficients ®() form a vector of size
Ng = 1+ Nr +Nr(Nr +1)/2, Ny being the number of modes
retained in the POD expansion. It is denoted by:

0 = (C;,Lij, 0ijn)T “

A singular value decomposition (SVD) is applied to solve
each overdetermined system and compute 0\, relative to
each modal equation. This enables to filter out the less im-
portant singular values which would be likely to contaminate
the solution in case of ill-conditioning of A.

Statistical inference of LODS coefficients

The variability of the model coefficients related to their
uncertain estimation is evaluated by a parametric boostrap
procedure. This bootstrap method, proposed by Efron (1979),
initially aims at unbiasing statistics computed from samples
of small size for which statistical convergence is unreachable.
It consists in generating new artificial databases by randomly
choosing new subsamples from the initial database, with re-
placement, in order to perform new estimate of the statistics.

Instead of a single biased value, a probability distribution of
this statistic is thus obtained, from which most probable un-
biased statistics may be extracted. The parametric bootstrap
is here applied to the identification of LODS parameters. The
PDFs of ©() are build progressively by ressampling randomly
vectors (a;(t,),da;i(ty)/dt),n = 1,N;) used for the application
of the calibration procedure previously described. The size N;
of each subsampled dataset has been chosen of same size as
the reference dataset for the present study. Considering ini-
tially a database of a few hundred snapshots, a few thousands
iterations of the calibration procedure is found to be sufficient
to make the PDFs of the model parameters converge.

The figure (1) illustrates the typical individual and joined
probability distributions obtained for each model parameter
(corresponding to the case of the cylinder wake flow presented
in the following section). It should be noted that the reference
value, obtained by considering classically only the whole orig-
inal data set, significantly differs from the most probable value
now identified. In addition, as illustrated in this particular ex-
ample, the model parameters whose average is near zero may
sometimes yield the same probability to be negative and pos-
itive and thus to have fully opposite effects. This clearly in-
dicates that the straightforward application of the original cal-
ibration procedure (without ressampling) is likely to enforce
systematically wrong intermodal contributions. Accordingly,
it seems judicious to account for this intrinsic uncertainty in
order to correct eventually the dynamical flow.

Stochastic modelling

It is proposed in the following to include the PDFs of
model coefficients previously identified in the low-order mod-
elling process itself. As illustrated by Fig. (1), it is empiri-
cally found that the model coefficients are practically jointly
normally distributed. This remains true as long as the cutoff
eigenvalue retained for the calibration by the SVD procedure
is high enough. Accordingly, a simple normal law .4 (©;, 6;;)
is retained to set up a probabilistic representation of each co-

efficient:
(o)
p(©;) = e Gii

vV 271'0',','

where © stands for the vector of average coefficients ®; (or
most probable values for this case) and oj; are the the standard
deviations, ie the square roots of the diagonal terms of the
covariance matrix, given by:

1N _ _
) @ -8y©-8)| ©

r=lo] = |5

In Eq. (5), N, stands for the total number of ressampling steps
carried out. The correlations between coefficients is intro-
duced by a multivariate normal law ./ (®,X):
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where |Z| stands for the determinant of the covariance matrix
given by Eq. 5 and N, = Ng X N7 corresponds to the total
number of model coefficients.
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Figure 1. Example of stochastic modelling of the ROM co-
efficients for the cylinder wake flow: comparison between the
bootstrap estimation of PDF, the gaussian model and the ba-
sic estimate for the coefficient corresponding to mode 1/mode
4 quadratic interaction ((i, j,k) = (1,4,4)) (a); example of a
normalized joint probability distribution of reduced centered
coefficients Lj;* and Qq13" (isovalues from 0.01 to 0.16 by
increment of 0.01) (b).

Stochastic correction of the dynamical flow
and Monte Carlo testing

In order to correct the dynamical flow, a stochastic selec-
tion of the model coefficients, respecting the multivariate nor-
mal law previously identified, can be carried out at any instant
of the evolution of the LODS during time integration. Start-
ing from sets of purely random uncorrelated pairs of numbers
(y1,¥2), the classical method of Box and Muller (1958) is first

used to make them follow the normal law, so that these num-
bers are recombined by following y = \/—21In(y;) cos(27ys).
To obtain a random vector ¥ = (yy,..., yNT)T whose compo-
nents follow standard independant normal laws, this opera-
tion is simply marginally replicated for each component. The
Cholesky decomposition of the covariance matrix of coeffi-
cients £ = LLT is then computed to obtain the lower triangular
matrix L. The inter-dependency and the centring of the model
coefficients ® can be thus finally obtained by a linear change
of variable ® = ® + LY.

The approach adopted for this study consists in consid-
ering that the dynamical flow remains locally uncertain and
eventually requires real-time slight corrections, within the
range of uncertainty evaluated, in order to ensure its existence
at long term. Based on this stochastic generation of LODS
coefficients, dynamical flow perturbations are used to gener-
ate an array of probable solutions at regular instants. This
enables to scan different but nearly equiprobable short-term
trajectories in phase space and to select a priori the trajec-
tory which better respects a set of prescribed constraints. This
procedure is illustrated in Fig. (2), where two trajectories
are shown. In this example, both trajectories are drawn from
the initial instant #y and enable a satisfying representation of
the short-term evolution of the system (up to the mid-point
to + T), by comparison with the reference original signals.
However, only one trajectory appears to respect the original
dynamical flow topology in the following of the time integra-
tion up to a mid-term horizon fy+ 27, by keeping on evoluting
within a bounded portion of the phase-space. Accordingly,
only the LODS coefficients leading to an apparent stable tra-
jectory are retained. For this preliminary study, the selection
criterion simply consists in checking that the energy levels of
the time signals should remain bounded within the reference
phase subspace up to the prescribed time horizon.
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Figure 2.  Principle of the Monte Carlo procedure retained.

RESULTS
ROM of a low-Reynolds cylinder wake flow

As a validation example, this strategy is first applied
to model the direct numerical simulation data of a two-
dimensional low-Reynolds cylinder wake flow studied by



Bergmann et al. (2005). This flow case has been retained
by these authors as a prototype for separated flow. The ~opti-
mal” value chosen for the Reynolds number is slightly lower
than 200 and corresponds about to the threshold value where
a spanwise supercritical Hopf bifurcation occurs, associated
with the emergence of three-dimensional effects. The 6 first
POD modes have been considered, which is sufficient in this
case to represent 99.9% of the turbulent kinetic energy. This
simple flow case is already challenging and requires partic-
ular care to enable a stable long-term integration (Cordier et
al., 2009). The present probabilistic calibration is based on
200 snapshots regularly sampled on about two periods of vor-
tex shedding. The figure (3) illustrates the potential of the
method to obtain a robust ROM. The phase trajectory of the
POD coefficients in the phase plane a; — a; are here repre-
sented. Whereas such LODS obtained by classical flow cali-
bration can be integrated in time, at best, up to a few dozens
of pairing periods before blowing-up, it is shown here that the
present stochastic LODS keeps on representing the expected
dynamics for more than a thousand of pairing periods. In this
case, the phase trajectories corresponds exactly to the limit
cycles initially identified in phase planes, which fully demon-
strate the viability of the approach for representating flow dy-
namics at long-term.

ROM of a mixing layer

The present modelling approach is now applied on Large
Eddy Simulation (LES) data of a spatially-growing transi-
tional incompressible turbulent mixing layer flow performed
in the following of the study of Comte et al. (1998). This
LES has been performed with a prescribed Reynolds number
equal to 150 (based on the initial vorticity thickness), at zero-
molecular viscosity and with the aid of a Filtered Structure
Function. The spatial developpement of the shear layer was
triggered by an upstream modulation of a tanh streamwise
profile by a translative instability. This reference simulation
enables thus the observation of the initial shear flow dynamics
with the growth of the convected instabilities, the formation of
the Kelvin-Helmotz eddies and the regular pairing before the
exit section of the computational domain. A thousand equidis-
tantly sampled velocity snapshots from two thousand convec-
tive time units have been considered. The POD eigenspectrum
of these data yields a typical stair-case pattern for the most
energetic modes whose temporal evolution is dominated by a
well defined main frequency. This constitutes the typical sig-
nature of the convection of coherent structures in the stream-
wise direction. In such a case, successive modes with similar
energy yield a similar temporal evolution, but in quadrature.
The first pair of modes holds the information of the growing
Kelvin-Helmotz instability. The second pair mainly encom-
passes the information of vortex pairing. Thus, regular os-
cillations of the two first dominant modes can be observed,
punctuated by regular transfer of energy towards modes 3 and
4 during the vortex pairing events. The relation between other
neighboring modes is not yet well defined while the complex-
ity of the temporal evolution of modes rapidly increases with
the mode number. Any phase-shift or inaccuracy in the rel-
ative amplitudes is thus likely to lead rapidly to a loss of the
spatio-temporal dynamics and to an unphysical behaviour of
the corresponding surrogate flowfield.
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Figure 3. Stable model integration of a low-Reynolds cylin-
der wake: phase portraits a; — ap, a; —asz and a; — a4 of the
POD coefficients predicted by the present model.

A stochastic ROM is calibrated based on the first 12
modes obtained by applying a snapshot POD on the three-
dimensional LES data of the shear layer. This enables in this
case to represent nearly 78% of the total turbulent kinetic en-
ergy of the whole simulated flow field. A characterization
of the time signals obtained is first presented as a prereque-
site to obtain a physically consistant model. As expected, the
basic constraint used in the Monte-Carlo procedure does not
allow for a fine selection of phase trajectories and the original
temporal modes cannot be exactly followed during time inte-
gration. However, a correct phase-shift of modes working by
pair is preserved and the expected regular energy decrease of



(a1,a7) along with increase of the following pairs of modes,
corresponding to pairing events, is well reproduced. This can
be first observed for exemple by a comparison of phase por-
traits shown in Fig. 4 which fills the phase space in a similar
way. The same drawing of an elliptical form with regular pas-
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Figure 4. Comparison of original (top) and ROM (bottom).

sage transitional passages near the center of the phase plane
is observed in particular in phase space a; —ap. The orig-
inal and modelled power spectra of the second and seventh
modes are given in Fig. (5) as exemples. They show that the
dominant frequencies are also correctly reproduced. An artifi-
cial noise is typically observed in the high frequency domain
of the ROM signals but its magnitude remains negligible by
comparison with the peak amplitude. The secondary peaks
of higher order modes in the low-frequency range appear also
somewhat more difficult to reproduce.

The analysis of the energy levels, shown in Fig. (6) also
confirms that the modes hierarchy is globally well preserved.
It is worth noting nevertheless that these energy levels highly
depend on the length of the temporal window of observation.

The realistic behaviour of the model is finally assessed
by comparing the POD-truncated original flowfield with its
surrogate obtained by summing the contribution of modes ob-
tained by the ROM integration. The comparison of their re-
spective animation reveals the model capacity to reproduce
the main dynamical features. It enables not only to mimic
the growth of Kelvin-Helmholtz rollers but is able to mimic
their regular pairing as well as the growing of the secondary
longitudinal instabilities. The figure (7) illustrates a snap-
shot of this animation of the global surrogate flowfield. It
is worth noting that, as expected, using 12 modes only lim-
ites the representativity of form of eddies, in particular just
after their pairing where the tridimensionalisation accelerates,
involving a greater number of less energetic structures. In ad-
dition, the relation between higher modes is more difficult to
determine and still requires improvements to limit the asso-
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modelled coefficients a; and a;.
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Figure 6. Original and modeled hierarchy of modes.

ciated noise, observed at the shear layer edges. Howeve, the
spatio-temporal correlations, shown in Fig. 8 for a probe lo-
cated at the middle of the modelled mixing layer (half and
two thirds of the transverse and streamwise extents (Ly, Ly) of
the computational domain respectively) clearly express that
the main dynamical features are already correctly reproduced.
The non-dimensionalisation used in this figure is based on the
local vorticity thickness 6 and the convective velocity U.

CONCLUSIONS

A new modelling approach has been suggested in view
of building robust and physical low-order representation of
turbulent flowfield. It is based on the reformulation of clas-
sical POD-based LODS in a probabilistic framework, which
enables dynamical flow perturbation and correction of phase
trajectories during time integration. This approach is shown to
enable the stabilization of a low-Reynolds cylinder wake flow
and to lead to a correct representation of the main dynamics
of a turbulent shear layer flow. The results obtained are all
the more encouraging that they are only based on a very basic



Figure 7. Snapshot of the flow rebuilt from the present 12
modes low-order model: isosurfaces of rotational magnitude
colored by the longitudinal vorticity.
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constraint (bounded energy levels) prescribed in order to se-
lect the most viable time evolution of the systems. The Monte-
Carlo testing, based on more sophisticated LODS invariants,
is likely to improve greatly the selection process. Various
potential applications of this method may be considered. It
could be in particular a good candidate for data/simulation
coupling, improving the classical approaches to prescribe re-
alistic boundary conditions for high-fidelity simulations.
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